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Abstract— A dynamical system is mixed monotone if its
vector field or update-map is decomposable into an increas-
ing component and a decreasing component. In this tutorial
paper, we study both continuous-time and discrete-time mixed
monotonicity and consider systems subject to an input that
accommodates, e.g., unknown parameters, an unknown distur-
bance input, or an exogenous control input. We first define
mixed monotonicity with respect to a decomposition function,
and we recall sufficient conditions for mixed monotonicity based
on sign properties of the state and input Jacobian matrices
for the system dynamics. The decomposition function allows
for constructing an embedding system that lifts the dynamics
to another dynamical system with twice as many states but
where the dynamics are monotone with respect to a particular
southeast order. This enables applying the powerful theory
of monotone systems to the embedding system in order to
conclude properties of the original system. In particular, a single
trajectory of the embedding system provides hyperrectangular
over-approximations of reachable sets for the original dynamics.
In this way, mixed monotonicity enables efficient reachable set
approximation for applications such as optimization-based con-
trol and abstraction-based formal methods in control systems.

I. INTRODUCTION

Reachability analysis of a dynamical system consists of
identifying the set of possible future (or past) states given
a set of initial states. Reachability has a long and rich
history, and methods exist for computing reachable sets for
continuous-time systems, discrete-time systems, and hybrid
systems, as well as systems with control and/or disturbance
inputs. The common message in these approaches is that,
in general, they suffer from the curse of dimensionality:
obtaining exact or close approximations of reachable sets
is often not possible for systems with more than a few states
and generally requires significant computational resources.

Yet there is a growing need for fast reachability methods
in modern control systems. For example, it is increasingly
common to formulate feedback controllers obtained as the
solution to an optimization problem that is solved online,
perhaps on the order of milliseconds per solution. In this
context, the future state of the system often appears as either
soft or hard constraints in the optimization problem, and thus
efficient reachability methods are critical. As another exam-
ple, reachability analysis is included as a subroutine in many
abstraction-based approaches to formal control verification
and synthesis that must be solved for each abstract state of
the system [1], [2]; for examples of even modest size, this can
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quickly amount to thousands or even millions of reachability
computations.

In order to address this growing need, the trade-off that
has emerged is to exchange accuracy for efficiency. Rather
than aiming to compute exact or nearly exact reachable sets,
it is often sufficient to obtain merely approximate reachable
sets with appropriate guarantees; in applications that consider
system safety, a guaranteed over-approximation of the reach-
able set is generally required. A partial list of methods that
aim to efficiently compute over-approximations of reachable
sets include ellipsoidal techniques [3], zonotope methods [4],
interval analysis [5], [6], eigenvalue perturbation bounds [7],
and matrix measures [8], [9].

In this tutorial paper, we consider mixed monotone sys-
tems theory for efficient computation of reachable sets and
invariant sets for a broad class of nonlinear systems. A
dynamical system is mixed monotone if its vector field or
update-map is decomposable into an increasing component
and a decreasing component. More formally, the system
ẋ = f(x) with x ∈ Rn is mixed monotone with respect to the
decomposition function d(x, x̂) if f(x) = d(x, x) for all x
and each di is increasing in each xj for j 6= i and decreasing
in each x̂j for all j where di is the i-th component of d. In the
particular case when it is possible to take d(x, x̂) = f(x),
we recover the definition of monotonicity with respect to
the standard component-wise partial order on Rn; see [10],
[11], [12] for further background on monotone systems.
The definitions and characterizations extend to discrete-time
systems and systems with disturbance inputs.

Given a mixed monotone system, it is possible to em-
bed its dynamics into a 2n dimensional embedding system
constructed from the decomposition function. Even if the
original system is subject to a disturbance input, the em-
bedding system has no inputs and accommodates the worst-
case disturbance. The primary motivation for appealing to
mixed monotonicity for reachability is that a single trajectory
in the embedding system provides hyperrectangular over-
approximations of reachable sets of the original system: the
first n-coordinates of the system state in the embedding space
provide the lower corner of the hyperrectangle, and the last
n-coordinates provide the upper corner. Moreover, an equi-
librium in the embedding system implies a robustly forward
invariant hyperrectangular set for the original system.

Under mild conditions, every system is mixed monotone
with respect to some decomposition function and the proof
is constructive, however, the constructed decomposition gen-
erally does not have a closed form representation and is not
easy to evaluate. Thus, in practice, decomposition functions
are often constructed from domain knowledge. In addition,



there are special cases for which decomposition functions
can be readily constructed if the Jacobian matrix for the
system dynamics is appropriately bounded. Moreover, the
quality of reachable set approximations is inherently tied to
the choice of decomposition function. We demonstrate these
fundamental results on several examples and case studies.

The idea of decomposing a dynamical system so that it
may be embedded in a higher dimensional monotone system
is old; see, e.g., [13] for a historical survey and also [14],
[15], [16]. Some of the earliest results that apply this idea
for bounding reachable sets and for establishing stability
of equilibria are presented in [14], [17]. The foundational
paper [15] applies these early results and uses an embedding
system to establish stability conditions for certain classes of
dynamical systems viewed as the feedback interconnection
of monotone systems, an idea further extended in [18]. To-
gether, [13], [15] establish the basis for mixed monotonicity
in discrete-time and continuous-time in the form adopted in
this tutorial. The paper [19] considers discrete-time systems
with disturbances and leverages the efficient reachability
calculations of mixed monotone systems to propose an
algorithm for computing finite state abstractions, a common
prerequisite as noted above for applying formal methods to
control systems; specialization of related approaches for the
class of monotone systems is studied in the earlier work [20]
and more recently in [21], [22]. Mixed monotone systems
theory has been extended and applied to traffic flow networks
[23], [24], sampled-data systems [25], formal methods [26],
[27], sufficient conditions for mixed monotonicity [28], [29],
[30], and a toolbox for reachability analysis [31].

The objective of this tutorial is to collect and present recent
results, and note connections to older results, in applying
mixed monotone systems theory for reachability in a unified
way. This tutorial is organized as follows. Section II briefly
reviews monotone dynamical systems. Mixed monotonicity
in continuous-time is presented in Section III, and the em-
bedding system and its properties are studied in Section IV.
The foundational tools for reachability and safety analysis
are presented in Section V. Analagous results for discrete-
time systems are collected in Section VI, and several case
studies are discussed in Section VII. The proofs of some key
results are provided here; the proofs of the remaining results
are found in the related literature as indicated.

Notation

Let R≥0 = {x ∈ R | x ≥ 0} and R≤0 = {x ∈ R | x ≤ 0}.
Denote the extended reals by R = R ∪ {−∞,∞}, and let
R≥0 = R≥0 ∪ {∞} and R≤0 = R ∪ {−∞}. Subscript
denotes vector index so that a vector x ∈ Rn is written
as x =

[
x1 x2 . . . xn

]T
or x = (x1, x2, . . . , xn). For

x, y ∈ Rn, we sometimes write (x, y) =
[
xT yT

]T ∈
R2n for the concatenation of x and y. Throughout, the
standard inequality symbols ≤, ≥, < and > are interpreted
component-wise. Alternative partial orders will be indicated
with subscript. Specifically, we make particular use of the
southeast order on R2n denoted ≤SE and defined as follows:

For (x, x̂), (y, ŷ) ∈ R2n, (x, x̂) ≤SE (y, ŷ) if and only if
x ≤ y and ŷ ≤ x̂.

A set A ⊆ Rn is an extended hyperrectangle if there exists
a, b ∈ Rn with a ≤ b such that A = [a, b] := {x ∈ Rn |
a ≤ x ≤ b}, where the partial order ≤ extends to Rn in
the natural way. If an extended hyperrectangle is bounded,
it is called a hyperrectangle. For a = (x, x̂) with x ≤ x̂,
we write JaK = [x, x̂], i.e., JaK for a ∈ R2n denotes the
hyperrectangle defined by the first and last n components
of a. It is a straightforward observation that for any a =
(x, x̂) ∈ R2n and b = (y, ŷ) ∈ R2n such that x ≤ x̂ and y ≤
ŷ, if a ≤SE b, then JbK ⊆ JaK, equivalently, [y, ŷ] ⊆ [x, x̂].

