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Separability of Lyapunov Functions for Contractive Monotone Systems

Samuel Coogan

Abstract— We consider constructing Lyapunov functions for
systems that are both monotone and contractive with respect
to a weighted one norm or infinity norm. This class of systems
admits separable Lyapunov functions that are either the sumor
the maximum of a collection of functions of a single argument.
In either case, two classes of separable Lyapunov functions
exist: the first class is separable along the system’s state,and
the second class is separable along components of the system’s
vector field. The latter case is advantageous for many practically
motivated systems for which it is difficult to measure the
system’s state but easier to measure the system’s velocity or
rate of change. We provide several examples to demonstrate
our results.

I. I NTRODUCTION

A dynamical system ismonotoneif it maintains a partial
ordering of states along trajectories of the system [1], [2],
[3]. Monotone systems exhibit structure and ordered behavior
that leads to techniques for analysis and control,e.g., [4],
[5], [6]. Examples of monotone systems include certain
biological networks [7] and transportation networks [8], [9],
[10], and monotone systems theory has been applied to large-
scale analysis and distributed control [11], [12].

A dynamical system iscontractiveif the distance between
states along any pair of trajectories is exponentially decreas-
ing [13], [14], [15], [16]. When an equilibrium exists, con-
traction implies global convergence and a Lyapunov function
is given by the distance to the equilibrium. The magnitude of
the vector field provides an alternative Lyapunov function.

Certain classes of monotone systems have been shown to
be also contractive with respect to non-Euclidean norms. For
example, [17], [18], [19] study a model for gene translation
which is monotone and contractive with respect to a weighted
ℓ1 norm. A closely related result is obtained for transporta-
tion flow networks in [20], [21]. In [20], a Lyapunov function
defined as the magnitude of the vector field is used, while a
Lyapunov function based on the distance of the state to the
equilibrium is used in [21].

In this paper, we study monotone systems that are con-
tractive with respect to a weightedℓ1 norm or ℓ∞ norm.
We first provide sufficient conditions establishing contraction
for monotone systems in terms of strict negativity of scaled
row or column sums of the Jacobian matrix for the system.
These conditions follow naturally from sufficient conditions
for monotonicity and for contraction. Next, we derive sum-
separable and max-separable Lyapunov functions based on
the contraction metric. In particular, we introduce the notion
of Lyapunov functions that are separable along components
of the vector field. This is especially relevant for certain
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classes of systems such as multiagent control systems or
flow networks where it is often more practical to measure
velocity or flow rather than position or state. Additionally, we
present results of independent interest for proving asymptotic
stability and obtaining Lyapunov functions of systems that
are nonexpansivewith respect to a particular vector norm,
i.e., the distance between states along any pair of trajectories
does not increase. Finally, we draw connections between our
results and related results, particularly small-gain theorems
for interconnected, nonlinear systems.

For linear monotone systems, also calledpositivesystems,
scalable stability verification is possible by appealing tolin-
ear Lyapunov functions or scaled componentwise-maximum
Lyapunov functions [11]. We extend stability verification
results from [11] to nonlinear monotone systems by ap-
pealing to contraction theory. Separable Lyapunov functions
for nonlinear monotone systems are also studied in [12],
however, a contraction theoretic approach is not considered.
We also introduce a novel notion of flow separable Lyapunov
functions not considered in [12].

This paper is organized as follows. Section II establishes
notation and Section III provides the problem setup. Section
IV reviews contraction theory and provides a novel approach
for establishing asymptotic stability for nonexpansive sys-
tems. Section V provides the main results, and illustrative
examples are considered in Section VI. We provide discus-
sion in Section VII and concluding remarks in Section VIII.

II. N OTATION

A matrix A ∈ R
n×n is Metzler if all of its off diagonal

components are nonnegative. All inequalities are interpreted
elementwise. The vector of all ones is denoted by1. For
scalar functions of one variable, we denote derivative with
the prime notation′. The ℓ1 and ℓ∞ norms are denote by
| · |1 and | · |∞ respectively, that is,|x|1 =

∑n
i=1 |xi| and

|x|∞ = maxi=1,...,n |xi| for x ∈ R
n.

III. PROBLEM SETUP

We consider the nonlinear autonomous dynamical system

ẋ = f(x) (1)

for x ∈ X ⊆ R
n and continuously differentiablef(·).

Let fi(x) indicate theith component off and denote the
Jacobian asJ(x) = ∂f

∂x
(x).