II. A BRIEF REVIEW OF MONOTONE DYNAMICAL
SYSTEMS

Before defining mixed monotonicity, we recall key re-
sults from the theory of monotone dynamical systems. A
dynamical system is monotone if it maintains a partial
order of states along the evolution of the system state. In
particular, we present necessary and sufficient conditions for
monotonicity in terms of the sign structure of appropriate
Jacobian matrices from the system dynamics. Then, rather
than defining mixed monotonicity in terms of the system
evolution, it will prove more natural to extend these nec-
essary and sufficient Jacobian-based conditions in order to
define mixed monotonicity, and we will show that such an
extension implies certain conditions on system flow in a
particular embedding space that generalize monotonicity.

Monotonicity (and mixed monotonicity discussed subse-
quently) can be defined with respect to partial orders induced
by arbitrary positive cones in a Banach space; however, in
this tutorial, we will focus primarily on dynamical systems
with state space X ⊂ Rn and the standard partial order on
Rn given by component-wise inequality; the key exception
is when we also consider systems with state space a subset
of R2n and the southeast partial order.

We first consider continuous-time dynamical systems and
then, in Section VI, we collect analogous results for the
discrete-time case. Consider

ẋ = f(x,w) (1)

where x ∈ X ⊆ Rn and w ∈ W ⊆ Rm. We assume through-
out that X is an extended hyperrectangle with nonempty
interior and W is a hyperrectangle, and in particular there
exists w,w ∈ Rm such that W = [w,w].

Given w : [0,∞) → W , let φ(t, x0,w) be the flow map
for (1) denoting the state of the system at time t when initial-
ized at state x0 at time 0 subject to the input w. Throughout,
we always assume w and other time-varying signals are
piecewise continuous and that f is locally Lipschitz in x
and w so that for any x0 ∈ X and all piecewise continuous
signals w, φ(t, x0,w) is unique when it exists. There is no
need to assume that trajectories remain within the domain
X for all time or that finite escape time is avoided, but
φ(t, x0,w) is understood to exist only if φ(τ, x0,w) ∈ X
for all τ ∈ [0, t], i.e., solutions cease to exist upon exiting X .
Throughout this tutorial, statements involving the flow map



of a dynamical system are understood to be valid only for
times at which the flow map exists. In the case that f does
not depend on w so that (1) becomes ẋ = f(x), we omit w
from the flow map and instead write φ(t, x0).

Formally, the system (1) is monotone if for any pair
x0, x

′
0 ∈ X such that x0 ≤ x′0 and any pair w,w′ : [0,∞)→

W such that w(t) ≤ w′(t) for all t ≥ 0, it holds that
φ(t, x0,w) ≤ φ(t, x′0,w

′) for all t ≥ 0. When specialized
to the case of the standard partial order, as is the case in
this tutorial, monotone systems are also called cooperative
systems.

Necessary and sufficient conditions for monotonicity given
in terms of Jacobian matrices from the system dynamics are
given as follows.

Proposition 1 ([10, Proposition III.2]). The system (1) is
monotone if and only if the following hold:
• For all i, j ∈ {1, . . . , n} with i 6= j,

∂fi
∂xj

(x,w) ≥ 0 (2)

for all x ∈ X and all w ∈ W whenever the derivative
exists.

• For all i ∈ {1, . . . , n} and all k ∈ {1, . . . ,m},

∂fi
∂wk

(x,w) ≥ 0 (3)

for all x ∈ X and all w ∈ W whenever the derivative
exists.

Since f is assumed to be Lipschitz, the above derivatives
exist almost everywhere, i.e., except on a set of measure zero.

It is appropriate to think of the conditions in Proposition
1 as an infinitesimal characterization of monotonicity. In the
next section, we extend the infinitesimal characterization of
Proposition 1 to define mixed monotone dynamical systems.

III. MIXED MONOTONE DYNAMICAL SYSTEMS IN
CONTINUOUS-TIME

Mixed monotonicity generalizes monotonicity by decom-
posing a system into its increasing and decreasing com-
ponents. We define mixed monotonicity be extending the
Jacobian condition above to a decomposition function that
must be related to the dynamics in a particular way.

Definition 1. Given a locally Lipschitz continuous function
d : X×W×X×W → Rn, the system (1) is mixed monotone
with respect to d if the following hold:
• For all x ∈ X and all w ∈ W ,

d(x,w, x, w) = f(x,w). (4)

• For all i, j ∈ {1, . . . , n} with i 6= j,

∂di
∂xj

(x,w, x̂, ŵ) ≥ 0 (5)

for all x, x̂ ∈ X and for all w, ŵ ∈ W whenever the
derivative exists.

• For all i, j ∈ {1, . . . , n},
∂di
∂x̂j

(x,w, x̂, ŵ) ≤ 0 (6)

for all x, x̂ ∈ X and for all w, ŵ ∈ W whenever the
derivative exists.

• For all i ∈ {1, . . . , n} and all k ∈ {1, . . . ,m},
∂di
∂wk

(x,w, x̂, ŵ) ≥ 0 and
∂di
∂ŵk

(x,w, x̂, ŵ) ≤ 0 (7)

for all x, x̂ ∈ X and for all w, ŵ ∈ W whenever the
derivative exists.

�

If (1) is mixed monotone with respect to d, d is said to
be a decomposition function for (1), and when d is clear
from context, we simply say (1) is mixed monotone. When
there is no disturbance so that ẋ = f(x), we instead write
the decomposition function as d(x, x̂). Note the asymmetry
between condition (6), which must hold for all i, j, and
condition (5), which need only hold for i 6= j.

The definition of mixed monotonicity is in terms of the
derivatives of the decomposition function d. By integrating,
mixed monotonicity can be equivalently characterized as in
Fact 1 below, the proof of which is analogous to the proof of
Proposition 1; we call these the Kamke-type conditions for
mixed monotonicity since they are the analog of the Kamke
conditions for monotonicity as discussed in, e.g., [11, Ch. 3].

Fact 1 (Kamke-type conditions). The system (1) is mixed
monotone with respect to d if and only if the following hold:
• For all x ∈ X and all w ∈ W ,

d(x,w, x, w) = f(x,w). (8)

• For all i ∈ {1, . . . , n},

di(x,w, x̂, ŵ) ≤ di(y, v, x̂, ŵ) (9)

for all x, y, x̂ ∈ X such that x ≤ y and xi = yi and
for all w, v, ŵ ∈ W such that w ≤ v.

• For all i ∈ {1, . . . , n},

di(x,w, ŷ, v̂) ≤ di(x,w, x̂, ŵ) (10)

for all x, x̂, ŷ ∈ X such that x̂ ≤ ŷ and for all w, ŵ, v̂ ∈
W such that ŵ ≤ v̂.

Mixed monotonicity generalizes monotonicity.

Example 1. The system (1) is monotone if and only if it is
mixed monotone with respect to the particular decomposition
function defined by d(x,w, x̂, ŵ) = f(x,w) for all x, x̂ ∈ X
and all w, ŵ ∈ W . In this case, the conditions given in
Definition 1 reduce to the infinitesimal characterization of
monotonicity given in Proposition 1. �

We make a few observations regarding Definition 1.
Monotone dynamical systems are defined as those systems
whose flow satisfies a certain monotonicity property; in
contrast, Definition 1 makes no mention of the flow of any
dynamical system. It turns out that it is easier to define mixed



monotonicity by appealing to its infinitesimal characteriza-
tion given in terms of certain Jacobian matrices, and then
we will see in Section IV that the appropriate connection
is to the flow of a particular 2n dimensional embedding
system. Moreover, the only restriction on d imposed by f is
given in (4). This suggests that a system (1) may be mixed
monotone with respect to many decomposition functions,
and, thus, we include “with respect to d” in the definition
above to emphasize this critical dependence. In fact, there
always exists a decomposition function, as established next.