Denote byφ(t, x0) the solution to (1) at timet when the
system is initialized with statex0 at time0. We assume that
(1) is forward complete andX is forward invariant for (1),
thusφ(t, x0) ∈ X for all t ≥ 0 and allx0 ∈ X . In this paper,
we considerX = R

n or X = R
n
≥0 := {x ∈ R

n | x ≥ 0}.
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Consider a forward invariant setK ⊂ X with x∗ ∈ K
an equilibrium for (1) for which the domain of attraction
includesK. Let V : K → R≥0 be aLyapunov functionfor
(1) onK that establishes asymptotic stability ofx∗, that is:
V (x) is continuous andV (x) = 0 for x ∈ K if and only
if x = x∗; V (x) is radially unbounded; andV (φ(t, x0)) is
a nonincreasing function oft and limt→∞ V (φ(t, x0)) = 0
for all x0 ∈ K. In this paper, we consider non-differentiable
Lyapunov functions, for which standard Lyapunov theory can
be extended using generalized derivatives [12].

The Lyapunov functionV (x) is state sum-separableif

V (x) =
n
∑

i=1

Vi(xi) (2)

for a collection of functionsVi. It is state max-separableif

V (x) = max
i=1,...,n

Vi(xi). (3)

Lyapunov functions decomposable as (2) or (3) are con-
sidered in [12]. In this paper, we also consider Lyapunov
functions that are separable based on the dynamics of (1). If

V (x) =

n
∑

i=1

Wi(fi(x)), or (4)

V (x) = max
i=1,...,n

Wi(fi(x)) (5)

for some collection of functionsWi, we say thatV is,
respectively,flow sum-separableandflow max-separable.

Except in Section IV, we assume (1) is monotone:

Definition 1. The system(1) is monotoneif the dynamics
maintain a partial order on solutions, that is,

x0 ≤ y0 =⇒ φ(t, x0) ≤ φ(t, y0) ∀t ≥ 0. (6)

In this paper, monotonicity is defined with respect to
the positive orthant, although it is common to consider
monotonicity with respect to other cones [4].

Proposition 1 ([3, Ch. 3.1]). The system(1) is monotone if
and only if the JacobianJ(x) is Metzler for allx ∈ X .

IV. I NFINITESIMAL CONTRACTION

We now review infinitesimal contraction for autonomous
dynamical systems. We again consider the system given in
(1) but momentarily disregard the assumption that the system
is monotone. Let| · | be a vector norm onRn and let‖·‖ be
its induced matrix norm onRn×n. The correspondingmatrix
measureof the matrixA ∈ R

n×n is defined as

µ(A) := lim
h→0+

‖I + hA‖ − 1

h
. (7)

Proposition 2. LetK ⊆ X be convex and forward-invariant.
If, for somec ∈ R,

µ(J(x)) ≤ c ∀x ∈ K, (8)

then for any two solutionsx(t) = φ(t, x0) and y(t) =
φ(t, y0) for x0, y0 ∈ K it holds that, for allt ≥ 0,

|x(t)− y(t)| ≤ ect|x0 − y0|, and (9)

|f(x(t))| ≤ ect|f(x0)|. (10)

Proof. A proof for condition (9) is found in [15] where it
is assumed thatc < 0 although the proof holds without this
assumption.

Considering (10), letV (x) , |f(x)|. V (x(t)) is then
absolutely continuous as a function oft and therefore

V̇ (x(t)) , lim
h→0+

V (x(t+ h))− V (x(t))

h
(11)

for almost allt. Furthermore,

lim
h→0+

∣

∣

∣

∣

|f(x(t + h))| − |f(x) + hḟ(x)|

h

∣

∣

∣

∣

(12)

≤ lim
h→0+

∣

∣

∣

∣

f(x(t+ h))− f(x)

h
− ḟ(x)

∣

∣

∣

∣

(13)

= 0 (14)

where we use the definition oḟf(x) and the fact
∣

∣|x|−|y|
∣

∣ ≤

|x− y|. Since alsoḟ(x) = J(x)f(x), we combine (11)–(14)
and obtain

V̇ (x(t)) = lim
h→0+

|f(x) + hJ(x)f(x)| − |f(x)|

h
(15)

≤ lim
h→0+

‖I + hJ(x)‖ · |f(x)| − |f(x)|

h
(16)

= lim
h→0+

‖I + hJ(x)‖ − 1

h
|f(x)| (17)

= µ(J(x))V (x). (18)

By hypothesis, we then havėV (x) ≤ cV (x), and (10)
follows by integration.

It is also possible to obtain (10) using Coppel’s inequality;
see,e.g., [22, Section 2.5, Theorem 3] for a statement and
proof of the inequality.

Definition 2. The system(1) is infinitesimally contractingon
K with respect to the norm| · | if (8) holds for somec < 0.

If the system is infinitesimally contracting, then|f(x)|
decays to zero at an exponential rate by (10), and there-
fore each trajectory converges to a finite equilibrium. Since
(9) precludes the existence of more than one equilibrium,
we conclude that there exists a unique equilibrium, it is
asymptotically stable, and the domain of attraction includes
K. Moreover, Proposition 2 provides two possible Lyapunov
functions defined in terms of the norm| · |. Namely, if x∗ is
the unique equilibrium, thenV (x) = |x − x∗| andV (x) =
|f(x)| are both Lyapunov functions for (1).