Theorem 1 ([30, Theorem 1]). Any system of the form (1)
is mixed monotone with respect to a decomposition function
d satisfying

di(x,w, x̂, ŵ) =

min
y∈[x,x̂]
yi=xi

z∈[w,ŵ]

fi(y, z) if x ≤ x̂ and w ≤ ŵ,

max
y∈[x̂,x]
yi=xi

z∈[ŵ,w]

fi(y, z) if x̂ ≤ x and ŵ ≤ w.
(11)

Note that, in the above theorem, d is only specified for
x, x̂, w, ŵ such that x ≤ x̂ and w ≤ ŵ, or x̂ ≤ x and
ŵ ≤ w. As we will see in the following section, the values
that d takes outside of this region are not relevant for the
purposes of analysis of (1), and it is in fact possible to restrict
the domain of a decomposition function d to this region
without loss of generality, as is done in [30]. Moreover,
in addition to characterizing some decomposition function,
the decomposition function given in (11) is the tightest
decomposition function in the sense that it provides the
smallest reachable set computations available by Proposition
3 discussed subsequently; see [30] for further details.

In some cases, there exists a closed-form decomposition
function satisfying the conditions of (11).

Example 2. Consider the system ẋ = f(x) with

f(x) =

[
x22 + 2
x1

]
(12)

and X = R2. This system is mixed monotone with decom-
position function

d1(x, x̂) =


x22 + 2 if x2 ≥ 0 and x2 ≥ −x̂2
x̂22 + 2 if x̂2 ≤ 0 and x2 < −x̂2
2 if x2 < 0 and x̂2 > 0,

d2(x, x̂) = x1

(13)

that satisfies (11). �

Despite the apparent generality of Theorem 1, solving
the optimization problems specified in (11) is generally
not how decomposition functions are obtained in practice.
Indeed, from the perspective of chronological developments
in the theory of mixed monotone systems, Theorem 1 and
its discrete-time counterpart Theorem 3 are recent results;
more commonly, decomposition functions are constructed

from domain knowledge of the problem at hand or via certain
special cases such as those described below.

There are several reasons why Theorem 1 is of limited
practical use. First, solutions to the optimization in (11) may
not be available in closed-form. Second, even when a solu-
tion is available in closed-form, it is often defined piecewise
as in Example 2, and the number of pieces generally scales
exponentially with the dimension of the state and disturbance
space, and thus evaluating the decomposition function at
a particular point may require a large number of function
evaluations. As we will see below, a main appeal of mixed
monotone systems theory is its computational tractability:
computing reachable sets for an n-dimensional system re-
quires computing a single trajectory of a 2n-dimensional
system so that reachable set computations scale apparently
linearly in state dimension. But this higher dimensional
system is defined from the decomposition function, and
thus computing, e.g., simulated trajectories would require an
exponential number of condition evaluations at each time-
step if the decomposition function contains an exponential
number of pieces.

Aside from obtaining decomposition functions using do-
main knowledge, an important special case that leads to
a particularly simple decomposition function is when each
off-diagonal entry of the Jacobian matrix ∂f/∂x and each
entry of the Jacobian matrix ∂f/∂w is either upper or lower
bounded, as formalized in the following special case.

Special Case 1. Consider (1). If there exists Jx ∈ Rn×n≤0 ,
Jx ∈ Rn×n≥0 , Jw ∈ Rn×m≤0 , and Jw ∈ Rn×m≥0 such that
• for all x ∈ X and all w ∈ W ,

∂f

∂x
(x,w) ∈ [Jx, Jx] and

∂f

∂w
(x,w) ∈ [Jw, Jw] (14)

whenever the derivative exists, and
• for all i 6= j, (Jx)i,j > −∞ or (Jx)i,j <∞, and
• for all i, k, (Jw)i,k > −∞ or (Jw)i,k <∞

then (1) is mixed monotone and a decomposition function is
constructed in the following way:

1) For all i, j ∈ {1, . . . , n} with i 6= j and all k ∈
{1, . . . ,m}, choose δi,j , εi,k ∈ {0, 1} such that

δi,j = 0 implies (Jx)i,j 6= −∞,
δi,j = 1 implies (Jx)i,j 6=∞,
εi,k = 0 implies (Jw)i,k 6= −∞,
εi,k = 1 implies (Jw)i,k 6=∞.

(15)

Note that such a choice exists by hypothesis.
2) For all i ∈ {1, . . . , n}, define ξi, αi ∈ Rn and πi, βi ∈

Rm element-wise according to

(ξii , α
i
i) = (xi, 0), (16)

(ξij , α
i
j) =

{
(xj ,−(Jx)i,j) if i 6= j and δi,j = 0,

(x̂j , (Jx)i,j) if i 6= j and δi,j = 1,

(17)

(πik, β
i
k) =

{
(wk,−(Jw)i,k) if εi,k = 0,

(ŵk, (Jw)i,k) if εi,k = 1.
(18)



3) Lastly, define the ith element of the decomposition
function d according to

di(x,w, x̂, ŵ) = fi(ξ
i, πi) + (αi)T (x− x̂)

+ (βi)T (w − ŵ), (19)

which is always well-defined on X×W×X×W since
X andW are assumed to be extended hyperrectangles.

�

Note that a monotone system satisfying Proposition 1
satisfies the hypothesis of Special Case 1 so that the choice
δi,j = 0 for all i 6= j and εi,k = 0 for all i and k and taking
Jx = 0 and Jw = 0 leads to the canonical decomposition
function for monotone systems noted in Example 1. In
addition, any linear system ẋ = Ax+ Bw also satisfies the
hypotheses of Special Case 1, as shown next.

Example 3. Any linear system ẋ = Ax + Bw satisfies
the hypotheses of Special Case 1 and is therefore mixed
monotone. In particular, write A and B as A = A1 − A2

and B = B1 − B2 where A1
i,i = Ai,i for all i, A1

i,j =
max{0, Ai,j} for i 6= j, A2 = A1 − A, B1 = max{0, B}
and B2 = max{0,−B} where the max is understood to be
elementwise. Then d(x,w, x̂, ŵ) = A1x + B1w − (A2x̂ +
B2ŵ) is a decomposition function for the system. This is the
decomposition function given by the procedure of Special
Case 1 with the choice δi,j = 0 if and only if Ai,j ≥ 0 for
each i 6= j and εi,k = 0 if and only if Bi,k ≥ 0 and taking
Jx = −A2, Jx = A1, Jw = −B2, and Jw = B1. �

The next example is inspired by [17, Lemma 1].

Example 4. In Special Case 1, if no off-diagonal entries of
Jx and no entries of Jw take the value −∞, then taking
δi,j = 0 for all i 6= j and εi,k = 0 for all i, k leads
to the decomposition function d(x,w, x̂, ŵ) = f(x,w) −
Jx(x − x̂) − Jw(w − ŵ) where, without loss of generality,
we set (Jx)i,i = 0 for all i for this example (note that
no bound on ∂fi/∂xi for any i is needed or used in the
construction of the decomposition function in Special Case
1). This decomposition function separates the dynamics as
the difference of two monotone systems with f(x,w) =
f1(x,w) − f2(x,w), f1(x,w) = f(x,w) − Jxx − Jww
and f2(x,w) = −Jxx− Jww, and decomposition function
d(x,w, x̂, ŵ) = f1(x,w)− f2(x̂, ŵ). �

Even though Special Case 1 encompasses a large class of
systems, some systems do not satisfy the conditions stipu-
lated by the special case but are nonetheless mixed monotone
with respect to an alternative decomposition function. This
is a main observation of [32].

Example 5 (Example 2 continued). Consider again the
system ẋ = f(x) with f(x) as in (12) and X = R2. Note
that ∂f1

∂x2
(x) = 2x2 is neither lower or upper bounded on

X and thus the system does not satisfy the hypotheses of
Special Case 1, yet a decomposition function is provided in
Example 2.

Now consider a restricted domain defined on some com-
pact subset X ′ ⊂ X . Then the decomposition function
construction defined in Special Case 1 is applicable on the
restricted domain X ′. For instance, take X ′ = [−5, 5] ×
[−5, 5]. On X ′, ∂f∂x ∈ [Jx, Jx] with

Jx =

[
0 −10
1 0

]
Jx =

[
0 10
1 0

]
(20)

so that Special Case 1 with δ1,2 = δ2,1 = 1 gives the
alternative decomposition function

d′(x, x̂) =

[
x̂22 + 2 + 10(x2 − x̂2)

x1

]
. (21)

�

We conclude this section by discussing the relationship
and differences between Definition 1, Special Case 1, and
other definitions and conditions appearing in the literature.
A version of Definition 1 specialized to the case with no
disturbances appears in [24, Definition 1], and a restrictive
version of Special Case 1 requiring sign-stability of the
Jacobian matrices is noted in [33]. The essential observation
that the special case extends to the case when the entries
of the Jacobian matrices are bounded is made in [26], [28],
[31].