For the ℓ1 norm with induced matrix norm‖A‖1 =
maxj

∑

i |Aij |, the induced matrix measure is given by

µ1(A) = maxj

(

Ajj +
∑

i6=j |Aij |
)

(19)

for anyA ∈ R
n×n. Likewise, for theℓ∞ norm with induced

matrix norm is‖A‖∞ = maxi
∑

j |Aij |, the induced matrix
measure is given by

µ∞(A) = maxi

(

Aii +
∑

j 6=i |Aij |
)

. (20)

See,e.g., [23, Section II.8, Theorem 24], for a derivation
of the induced matrix measures for common vector norms.



The matrix measures given in (19) and (20) provide the
connection to sum-separable and max-separable Lyapunov
functions which are the focus of this paper.

We are particularly interested in vector norms and matrix
measures that arise from a scaling of another norm. Let| · |∗
be some particular vector norm and letµ∗(·) be its induced
matrix measure. IfP ∈ R

n×n is nonsingular, then we define
a new vector norm by|x|∗,P := |Px|∗ for which the induced
matrix measure satisfies

µ∗,P (A) = µ∗(PAP−1). (21)

WhenP = diag(v) for somev ∈ R
n, we use the notation

| · |∗,v andµ∗,v(·) instead, where diag(v) denotes then× n
matrix with v on the diagonal and zeros elsewhere.

For some classes of systems, it is only possible to establish
µ(J(x)) ≤ 0 for all x ∈ K. In this case, (8)–(9) implies a
nonexpansion property. Furthermore, it may still be possible
to demonstrate asymptotic stability of an equilibrium using
contraction theory.

Theorem 1. Let K ⊆ X be convex and forward-invariant
and letx∗ ∈ K be an equilibrium of(1). If

µ(J(x)) ≤ 0 ∀x ∈ K and µ(J(x∗)) < 0 (22)

then x∗ is asymptotically stable, the domain of attraction
includesK, and V (x) = |x − x∗| and V (x) = |f(x)| are
Lyapunov functions.

Theorem 1 is closely related to existing results in the
literature, although we believe the generality provided by
Theorem 1 and the further generalization to periodically
time-varying systems in the appendix, for which we prove
convergence to a unique periodic trajectory, is novel. In
particular, [9, Lemma 6] provides a similar result forµ(·)
restricted to the matrix measure induced by theℓ1 norm un-
der the assumption that (1) is monotone. A similar technique
is applied to periodic trajectories of a class of monotone flow
networks in [24, Proposition 2], but a general formulation is
not presented.

We conclude with a final technical result that will be
useful for constructing Lyapunov functions as the limit of
a sequence of contraction metrics.

Proposition 3. Let K ⊆ X be forward-invariant and let
x∗ ∈ K be an asymptotically stable equilibrium of(1) for
which the domain of attraction includesK. Suppose there
exists a sequence of Lyapunov functionsV i : K → R≥0

for (1) on K that converges locally uniformly toV (x) :=
limi→∞ V i(x). If V (x) is radially unbounded andV (x) = 0
if and only ifx = x∗, thenV (x) is also a Lyapunov function
for (1).

Proof. Consider somex0 ∈ K. Asymptotic stability
of x∗ implies there exists a bounded setΩ for which
φ(t, x0) ∈ Ω ⊆ K for all t ≥ 0. For i =
1, . . . , n, we haveV i(φ(t, x0)) is nonincreasing int and
limt→∞ V i(φ(t, x0)) = 0. Local uniform convergence es-
tablishesV (x) is continuous,V (φ(t, x0)) is nonincreasing
in t, and limt→∞ V (φ(t, x0)) = 0. Under the additional

hypotheses of the proposition, we have thatV (x) is therefore
a Lyapunov function.

Note that a sequenceV i(x) arising from a sequence of
weighted contraction metrics,i.e., V i(x) = |Pi(x − x∗)| or
V i(x) = |Pif(x)| for Pi converging to some nonsingularP ,
satisfies the conditions of Proposition 3.

V. CONTRACTIVE MONOTONESYSTEMS

In the remainder of this paper, we assume (1) is monotone.
For A Metzler, sinceAij ≥ 0 for all i 6= j,

µ1(A) = maxj=1,...,n

∑n
i=1 Aij , (23)

µ∞(A) = maxi=1,...,n

∑n
j=1 Aij , (24)

that is,µ1(A) is the largest column sum ofA andµ∞(A)
is the largest row sum ofA. The following proposition is
easily verified from the identity (21).

Proposition 4. For A Metzler andv ∈ R
n with v > 0,

µ1,v(A) < c if and only if vTA < cvT . (25)

Likewise, forw ∈ R
n with w > 0,

µ∞,w†(A) < c if and only if Aw < cw (26)

wherew† := (1/w1, 1/w2, . . . , 1/wn).