However, instead of viewing Special Case 1 as a special
case of Definition 1, [26] and [31] instead define a mixed
monotone system to be one that satisfies the conditions of
Special Case 1. In addition, the conditions given in [26], [28],
[31] differ from that in Special Case 1 in several minor ways.
First, it is often preferable (for, e.g., reachability analysis)
to choose δi,j = 0 whenever (Jx)i,j + (Jx)i,j ≥ 0 and to
choose δi,j = 1 otherwise, and similarly to choose εi,k = 0 if
and only if (Jw)i,k+(Jw)i,k ≥ 0. This choice is imposed in
the conditions given in [26], [28], [31] but is not necessary
for arriving at a valid decomposition function and Special
Case 1 does not impose this requirement. Moreover, [31,
Assumption 5] imposes that each off-diagonal entry of Jx
and Jx and each entry of Jw and Jw be finite, but as noted
in [28], these entries need only be upper or lower bounded.
Lastly, [26], [28] further imposes that the diagonal entries
of ∂f/∂x are also bounded, but this is not needed and, in
particular, precludes the Special Case from encompassing
monotonicity as characterized in Proposition 1. Also of note
is [34], which studies the response to monotone inputs of
systems with sign-stable Jacobian matrices.

IV. THE EMBEDDING SYSTEM IN CONTINUOUS-TIME

Separating the dynamics of (1) into increasing and de-
creasing components with a decomposition function as in
Definition 1 allows the dynamics of (1) to be embedded into
a higher dimensional space with advantageous monotonicity
properties. In this section, we construct two embedding
systems constructed from a decomposition function d for a
mixed monotone system. The first is an embedding system
with disturbance for which the theory of monotone control
systems as developed in [10] is applicable. By fixing the



disturbance at extreme values, we obtain a deterministic
embedding system that deserves study in its own right.

Consider system (1) that is mixed monotone with respect
to decomposition function d. We first construct a 2n di-
mensional dynamical system subject to a 2m dimensional
disturbance vector as follows. Consider[

ẋ
˙̂x

]
= ε(x,w, x̂, ŵ) :=

[
d(x,w, x̂, ŵ)
d(x̂, ŵ, x, w)

]
(22)

with state (x, x̂) ∈ X × X ⊂ R2n and disturbance input
(w, ŵ) ∈ W×W ⊂ R2m. Given piecewise continuous inputs
w, ŵ : [0,∞) → W , let Φε(t, (x0, x̂0), (w, ŵ)) denote the
state of (22) at time t when initialized at (x0, x̂0) ∈ X ×X
under the inputs w and ŵ. As in the case for solutions to
(1), for a ∈ X × X and b : [0,∞) → W ×W , Φε(t, a,b)
is understood to only exist if Φε(τ, a,b) ∈ X × X for all
τ ∈ [0, t], and all statements involving the flow of (22) are
understood to be valid only when the flow map exists.

Recall the southeast partial order on R2n with the defining
property that for (x, x̂), (y, ŷ) ∈ R2n, (x, x̂) ≤SE (y, ŷ) if
and only if x ≤ y and ŷ ≤ x̂. It is called the southeast order
because, for n = 1, when considered graphically, (x, x̂) ≤SE
(y, ŷ) whenever (y, ŷ) is to the lower-right, i.e., southeast,
of (x, x̂). We also use the same notation ≤SE to denote the
southeast partial order on R2m.

The critical observation is that (22) is a monotone system
with respect to the southeast orders on R2n and R2m.

Proposition 2. Suppose (1) is mixed monotone with respect
to d. For any a, a′ ∈ X × X and b,b′ : [0,∞)→W ×W ,
if a ≤SE a

′ and b(t) ≤SE b′(t) for all t ≥ 0, then

Φε(t, a,b) ≤SE Φε(t, a′,b′) (23)

for all t ≥ 0.

Proof. From (22), define new state variables z = −x̂
and v = −ŵ after a coordinate transformation. Then the
southeast order in the original (x, x̂) and (w, ŵ) coordinates
becomes the standard coordinate-wise order in the new
(x, z) and (w, v) coordinates. Then, it is straightforward to
verify that the conditions on d given in (5)–(7) implies the
conditions of Proposition 1 in the new (x, z) state coordinates
and (w, v) disturbance input coordinates.

Recall our original aim of reachability and safety analysis
for (1), which is concerned with identifying forward invariant
sets, as formalized in the following definition.

Definition 2. A set A ⊆ X is robustly forward invariant
for (1) if φ(T, x0,w) ∈ A for all x0 ∈ A, all T ≥ 0 and
all piecewise continuous inputs w : [0, T ] → W whenever
φ(T, x0,w) exists. When f does not depend on w, A is said
to be forward invariant. �

Remark 1. Recall that solutions to (1) cease to exist upon
exiting X . Thus, the domain X itself is always (vacuously)
robustly forward invariant. If, instead, f in (1) is interpreted
as being defined for all x ∈ Rn and, likewise, ε in (22)
as defined for all (x, x̂) ∈ R2n, there is no guarantee that

X × X is robustly forward invariant for (22) even if X is
robustly forward invariant for (1). Thus it is important to note
the validity of (23) only when Φε(t, a,b) and Φε(t, a′,b′)
exist, i.e., when the system remains in X ×X on [0, t]. �

System (22) satisfies the following symmetry property:
For any x0, x̂0 ∈ X and w, ŵ : [0,∞) → W , let-
ting (x(t), x̂(t)) = Φe(t, (x0, x̂0), (w, ŵ)), it holds that
(x̂(t), x(t)) = Φe(t, (x̂0, x0), (ŵ,w)).

Recall the disturbance set W = [w,w] for (1). By
fixing the disturbances w ≡ w and ŵ ≡ w, we obtain a
second embedding system without disturbance. In particular,
consider [

ẋ
˙̂x

]
= e(x, x̂) :=

[
d(x,w, x̂, w)
d(x̂, w, x, w)

]
(24)

and denote its solutions by Φe(t, (x0, x̂0)) for initial condi-
tion (x0, x̂0) ∈ X ×X , which is assumed to exist only when
Φe(τ, (x0, x̂0)) ∈ X × X for τ ∈ [0, t].

Corollary 1. Suppose (1) is mixed monotone with respect to
d. For any a, a′ ∈ X × X , if a ≤SE a

′, then

Φe(t, a) ≤SE Φe(t, a′) (25)

for all t ≥ 0.

The utility of mixed monotone systems theory stems from
Proposition 2 and Corollary 1. In particular, embedding the
dynamics of (1) into a monotone embedding system (22) or
(24) enables using the powerful theory of monotone systems
to study its behavior.

We begin with some fundamental invariance properties of
(22) and (24). Define

D = {(x, x̂) ∈ X × X | x = x̂}, (26)
T = {(x, x̂) ∈ X × X | x ≤ x̂}. (27)

The set D is called the diagonal and T the upper triangle
for (22) and (24). The next lemma establishes that both D
and T exhibit invariance-like properties for (22).

Lemma 1. Suppose (1) is mixed monotone with respect to
d. For any w1,w2 : [0,∞) → W , if w1(t) ≤ w2(t) for all
t ≥ 0 and (x0, x̂0) ∈ T , then Φε(t, (x0, x̂0), (w1,w2)) ∈
T for all t ≥ 0. Moreover, for any w : [0,∞) → W , if
(x0, x̂0) ∈ D, then Φε(t, (x0, x̂0), (w,w)) ∈ D for all t ≥ 0.