Propositions 1 and 4 lead to the following theorems.

Theorem 2. Let (1) be a monotone system. If there exists
v > 0, c < 0, and convex, forward invariantK ⊆ X such
that

vT J(x) ≤ c1T ∀x ∈ K, (27)

then there exists an asymptotically stable equilibriumx∗ ∈
K and the domain of attraction includesK. Furthermore,
either of the following are Lyapunov functions onK:

V (x) =

n
∑

i=1

vi|xi − x∗
i |, (28)

V (x) =
n
∑

i=1

vi|fi(x)|. (29)

Proof. Suppose (27) holds. There exists somec̃ < 0 such
that vTJ(x) ≤ c̃v for all x ∈ K, in particular, we take
c̃ ∈ [c/|v|∞, 0). From (25), it follows thatµ1,v(J(x)) ≤ c̃.
The theorem follows from Proposition 2.

Theorem 3. Let (1) be a monotone system. If there exists
w > 0, c < 0, and convex, forward invariantK ⊆ X such
that

J(x)w ≤ c1 ∀x ∈ K, (30)

then there exists an asymptotically stable equilibriumx∗ ∈
K and the domain of attraction includesK. Furthermore,
either of the following are Lyapunov functions onK:

V (x) = max
i=1,...,n

{

1

wi

|xi − x∗
i |

}

, (31)

V (x) = max
i=1,...,n

{

1

wi

|fi(x)|

}

. (32)



Note that Theorem 2 and Theorem 3 lead to global asymp-
totic stability whenK = X . Moreover, Theorems 2 and 3
can be considered nonlinear extensions of known stability
verification results for linear monotone (that is, positive)
systems. In particular, conditions (27) and (30) recover the
stability conditions (1.2) and (1.3) of [11, Proposition 1]
whenJ(x) is replaced with the static matrixA as detailed
in Example 1 below.

Definition 3. The system(1) is contractive monotoneif it is
monotone and infinitesimally contracting.

The hypotheses of Theorem 2 and Theorem 3 imply
that the system is contractive monotone. We now specialize
Theorem 1 to monotone systems.

Corollary 1. Let (1) be a monotone system with equilibrium
x∗. If there existsv > 0 and convex, forward invariantK ⊆
X such that

vT J(x) ≤ 0 ∀x ∈ K and vTJ(x∗) < 0, (33)

then x∗ is asymptotically stable, the domain of attraction
includesK, and (28)–(29) are Lyapunov functions.

Corollary 2. Let (1) be a monotone system with equilibrium
x∗. If there existsw > 0 and convex, forward invariantK ⊆
X such that

J(x)w ≤ 0 ∀x ∈ K and J(x∗)w < 0, (34)

then x∗ is asymptotically stable, the domain of attraction
includesK, and (31)–(32) are Lyapunov functions.

VI. EXAMPLES

We now present several examples. First, we recover a well-
known condition for stability of monotone linear systems,
also called positive linear systems.

Example 1 (Linear systems). Consider ẋ = Ax for A
Metzler. Theorems 2 and 3 imply that if one of the following
conditions holds, then the system is globally asymptotically
stable:

There existsv > 0 such thatvTA < 0, or (35)

There existsw > 0 such thatAw < 0. (36)

If (35) holds thenV (x) =
∑n

i=1 vi|xi| and V (x) =
∑n

i=1 vi|(Ax)i| are Lyapunov functions, and if (36)
holds then V (x) = maxi{|xi|/wi} and V (x) =
maxi{|(Ax)i|/wi} are Lyapunov functions where(Ax)i
denotes theith element ofAx. �

In fact, it is well known thatA is Hurwitz if and only
if either (and therefore, both) of the two conditions (35)
and (36) hold, as established in,e.g., [11, Proposition 1],
and the corresponding state separable Lyapunov functions of
Example 1 are also derived in [11].

The following example is inspired by [12, Example 3].

Example 2 (Comparison system). Consider the system

ẋ1 = −x1 + x1x2 (37)

ẋ2 = −2x2 − x2
2 + γ(x1)

2 (38)

evolving onX = R
2
≥0 whereγ : R≥0 → R≥0 is strictly

increasing and satisfiesγ(0) = 0, γ̄ := limσ→∞ γ(σ) < 1,
and γ′(σ) ≤ 1

(1+σ)2 . Consider the change of coordinates
(η1, η2) = (log(1 + x1), x2) so that

η̇1 =
1

1 + x1
(−x1 + x1x2) (39)

where we substitute(x1, x2) = (eη1 − 1, η2). Then

η̇1 ≤ −β(eη1 − 1) + η2 (40)

whereβ(σ) = σ/(1 + σ). Introduce the comparison system

ξ̇1 = −β(eξ1 − 1) + ξ2 (41)