Proof. Let (x0, x̂0) ∈ T and note that (x0, x̂0) ≤SE (x̂0, x0).
Moreover, setting (x(t), x̂(t)) := Φε(t, (x0, x̂0), (w1,w2)),
we have also (x̂(t), x(t)) = Φε(t, (x̂0, x0), (w2,w1))
due to the symmetry of (22), where w1 and w2

are any two functions satisfying the hypotheses of the
lemma. Since (w1(t),w2(t)) ≤SE (w2(t),w1(t)) for all
t ≥ 0, by Proposition 2, Φε(t, (x0, x̂0), (w1,w2)) ≤SE
Φε(t, (x̂0, x0), (w2,w1)) so that x(t) ≤ x̂(t), i.e.,
(x(t), x̂(t)) ∈ T , for all t ≥ 0. The second part follows
by noting that when, in addition, (x0, x̂0) ∈ D and w = ŵ
always, (22) reduces to two copies of the original system
(1), i.e., the first and last n components of (22) both reduce
to the dynamics of the original system.



For (24), we have the following corollary.

Corollary 2. Suppose (1) is mixed monotone with respect to
d. If (x0, x̂0) ∈ T , then Φe(t, (x0, x̂0)) ∈ T for all t ≥ 0.

Proof. This follows from the first part of Lemma 1 by taking
w1 ≡ w and w2 ≡ w.

As we will see in the next section, the dynamic behav-
ior of (22) and (24) within T translates to reachable set
computations for the original system (1), and equilibria and
their stability properties for (24) enable identifying robustly
invariant sets for (1).

Lastly, we note that when no disturbance is present, the
embedding systems (22) and (24) reduce to the same system
and D is a forward invariant set for this system. This is
because, in this case, the embedding dynamics confined to
D consist of two copies of the original dynamics.

Corollary 3. Suppose (1) is mixed monotone with respect
to d. When no disturbance is present so that (1) reduces to
ẋ = f(x), the diagonal D is forward invariant for (24).

V. REACHABILITY AND SAFETY FOR CONTINUOUS-TIME
MIXED MONOTONE SYSTEMS

For X ′ ⊆ X , denote the reachable set at time T of (1)
when initialized within X ′ by

Rf (T,X ′) =

{φ(T, x0,w) | x0 ∈ X ′ and w(t) ∈ W ∀t ≥ 0}. (28)

The next result provides the fundamental connection be-
tween reachable sets and the dynamics of embedding sys-
tems.

Proposition 3. Suppose (1) is mixed monotone with respect
to d. Given an initial hyperrectangle of states X0 = [x, x] ⊆
X and disturbance bounds w1,w2 : [0,∞)→W satisfying
w1(t) ≤ w2(t) for all t ≥ 0,

φ(T, x0,w) ∈ JΦε(T, (x, x), (w1,w2))K (29)

for all T ≥ 0, all x0 ∈ X0, and all w satisfying w1(t) ≤
w(t) ≤ w2(t) for all t ≥ 0. In particular,

Rf (T, [x, x]) ⊆ JΦe(T, (x, x))K (30)

for all T ≥ 0.

Proof. For the first statement, since (x, x) ≤SE (x0, x0)
and (w(t),w(t)) ≤SE (w(t),w(t)) for all t ≥ 0, it
follows from Proposition 2 that Φε(T, (x, x), (w,w)) ≤SE
Φε(T, (x0, x0), (w,w)) = (φ(T, x0,w), φ(T, x0,w)),
which is equivalent to (29). The second statement follows
from the first by taking w(t) ≡ w and w(t) ≡ w and from
the definition of (24).

Proposition 3, and in particular (30), means that reachable
sets for the n dimensional mixed monotone system (1)
subject to unknown disturbances can be efficiently over-
approximated by computing the solution of a 2n dimensional
deterministic dynamical system. The proof of the first state-
ment of Proposition 3 is essentially the same as the proof of

[31, Proposition 6], and the second statement, which notes a
more direct connection to the embedding system (24) without
disturbance, is in [32, Proposition 1].

The fundamental observation of Proposition 3 can be
further refined to certify safety properties of (1) and, more
specifically, to compute sets that are robustly forward invari-
ant and/or attractive for (1) as defined next.

Definition 3. A set A ⊂ X is attractive for (1) from
X ′ ⊂ X if for each solution φ(·, x0,w) to (1) with x0 ∈
X ′ and piecewise continuous w and each relatively open
neighborhood Xε ⊂ X of A, there exists a T > 0 such
that φ(t, x0,w) ∈ Xε for all t ≥ T . If A is attractive from
some relatively open neighborhood of A, we say A is locally
attractive or just attractive, and when A is attractive from
X , we say A is globally attractive. �

The following theorem uses properties of the deterministic
embedding system (24) to identify robustly forward invariant
and attractive sets for the mixed monotone system (1).

Theorem 2 ([32, Theorem 1]). Suppose (1) is mixed mono-
tone with respect to d. For any a = (x, x̂) ∈ T such that
0 ≤SE e(x, x̂), the following hold:

1) For all T ≥ 0, the set JΦe(T, a)K ⊆ X is robustly
forward invariant for (1).

2) The limit limt→∞ Φe(t, a) =: (xeq, x̂eq) exists and
e(xeq, x̂eq) = 0, i.e., (xeq, x̂eq) is an equilibrium for
the deterministic embedding system (24).

3) The set [xeq, x̂eq] is robustly forward invariant and
attractive from JaK ⊆ X .

Theorem (2) can be particularly leveraged if some asymp-
totically stable equilibrium point of the embedding system
(24) is known.

Corollary 4 ([32, Corollary 1]). Suppose (1) is mixed mono-
tone with respect to d. If (xeq, x̂eq) ∈ T is an asymptotically
stable equilibrium for (24) with a basin of attraction C ⊆
X × X , then [xeq, x̂eq] is robustly forward invariant for (1)
and attractive from any set JaK such that a ∈ C ∩ T . In
particular, if T ⊆ C, then [xeq, x̂eq] is globally attractive
and robustly forward invariant for (1).

Example 6 (Examples 2 and 5 continued). Consider again
the system ẋ = f(x) with f(x) as in (12) and X = R2.
Figures 1a and 1b demonstrate how Proposition 3 is used
to approximate reachable sets for this system. Figure 1c
compares reachable sets computed from the tightest decom-
position function given in Example 2 and a decomposition
function obtained from Special Case 1 as given in Example
5. �

Example 7 ([32, Example 2]). Consider the system[
ẋ1
ẋ2

]
= F (x,w) =

[
−x1 − x31 − x2 − w
−x2 − x32 + x1 + w3

]
(31)

with X = R2 and W = [−2, 2]. This system is mixed
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Fig. 1: Approximating forward reachable sets of (12) in Examples 2, 5, and 6 from the set of initial conditions X0 =
[−0.5, 0.5] × [−0.5, 0.5]. (a) X0 is shown in orange (medium shading). RF (1,X0) is shown in dark blue (dark shading).
The hyperrectangular over-approximation of RF (1,X0), which is computed from the embedding system (24) as described
in Proposition 3, is shown in light blue (light shading). (b) Visualization of the bounding procedure from Proposition 3.
The trajectory of (24) which yields Figure 1a is plotted, where Φe is projected to the x1, x̂1 plane. The southeast cones
corresponding to X0 and the hyperrectangular over-approximation of RF (1,X0) are shown in orange (medium shading)
and light blue (light shading), respectively. (c) Approximating RF (0.25,X0). X0 is shown in orange (medium shading).
RF (1/4,X0) is shown in dark blue (dark shading) with over-approximations derived from d and d′ shown in light blue
(light inner shading) and red (light outer shading), respectively.
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Fig. 2: Computing attractive sets of (31) in Example 7. The
set Xeq from (33) is lightly shaded and is guaranteed by
Corollary 4 to be an over-approximation of the darkly shaded
region, which is the smallest globally attractive set for (31).

monotone with decomposition function

d(x,w, x̂, ŵ) =

[
−x1 − x31 − x̂2 − ŵ
−x2 − x32 + x1 + w3

]
. (32)

Additionally, e(xeq, x̂eq) = 0 for

xeq = (−1.37,−1.95), x̂eq = (1.37, 1.95), (33)

and (xeq, x̂eq) ∈ T . Therefore, from Theorem 2, Xeq =
[xeq, x̂eq] is robustly forward invariant for (31). Moreover,
it can be verified that (xeq, x̂eq) is globally asymptotically
stable for (24); hence, from Corollary 4, it follows that Xeq is
globally attractive for (31). The set Xeq is shown in Figure 2
along with a smallest attractive set determined via exhaustive
simulation. �

VI. DISCRETE-TIME MIXED MONOTONICITY

In this section, we collect the analogous definitions and
results from Sections III and IV for discrete-time systems.