ξ̇2 = −2ξ2 − ξ22 + γ(eξ1 − 1)2 (42)

evolving onR2
≥0. The comparison principle (see,e.g., [12])

ensures that asymptotic stability of the origin for the com-
parison system (41)–(42) implies asymptotic stability of the
origin of the (η1, η2) system, which in turn establishes
asymptotic stability of the origin for (37)–(38). The Jacobian
of (41)–(42) is given by

J(ξ) =

(

−eξ1β′(eξ1 − 1) 1
2eξ1γ(eξ1 − 1)γ′(eξ1 − 1) −2− 2ξ2

)

(43)

whereβ′(σ) = 1
(1+σ)2 . Let v = (2γ̄+ǫ, 1) whereǫ is chosen

small enough so thatc1 := (2γ̄ + ǫ− 2) < 0. It follows that

vTJ(ξ) ≤ (−ǫe−ξ1, c1) ≤ 0 ∀ξ (44)

and vTJ(0) < 0. Applying Corollary 1, the origin of
(37)–(38) and (41)–(42) is globally asymptotically stable.
Furthermore, we have the following state and flow sum-
separable Lyapunov functions for the comparison system
(41)–(42):

V (ξ) = (2γ̄ + ǫ)ξ1 + ξ2 (45)

V (ξ) = (2γ̄ + ǫ)|ξ̇1|+ |ξ̇2|. (46)

Above, we understanḋξ1 and ξ̇2 to be shorthand for the
equalities expressed in (41)–(42). �

Example 3 (Multiagent system). Consider the following
system evolving onX = R

3:

ẋ1 = −α1(x1) + ρ1(x3 − x1) (47)

ẋ2 = ρ2(x1 − x2) + ρ3(x3 − x2) (48)

ẋ3 = ρ4(x2 − x3) (49)

where we assumeα1 : R → R is strictly increasing and
satisfiesα(0) = 0 andα′

1(σ) ≥ c0 for somec0 > 0 for all
σ, and eachρi : R → R is strictly increasing and satisfies
ρi(0) = 0. Furthermore, fori = 1, 3, ρ′i(σ) ≤ ci for some
ci > 0 for all σ, and fori = 2, 4, ρ′i(σ) ≥ ci for someci > 0
for all σ.

For example,x1, x2, andx3 may be the position of three
vehicles, for which the dynamics (47)–(49) are a rendezvous
protocol whereby agent 1 moves towards agent 3 at a rate
dependent on the distancex3 −x1 as determined byρ1, etc.



Additionally, agent 1 navigates towards the origin according
to −α1(x1). Computing the Jacobian, we obtain

J(x) =




−α′(x1)− ρ′1(z31) 0 ρ′1(z31)
ρ′2(z12) −ρ′2(z12)− ρ′3(z32) ρ′3(z32)

0 ρ′4(z23) −ρ′4(z23)





(50)

wherezij := xi−xj . Letw = (1, 1+ǫ1, 1+ǫ1+ǫ2)
T where

ǫ1 > 0 andǫ2 > 0 are chosen to satisfy

c0 > (ǫ1 + ǫ2)c1 and ǫ1c2 > ǫ2c3. (51)

We then haveJ(x)w ≤ c1 for all x for c = max{(ǫ1 +
ǫ2)c1 − c0, ǫ2c3 − ǫ1c2,−ǫ2c4} < 0. Thus, the origin of
(47)–(49) is globally asymptotically stable by Theorem 3.
Furthermore,

V (x) = max{|x1|, (1 + ǫ1)
−1|x2|, (1 + ǫ1 + ǫ2)

−1|x3|},
(52)

V (x) = max{|ẋ1|, (1 + ǫ1)
−1|ẋ2|, (1 + ǫ1 + ǫ2)

−1|ẋ3|}
(53)

are state and flow max-seperable Lyapunov functions where
we interpretẋi as shorthand for the equalities expressed in
(47)–(49). Since we can takeǫ1 andǫ2 arbitrarily small sat-
isfying (51), using Proposition 3 we have also the following
choices for Lyapunov functions:

V (x) = max{|x1|, |x2|, |x3|}, (54)

V (x) = max{|ẋ1|, |ẋ2|, |ẋ3|}. (55)

The flow max-separable Lyapunov functions (53) and (55)
are particularly useful for multiagent vehicular networks
where it often easier to measure each agent’s velocity rather
than absolute position. �

In Example 3, choosingw = 1, we haveJ(x)w ≤ 0,
however this is not enough to establish asymptotic stability
using Theorem 3. Informally, choosingw as in the exam-
ple distributes the extra negativity of−α′(x1) among the
columns ofJ(x). Nonetheless, Proposition 3 implies that
choosingw = 1 indeed leads to a valid Lyapunov function.

The above example generalizes to systems with many
agents interacting via arbitrary directed graphs, as does
the principle of distributing extra negativity along diagonal
entries of the Jacobian as discussed in Section VII.

Example 4 (Traffic flow). A model of traffic flow along a
freeway with no onramps is obtained by spatially partitioning
the freeway inton segments such that traffic flows from
segmenti to i + 1, xi ∈ [0, x̄i] is the density of vehicles
occupying linki, andx̄i is the capacity of linki. A fraction
βi ∈ (0, 1] of the flow out of link i enters linki + 1. The
remaining1 − βi fraction is assumed to exit the network
via, e.g., unmodeled offramps. Associated with each link is
a continuously differentiabledemandfunctionDi : [0, x̄i] →
R≥0 that is strictly increasing and satisfiesDi(0) = 0, and
a continuously differentiablesupply function Si : [0, x̄i] →
R≥0 that is strictly decreasing and satisfiesSi(x̄i) = 0. Flow

from segment to segment is restricted by upstream demand
and downstream supply, and the change in density of a link
is governed by mass conservation:

ẋ1 = min{δ1, S1(x1)} −
1

β1
g1(x1, x2) (56)

ẋi = gi−1(xi−1, xi)−
1

βi

gi(xi, xi+1), i = 2, . . . , n− 1

(57)

ẋn = gn−1(xn−1, xn)−Dn(xn) (58)

for someδ1 > 0 where, fori = 1, . . . , n− 1,

gi(xi, xi+1) = min{βiDi(xi), Si+1(xi+1)}. (59)

Let δi , δ1
∏i−1

j=1 βj for i = 2, . . . , n. If d−1
i (δi) < s−1

i (δi)

for all i, then δ1 is said to befeasibleand x∗
i := d−1

i (δi)
constitutes the unique equilibrium.

Let ∂i denote differentiation with respect to theith compo-
nent ofx, that is,∂ig(x) :=

∂g
∂xi

(x) for a functiong(x). The
dynamics (56)–(58) define a systeṁx = f(x) for which f
is continuous but only piecewise differentiable. Nonetheless,
the results developed above apply for this case, and, in the
sequel, we interpret statements involving derivatives to hold
wherever the derivative exists.

Notice that∂igi(xi, xi+1) ≥ 0 and∂i+1gi(xi, xi+1) ≤ 0.
Define g0(x1) := min{δ1, S1(x1)}. The Jacobian, where it
exists, is given by (60) on the following page. Let

ṽ =
(

1, β−1
1 , (β1β2)

−1, . . . , (β1β2 · · ·βn−1)
−1

)T
. (61)

Then ṽT J(x) ≤ 0 for all x. Moreover, there existsǫ =
(ǫ1, ǫ2, . . . , ǫn−1, 0) with ǫi > ǫi+1 for eachi such thatv :=
ṽ + ǫ satisfies

vTJ(x) ≤ 0 ∀x (62)

vTJ(x∗) < 0. (63)

Such a vectorǫ is constructed using a technique similar
to that used in Example 3. In particular, the sum of the
nth column of diag(ṽ)J(x) is strictly negative because
−∂nDn(xn) < 0, and this excess negativity is used to
constructv such that (62)–(63) holds. A particular choice
of ǫ such that (62)–(63) holds depends on bounds on the
derivative of the demand functionsDi, but it is possible to
chooseǫ arbitrarily small. Corollary 1 establishes asymptotic
stability, and Proposition 3 gives the following sum-separable
Lyapunov functions:

V (x) =

n
∑

i=1



|xi|

i−1
∏

j=1

βj



 , (64)

V (x) =
n
∑

i=1



|ẋi|
i−1
∏

j=1

βj



 , (65)

where we interpreṫxi according to (56)–(58).
In traffic networks, it is often easier to measure traffic flow

rather than traffic density. Thus, (65) is a practical Lyapunov
function indicating that the (weighted) total absolute netflow
throughout the network decreases over time. �



J(x) =















∂1g0 −
1
β1
∂1g1 − 1

β1
∂2g1 0 0 · · · 0

∂1g1 ∂2g1 −
1
β2
∂2g2 − 1

β2
∂3g2 0 · · · 0

0 ∂2g2 ∂3g2 −
1
β3
∂3g3 − 1

β3
∂4g3 0

...
. . .

...
0 0 · · · 0 ∂n−1gn−1 ∂ngn−1 − ∂nDn(xn)















(60)

In [10], a result similar to that of Example 4 is derived
for possibly infeasible input flow and traffic flow network
topologies where merging junctions with multiple incoming
links are allowed. The proof considers a flow sum-separable
Lyapunov function similar to (65) and appeals to LaSalle’s
invariance principle rather than Proposition 3.