Thus, we consider systems of the form

x+ = F (x,w) (34)

where x ∈ X ⊆ Rn and w ∈ W ⊆ Rm and x+ denotes
the state at the next time step. We again assume that X
is an extended hyperrectangle and that W = [w,w] is a
hyperrectangle for some w,w ∈ Rm. We assume that F :
X ×W → Rn is continuous. We do not assume that F maps
only to X , but the results below only hold as long as the state
trajectory remains in X . Throughout, we will introduce new
definitions as necessary that replace their continuous-time
counterparts above, such as the following.

Definition 4. A set A ⊆ X is robustly forward invariant for
(34) if F (x,w) ∈ A for all x ∈ A and all w ∈ W . When F
does not depend on w, A is said to be forward invariant. �

Mixed monotonicity in discrete-time is defined as follows,
which can be considered the discrete-time analog to the
Kamke conditions in Fact 1.

Definition 5. Given a continuous function D : X ×W×X×
W → Rn, the system (34) is mixed monotone with respect
to D if
• F (x,w) = D(x,w, x, w) for all x ∈ X and for all
w ∈ W ,

• D(x,w, x̂, ŵ) ≤ D(y, v, x̂, ŵ) for all x, y, x̂ ∈ X such
that x ≤ y and for all w, v, ŵ ∈ W such that w ≤ v.

• D(x,w, ŷ, v̂) ≤ D(x,w, x̂, ŵ) for all x, x̂, ŷ ∈ X such
that x̂ ≤ ŷ and for all w, ŵ, v̂ ∈ W such that ŵ ≤ v̂.

�

The system (34) is monotone if F (x,w) ≤ F (x̂, ŵ)
whenever x ≤ x̂ and w ≤ ŵ. Monotone discrete-time
systems are also mixed monotone.



Example 8. The system (34) is monotone if and only if it is
mixed monotone with respect to the particular decomposition
function D(x,w, x̂, ŵ) = F (x,w) for all x, x̂ ∈ X and all
w, ŵ ∈ W . �

As in continuous-time, there always exists a decomposi-
tion function for (34), as established in [29].

Theorem 3 ([29, Theorem 1]). Any system of the form (34)
is mixed monotone with respect to a decomposition function
D satisfying

Di(x,w, x̂, ŵ) =
min
y∈[x,x̂]
z∈[w,ŵ]

Fi(y, z) if x ≤ x̂ and w ≤ ŵ,

max
y∈[x̂,x]
z∈[ŵ,w]

Fi(y, z) if x̂ ≤ x and ŵ ≤ w.
(35)

The decomposition function characterized by (35) is the
tightest decomposition function and produces tight reachable
set approximations. In particular, in discrete-time, applying
Proposition 5 below to compute reachable sets via (45)
using the decomposition function characterized in Theorem 3
produces the tightest hyperrectangle that over-approximates
the true reachable set over one time step. However, iterating
the embedding dynamics beyond one time step generally
results in hyperrectangular reachable set approximations that
are no longer tight.

When F is Lipschitz, we have the following Special
Case 2 analogous to Special Case 1. The only difference
between Special Case 2 for discrete-time systems and Special
Case 1 above for continuous-time systems is the additional
constraint on the diagonal entries of ∂F/∂x in Special Case
2.

Special Case 2. Consider (34) and assume further that F is
Lipschitz in x and w. If there exist Jx ∈ Rn×n≤0 , Jx ∈ Rn×n≥0 ,
Jw ∈ Rn×m≤0 , and Jw ∈ Rn×m≥0 such that

• for all x ∈ X and all w ∈ W ,

∂F

∂x
(x,w) ∈ [Jx, Jx] and

∂F

∂w
(x,w) ∈ [Jw, Jw] (36)

whenever the derivative exists,
• for all i, j, (Jx)i,j > −∞ or (Jx)i,j <∞, and
• for all i, k, (Jw)i,k > −∞ or (Jw)i,k <∞

then (34) is mixed monotone and a decomposition function
is constructed in the following way:

1) For all i, j ∈ {1, . . . , n} and all k ∈ {1, . . . ,m}
choose δi,j , εi,k ∈ {0, 1} such that

δi,j = 0 implies (Jx)i,j 6= −∞,
δi,j = 1 implies (Jx)i,j 6=∞,
εi,k = 0 implies (Jw)i,k 6= −∞,
εi,k = 1 implies (Jw)i,k 6=∞.

(37)

Note that such a choice exists by hypothesis.

2) For all i ∈ {1, . . . , n}, define ξi, αi ∈ Rn and πi, βi ∈
Rm element-wise according to

(ξij , α
i
j) =

{
(xj ,−(Jx)i,j) if δi,j = 0,

(x̂j , (Jx)i,j) if δi,j = 1,
(38)

(πik, β
i
k) =

{
(wk,−(Jw)i,k) if εi,k = 0,

(ŵk, (Jw)i,k) if εi,k = 1.
(39)

3) Lastly, define the ith element of the decomposition
function D according to

Di(x,w, x̂, ŵ) = Fi(ξ
i, πi) + (αi)T (x− x̂)

+ (βi)T (w − ŵ), (40)

which is always well-defined on X×W×X×W since
X andW are assumed to be extended hyperrectangles.

�

Linear systems always satisfy the conditions of Special
Case 2.

Example 9. Any linear system x+ = Ax + Bw is
mixed monotone with respect to the decomposition func-
tion D(x,w, x̂, ŵ) = max{0, A}x + max{0, B}w +
min{0, A}x̂ + min{0, B}ŵ where the min and max oper-
ators are understood to be elementwise. This is the decom-
position function given by the procedure of Special Case 2
with the choice δi,j = 0 if and only if Ai,j ≥ 0 and εi,k = 0
if and only if Bi,k ≥ 0 and taking Jx = min{0, A}, Jx =
max{0, A}, Jw = min{0, B}, and Jw = max{0, B}. �

Example 10. A common method of obtaining a discrete-
time system is by sampling a continuous-time system. In
particular, consider (1) sampled every T time units to obtain
the discrete-time system x+ = F (x,w) := φ(T, x, w)
where the notation φ(T, x, w) is used to indicate that the
disturbance is held constant with value w over the sampling
period T . Mixed monotonicity of the sampled system then
depends on properties of the flow map φ and is qualitatively
different than continuous-time mixed monotonicity described
above. For example, Special Case 2 amounts to conditions
on ∂φ

∂x (T, x, w), the sensitivity matrix for the system (1). See
[25] for further details. �

Consider system (34) that is mixed monotone with respect
to decomposition function D. Completely analogously to
Section IV, we define two embedding systems. We consider[

x+

x̂+

]
= E(x,w, x̂, ŵ) :=

[
D(x,w, x̂, ŵ)
D(x̂, ŵ, x, w)

]
(41)

and [
x+

x̂+

]
= E(x, x̂) :=

[
D(x,w, x̂, w)
D(x̂, w, x, w)

]
. (42)

For a = (x, x̂) ∈ X × X and b = (w, ŵ) ∈ W ×W , we
sometimes write E(a, b) to mean E(x,w, x̂, ŵ), and similarly
write E(a) for E(x, x̂). The k-fold composition of E is
denoted Ek(·).



The following proposition recalls the canonical mono-
tonicity properties of the embedding systems above with
respect to the southeast order.

Proposition 4. Suppose (34) is mixed monotone with respect
to D. For any a, a′ ∈ X ×X and b, b′ ∈ W×W , if a ≤SE a

′

and b ≤SE b
′, then

E(a, b) ≤SE E(a′, b′) (43)

and

E(a) ≤SE E(a′). (44)

The next proposition establishes the fundamental reacha-
bility result that the one-step reachable set of the nondeter-
ministic dynamics (34) for a hyperrectangular set of initial
states is over-approximated by a hyperrectangle defined by
the evaluation of the decomposition function at two extreme
points.

Proposition 5 ([19, Theorem 1]). Suppose (34) is mixed
monotone with respect to D. Given an initial hyperrectangle
of states X0 = [x, x] ⊆ X and w1, w2 ∈ W such that w1 ≤
w2,

F (x,w) ∈ [D(x,w1, x, w2), D(x,w2, x, w1)] (45)

for all x ∈ X0 and all w ∈ [w1, w2].

Definition 6. A set A ⊂ X is attractive for (1) from X ′ ⊂ X
if for any x[0] ∈ X ′, any infinite sequence {w[k]}∞k=0 with
w[k] ∈ W for all k, and each relatively open neighborhood
Xε ⊂ X of A, there exists K > 0 such that x[k] ∈ Xε for all
k ≥ K where x[k] is the unique solution to (34) satisfying
x[k + 1] = F (x[k], w[k]) for all k ≥ 0. If A is attractive
from some relatively open neighborhood of A, we say A is
locally attractive or just attractive, and when A is attractive
from X , we say A is globally attractive. �

The next theorem is the discrete-time analog to Theorem
2. We include a proof since the exact form of the theorem
has not appeared in the literature before, although its proof
is entirely analogous to the proof of Theorem 2.

Theorem 4. Suppose (34) is mixed monotone with respect to
D. For any a = (x, x̂) ∈ T such that a ≤SE E(a), where T
is the upper triangle as defined in (27), the following hold:

1) For any integer K ≥ 0, the set JEK(a)K ⊆ X is
robustly forward invariant for (34).

2) limk→∞Ek(a) =: (xeq, x̂eq) exists and E(xeq, x̂eq) =
(xeq, x̂eq), i.e., (xeq, x̂eq) is an equilibrium for (42).

3) The set [xeq, x̂eq] is robustly forward invariant and
attractive from JaK ⊆ X .

Proof. For part 1, let a = (x, x̂) satisfy a ∈ T , i.e.,
x ≤ x̂, and suppose a ≤SE E(a). Then, from Proposition
4, Ek(a) ≤SE Ek+1(a) for all k ≥ 0. Choose K ≥ 0 and
let b = EK(a). Also from Proposition 4, b ≤SE E(b), or,
equivalently, JE(b)K ⊆ JbK. From Proposition 5, F (x,w) ∈
JE(b)K for all x ∈ JbK and w ∈ W , and thus, JbK is robustly
forward invariant for (34).

For part 2, we first claim that for all a ∈ T , E(a) ∈ T
whenever E(a) ∈ X , a result analogous to Corollary 2.
To establish the claim, let (x0, x̂0) ∈ T and note that
(x0, x̂0) ≤SE (x̂0, x0). Let b = (w,w) and b′ = (w,w)
so that also b ≤SE b

′. Then (x1, x̂1) := E(a) = E(a, b) ≤SE
E(a′, b′) = (x̂1, x1) where the inequality follows by Propo-
sition 4 and the last equality by the definition of E in (41).
Thus, (x1, x̂1) ≤SE (x̂1, x1), i.e., x1 ≤ x̂1, and the claim
is proved. Now, as in part 1, Ek(a) ≤SE Ek+1(a) so that
Ek(a) is an increasing sequence with respect to the order
≤SE. Combining these observations, Ek(a) ∈ {(x, x̂) ∈
X × X | x0 ≤ x ≤ x̂ ≤ x̂0} for all k ≥ 0 where (x0, x̂0) is
defined as (x0, x̂0) = a. Since Ek(a) is increasing in k and
bounded, the limit limk→∞Ek(a) =: (xeq, x̂eq) exists and
satisfies E(xeq, x̂eq) = (xeq, x̂eq).

For part 3, choose x ∈ JaK and choose any sequence
{w[k]}∞k=0 with w[k] ∈ W for all k ≥ 0, and let x[k] satisfy
the state update x[k + 1] = F (x[k], w[k]) for all k ≥ 0.
It follows that x[k] ∈ JEk(a)K for all k ≥ 0. Choose a
relatively open neighborhood Xε of [xeq, x̂eq] and a relatively
open ball B ⊂ X ×X such that (xeq, x̂eq) ∈ B ⊂ Xε ×Xε.
From part 2 above, there must exist a K ≥ 0 such that
EK(a) ∈ B and therefore x[K] ∈ Xε. From part 1, JEK(a)K
is robustly forward invariant for (34) and therefore x[k] ∈ Xε
for all k ≥ K. Thus, [xeq, x̂eq] is attractive for (34) from JaK.
The fact that [xeq, x̂eq] is robustly forward invariant follows
immediately from part 1.

Analogous to Corollary 4, the following corollary special-
izes Theorem 4 to asymptotically stable equilibria of (34).

Corollary 5. Suppose (34) is mixed monotone with respect to
D. If (xeq, x̂eq) ∈ T is an asymptotically stable equilibrium
for (42) with a basin of attraction C ⊆ X×X , then [xeq, x̂eq]
is robustly forward invariant for (34) and attractive from
any set JaK such that a ∈ C ∩ T . In particular, if C ⊇ T ,
then [xeq, x̂eq] is globally attractive and robustly forward
invariant for (34).

VII. CASE STUDIES

A. Generalized Lotka-Volterra Equations

Consider the generalized Lotka-Volterra equations subject
to disturbance given by

ẋi = xi

bi + wi +

n∑
j=1

cijxj

 for i = 1, . . . n (46)

with X = {x ∈ Rn | x ≥ 0} and W = [w,w] for some
w,w ∈ Rn where each bi and cij are constants with no a
priori restriction on their sign. Each state xi is the population
of some species in an ecological system. This system is
mixed monotone with respect to the decomposition function

di(x, x̂, w, ŵ) = xi(bi + wi + ciixi)

+ xi

∑
j 6=i

max{0, cij}xj +
∑
j 6=i

min{0, cij}x̂j

 . (47)
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Fig. 3: A sample trajectory of the embedding system
(24) constructed from the decomposition function (49) for
the system (48) with W = [(−0.1,−0.1), (0.1, 0.1)] ⊂
R2. The initial condition a = (x1, x2, x̂1, x̂2) =
(0.3, 0.3, 2, 2) converges to the equilibrium (xeq, x̂eq) =
(0.843, 0.429, 1.157, 1.571). Therefore, the hyperrectangle
[(0.843, 0.429), (1.157, 1.571)] ⊂ R2 is robustly forward
invariant and attractive from JaK = [(0.3, 0.3), (2, 2)] ⊂ R2

for the dynamics (48) by Theorem 2.

The essential observation that Lotka-Volterra models are
decomposable in this way is first noted in [17], although
in [17], a change of coordinates from x to ln(x) is used and
no disturbance is present. Note that, in general, (46) does
not satisfy the hypotheses of Special Case 1.

As an example, consider

ẋ1 = x1(1.1 + w1 − x1 − 0.1x2)

ẋ2 = x2(4 + w2 − 3x1 − x2). (48)

This example, without the disturbances w1 and w2, ap-
pears in [35]. Without disturbance, (x1, x2) = (1, 1) is
an asymptotically stable equilibrium. The decomposition
function constructed according to (47) is given by

d(x, x̂, w, ŵ) =

[
x1(1.1 + w1 − x1 − 0.1x̂2)
x2(4 + w2 − 3x̂1 − x2)

]
. (49)

Take w1 = w2 = −0.1 and w1 = w2 = 0.1. It can be ver-
ified that the embedding system (24) constructed from (49)
has an equilibrium (xeq, x̂eq) = (0.843, 0.429, 1.157, 1.571)
that is asymptotically stable. Thus, from Theorem 2, the
rectangle [(0.843, 0.429), (1.157, 1.571)] is robustly forward
invariant and attractive from JaK for any a ∈ R2n in the
basin of attraction of (xeq, x̂eq) with a ≤SE (xeq, x̂eq).
Figure 3 shows a sample trajectory of (24) with the initial
condition a = (0.3, 0.3, 2, 2) within the basin of attraction
of (xeq, x̂eq).