VII. D ISCUSSION

We first highlight the connection of the above results
to small-gain conditions for interconnections of nonlinear
systems. ConsiderN interconnected systems with dynamics
ẋi = fi(x1, . . . , xN ) for xi ∈ R

ni and suppose they satisfy
an input-to-state stability (ISS) condition [25] whereby there
exists ISS Lyapunov functionsVi [26] satisfying

∂Vi

∂xi

(xi)fi(x) ≤ −αi(Vi(xi)) +
∑

i6=j

γij(Vj(xj)) (66)

where eachαi and γij is a K∞ function. We obtain a
monotone comparison system

ν̇ = g(ν), gi(ν) = −αi(νi) +
∑

j 6=i

γij(νj) (67)

evolving onRn
≥0 for which asymptotic stability of the origin

implies asymptotic stability of the original system [27]. For
N = 2, it is noted in [28] that if γ12(σ) = κ1α2(σ)
and γ21(σ) = κ2α1(σ) for κ1 > 0, κ2 > 0 such that
κ1κ2 < 1, thenv1V1(x1)+ v2V (x2) is a Lyapunov function
for the original system for anyv = (v1 v2)

T > 0 satisfying
v1κ1 < v2 < v1/κ2. Indeed, for such a choice, we see that
vT ∂g

∂ν
(ν) ≤ 0, and if additionallyα′

i(0) > 0 for i = 1, 2,
thenvT ∂g

∂ν
(0) < 0 so that Corollary 1 provides a contraction

theoretic interpretation of this result.
Alternatively, in [27], [29], it is shown that if there exists a

functionρ : R≥0 → R
n
≥0 with each componentρi belonging

to class1 K∞ such thatg(ρ(r)) < 0 for all r > 0, then the
origin is asymptotically stable andV (ν) := maxi{ρ

−1
i (νi)}

is a Lyapunov function. If condition (34) of Corollary 2
holds for the comparison system for somew, we may choose
ρ(r) = rw. Indeed, we have

g(rw) =

∫ 1

0

∂g

∂ν
(σrw)rw dσ < 0 ∀r > 0. (68)

For this case,V (ν) = maxi{ρ
−1
i (νi)} = maxi{νi/wi},

recovering (31).
Next, we comment on the relationship between Theorem 1

as well as Proposition 3 and a generalization of contraction

1A continuous functionα : R≥0 → R≥0 is of classK∞ if it is strictly
increasing,α(0) = 0, and limr→∞ α(r) = ∞.

theory recently developed in [30], [31] where exponential
contraction between any two trajectories is required only
after an arbitrarily small amount of time, an arbitrarily small
overshoot, or both. In [31, Corollary 1], it is shown that if
a system is contractive with respect to a sequence of norms
convergent to some norm, then the system is generalized
contracting with respect to that norm, a result analogous to
Proposition 3. In [31], conditions on the sign structure of
the Jacobian are obtained that ensure the existence of such a
sequence of weightedℓ1 or ℓ∞ norms. These conditions are
a generalization of the technique in Example 3 and Example
4 above where smallǫ is used to distribute excess negativity.

Furthermore, it is shown in [17], [18] that a ribosome flow
model for gene translation is monotone and nonexpansive
with respect to a weightedℓ1 norm, and additionally is
contracting on a subset of its domain. Entrainment of solu-
tions is proved by first showing that all trajectories reach the
region of exponential contraction. Theorem 4 in the appendix
provides a different approach for studying entrainment by
observing that the distance to the periodic trajectory strictly
decreases in each period due to a neighborhood of contrac-
tion along the periodic trajectory. Theorem 1 provides an
analogous result for stability analysis of an equilibrium.

Finally, we note that Metzler matrices with nonpositive
column sums have also been calledcompartmental[32]. It
has been shown that if the Jacobian matrix is compartmental
for all x, thenV (x) = |f(x)| is a decreasing function along
trajectories of (1) [32], [33]; we recover this observationby
considering the Lyapunov function implied by (10) withc =
0 and | · | taken to be the standardℓ1 norm.

VIII. C ONCLUSIONS

We have investigated monotone systems that are also
contracting with respect to a weightedℓ1 norm orℓ∞ norm.
In the case of theℓ1 (respectively,ℓ∞) norm, we provided
a condition on the weighted column (respectively, row)
sums of the Jacobian matrix for ensuring contraction. These
conditions lead to either sum-separable or max-separable
Lyapunov functions. In particular, we introduce a class of
separable Lyapunov functions that depend on the value of
the vector field along trajectories of the system. These
flow separable Lyapunov functions are especially relevant
in applications where it is easier to measure the derivative
of the system’s state rather than measure the state directly.

Paralleling observations made in [11], verifying (27) and
(30) requires checking nonpositivity of a collection ofn
functions. For polynomial or rational vector fields, this
is done efficiently using sum-of-squares (SOS) techniques



[34]. Future work will consider scalable verification and
synthesis methods for contractive monotone systems using
SOS techniques.
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APPENDIX

To prove Theorem 1, we prove a more general result for
which Theorem 1 is a special case. Consider

ẋ = f(t, x) (69)

for x ∈ X . We assume thatf(t, x) is periodic int with period
T . We further assumef(t, x) is differentiable inx and that
f(t, x) and the JacobianJ(t, x) ,

∂f
∂x

(t, x) are continuous
in (t, x).

Theorem 4. Let K ⊆ X be convex and forward-invariant
and supposeγ(t) be a periodic trajectory of(69)with period
T . If

µ(J(t, x)) ≤ 0 ∀t ≥ 0, ∀x ∈ K (70)

and there existst∗ such that

µ(J(t∗, γ(t∗))) < 0, (71)

then for all trajectoriesx(t) = φ(t, x0), x0 ∈ K we have

lim
t→∞

|x(t) − γ(t)| = 0. (72)

Proof. Without loss of generality, assumet∗ = 0. Condition
(71) and continuity ofJ(t, x) imply there existsǫ > 0, c > 0,
and0 < τ ≤ T such that

µ(J(t, y)) ≤ −c ∀t ∈ [0, τ ], ∀y ∈ Bǫ(γ(t)) (73)

whereBǫ(y) = {z : |z − y| ≤ ǫ} denotes the closed ball of
radiusǫ centered aty ∈ R

n. Define the mapping

P (ξ) = φ(T, ξ) (74)

and observe thatP k(ξ) = φ(kT, ξ). Let γ∗ = γ(0) and note
that γ∗ is a fixed point ofP . Consider a pointξ ∈ Bǫ(γ

∗).
Let x(t) = φ(t, ξ) and note that|P (ξ)−γ∗| = |x(T )−γ(T )|.
By (70), we have|x(T ) − γ(T )| ≤ |x(τ) − γ(τ)| and, by
(73), we have [15]

|x(τ) − γ(τ)| ≤ e−cτ |x(0)− γ(0)|. (75)

Now considerξ ∈ K such that|ξ − γ∗| > ǫ and again
let x(t) = φ(t, ξ). Let σ(r) = rξ + (1 − r)γ∗ be the
parameterized line segment connectingγ∗ andξ, and letrǫ
be such that|σ(rǫ) − γ∗| = ǫ. Note that|ξ − γ∗| = |ξ −
σ(rǫ)|+|σ(rǫ)−γ∗|. Let s(t) = φ(t, σ(rǫ)). By (70), we have
|x(T )− s(T )| ≤ |x(0)− s(0)| = |ξ − σ(rǫ)| = |ξ − γ∗| − ǫ.
Furthermore, by the same argument as in the preceding case,
we have|s(T ) − γ(T )| ≤ e−cτ |σ(rǫ) − γ∗| = e−cτǫ, and
thus by the triangle inequality,

|P (ξ)− γ∗| ≤ |x(T )− s(T )|+ |s(T )− γ(T )| (76)

≤ |ξ − γ∗| − (1− e−cτ )ǫ (77)

= |ξ − γ∗| − δ (78)

whereδ := (1− e−cτ )ǫ > 0. Then

|P (ξ)− γ∗| ≤

{

|ξ − γ∗| − δ if |ξ − γ∗| > ǫ

e−cτ |ξ − γ∗| if |ξ − γ∗| ≤ ǫ.
(79)

It follows that for all ξ, |P k(ξ) − γ∗| ≤ ǫ for some finite
k (in particular, for anyk ≥ |ξ − γ∗|/δ). The theorem then
follows from the second condition of (79).

Theorem 1 follows by takingγ(t) ≡ x∗ and arbitrary
T > 0, and we may takeτ = T in the proof.
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[29] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “Smallgain theorems
for large scale systems and construction of ISS Lyapunov functions,”
SIAM Journal on Control and Optimization, vol. 48, no. 6, pp. 4089–
4118, 2010.

[30] E. D. Sontag, M. Margaliot, and T. Tuller, “On three generalizations
of contraction,” in IEEE 53rd Annual Conference on Decision and
Control (CDC), pp. 1539–1544, 2014.

[31] M. Margaliot, E. D. Sontag, and T. Tuller, “Contractionafter small
transients,”Automatica, vol. 67, pp. 178–184, 2016.

[32] J. A. Jacquez and C. P. Simon, “Qualitative theory of compartmental
systems,”SIAM Review, vol. 35, no. 1, pp. 43–79, 1993.

[33] H. Maeda, S. Kodama, and Y. Ohta, “Asymptotic behavior of nonlinear
compartmental systems: nonoscillation and stability,”IEEE Transac-
tions on Circuits and Systems, vol. 25, no. 6, pp. 372–378, 1978.

[34] P. Parrilo,Structured Semidefinite Programs and Semialgebraic Geom-
etry Methods in Robustness and Optimization. PhD thesis, California
Institute of Technology, 2000.


	I Introduction
	II Notation
	III Problem Setup
	IV Infinitesimal Contraction
	V Contractive Monotone Systems
	VI Examples
	VII Discussion
	VIII Conclusions
	IX Acknowledgements
	Appendix
	References