B. Discrete-time Population Dynamics

A discrete-time analog to the generalized Lotka-Volterra
equations is given by the matrix population model of the
form [36]

x+ = A(x)x+ w (50)

with X = {x : Rn | x ≥ 0} and W = [w,w] for some
w,w ∈ Rn with w ≥ 0 where each state xi is again the
population of some species in an ecological system, but now
the time variable is discrete and represents generations, and
w is a per-generation restocking rate. If A(x) ≥ 0 for all

x, and x ≤ x̂ implies A(x̂) ≤ A(x), then the system is
mixed monotone with respect to the decomposition function
D(x,w, x̂, ŵ) = A(x̂)x + w, as first observed in [13]. In
general, this decomposition is not the tightest decomposition
function constructed in Theorem 3, nor does (50) generally
satisfy the conditions of Special Case 2.

For example, consider the matrix population model of the
flour beetle Tribolium casteneum [13], [37] given by (50)
with x ∈ R3 and

A(x) =

0 0 de−ax1−bx2

p 0 0
0 qe−cx3 r

 (51)

where p, q, r ∈ (0, 1] and a, b, c, d > 0 for which A(x) ≥ 0
for all x and x ≤ x̂ implies A(x̂) ≤ A(x), and we do
not consider restocking so that W = {0}. The states x1,
x2, and x3 denote the larvae, pupae, and adult populations
of the flour beetle. Values for parameters are taken to be
a = 0.005, b = 0.011, c = 0.004, d = 7.88, p = 0.8390,
q = 1, and r = 0.75 [37]. If initially xi[0] ∈ [5, 10] for i =
1, 2, 3, then, applying Proposition 5, the populations at the
second subsequent generation satisfy x1[2] ∈ [38.7, 104.9],
x2[2] ∈ [28.2, 61.0], and x3[2] ∈ [10.3, 21.1].

C. Vehicle Platoon

Consider a platoon of N vehicles with velocity dynamics

v̇i = −kivi + ci + ui + wi (52)

where vi ∈ R is the velocity of vehicle i ∈ {1, . . . , N}, ci
is the fixed nominal velocity of vehicle i, ki > 0 is a fixed
damping constant, ui is a control input based on relative
displacements as defined below, and wi is a disturbance.
Let pi denote the position of vehicle i, i.e., pi satisfies
ṗi = vi. We assume relative displacements are available
via an undirected communication graph with L edges. After
arbitrarily assigning an orientation (i.e., head and tail) to each
edge, this graph is represented by an N×L incidence matrix
G given elementwise by

Gi,` =


1 if vehicle i is the head of edge `
−1 if vehicle i is the tail of edge `
0 otherwise.

(53)

The vector of L relative displacements is then given by z =
GT p. We consider a control policy as proposed in, e.g., [38,
Chapter 4], given by

u = −Gh(z) (54)

where h(z) =
[
h1(z1) . . . hM (zM )

]T
and each hi :

R→ R is strictly increasing. The closed loop system is then
defined by (52)–(54) with state x =

[
vT zT

]T
; denote this

system as ẋ = f(x,w). Then the off-diagonal entries of
∂f/∂x and all entries of ∂f/∂w do not change sign, and
therefore, as first observed in [39], the system satisfies the
hypotheses of Special Case 1 and is mixed monotone with



respect to the decomposition function

d(x, x̂, w, ŵ) = d

([
v
z

]
,

[
v̂
ẑ

]
, w, ŵ

)
(55)

=

[
−Kv −min{0,G}h(z)−max{0,G}h(ẑ) + c+ w

max{0,GT }v + min{0,GT }v̂

]
(56)

where K = diag{k1, . . . , kN} and the min and max opera-
tions are understood to be elementwise.

As an example, take N = 3, L = 2, hi(s) = tanh(s),
c1 = c2 = 0, k1 = k2 = −1 and

G =

−1 0
1 −1
0 1

 (57)

so that z1 = p2 − p1 and z2 = p3 − p2. Let w ∈ [w,w] and
take w1 = w2 = −0.1 and w1 = w2 = 0.1. Suppose initially
−0.1 ≤ vi(0) ≤ 0.1 for i = 1, 2, 3 and z1(0) = z2(0) = 1
and that the vehicle positions have been normalized so that a
collision corresponds to z1 ≤ −1 or z2 ≤ −1. By simulating
a trajectory of (24) to compute an over-approximation of the
reachable set as guaranteed by Proposition 3, we verify that
the system remains collision-free for 0 ≤ t ≤ 2.25.
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[17] J.-L. Gouzé, “A criterion of global convergence to equilibrium for
differential systems. application to Lotka-Volterra systems,” [Research
Report] RR-0894, INRIA, 1988.

[18] D. Angeli, G. A. Enciso, and E. D. Sontag, “A small-gain result for
orthant-monotone systems under mixed feedback,” Systems & Control
Letters, vol. 68, pp. 9–19, 2014.

[19] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed mono-
tone systems,” in Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pp. 58–67, 2015.

[20] T. Moor and J. Raisch, “Abstraction based supervisory controller
synthesis for high order monotone continuous systems,” in Modelling,
Analysis, and Design of Hybrid Systems, pp. 247–265, Springer, 2002.

[21] P.-J. Meyer, A. Girard, and E. Witrant, “Safety control with perfor-
mance guarantees of cooperative systems using compositional abstrac-
tions,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 317–322, 2015.

[22] A. Saoud, E. Ivanova, and A. Girard, “Efficient synthesis for mono-
tone transition systems and directed safety specifications,” in IEEE
Conference on Decision and Control, pp. 6255–6260, 2019.

[23] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Transactions on Control of
Network Systems, vol. 3, pp. 162–172, June 2016.

[24] S. Coogan and M. Arcak, “Stability of traffic flow networks with a
polytree topology,” Automatica, vol. 66, pp. 246–253, April 2016.

[25] P.-J. Meyer, S. Coogan, and M. Arcak, “Sampled-data reachability
analysis using sensitivity and mixed-monotonicity,” IEEE Control
Systems Letters, pp. 761–766, 2018.

[26] P. Meyer and D. V. Dimarogonas, “Hierarchical decomposition of LTL
synthesis problem for nonlinear control systems,” IEEE Transactions
on Automatic Control, vol. 64, pp. 4676–4683, Nov 2019.

[27] M. Dutreix and S. Coogan, “Specification-guided verification and
abstraction refinement of mixed-monotone stochastic systems,” IEEE
Transactions on Automatic Control, to appear, 2021.

[28] L. Yang, O. Mickelin, and N. Ozay, “On sufficient conditions
for mixed monotonicity,” IEEE Transactions on Automatic Control,
vol. 64, pp. 5080–5085, Dec 2019.

[29] L. Yang and N. Ozay, “Tight decomposition functions for mixed
monotonicity,” in IEEE Conference on Decision and Control,
pp. 5318–5322, Dec 2019.

[30] M. Abate, M. Dutreix, and S. Coogan, “Tight decomposition func-
tions for continuous-time mixed-monotone systems with disturbances,”
IEEE Control Systems Letters, vol. 5, pp. 139–144, Jan. 2021.

[31] P.-J. Meyer, A. Devonport, and M. Arcak, “TIRA: Toolbox for interval
reachability analysis,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’19,
pp. 224–229, Association for Computing Machinery, 2019.

[32] M. Abate and S. Coogan, “Computing robustly forward invariant sets
for mixed-monotone systems,” in IEEE Conference on Decision and
Control, 2020.

[33] S. Coogan, M. Arcak, and A. A. Kurzhanskiy, “Mixed monotonicity of
partial first-in-first-out traffic flow models,” in Conference on Decision
and Control, pp. 7611–7616, Dec 2016.

[34] D. Angeli and E. D. Sontag, “Behavior of responses of monotone
and sign-definite systems,” Mathematical Systems Theory, pp. 51–64,
2013.

[35] B. S. Goh, “Global stability in many-species systems,” The American
Naturalist, vol. 111, no. 977, pp. 135–143, 1977.

[36] J. M. Cushing, An introduction to structured population dynamics.
SIAM, 1998.

[37] R. Costantino, J. Cushing, B. Dennis, and R. A. Desharnais, “Ex-
perimentally induced transitions in the dynamic behaviour of insect
populations,” Nature, vol. 375, no. 6528, pp. 227–230, 1995.

[38] M. Arcak, C. Meissen, and A. Packard, Networks of Dissipative
Systems. Springer, 2016.

[39] M. Abate and S. Coogan, “Enforcing safety at runtime for systems
with disturbances,” in IEEE Conference on Decision and Control,
2020.


