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Abstract— We propose a novel characterization of piecewise-
defined barrier functions for certifying forward invariant sets
of piecewise continuous dynamical systems. Forward invariance
is established by checking two conditions: the first condition is
a usual barrier-type inequality on the interior of each piece,
and the second condition imposes an appropriate interaction
of the tangent cone and vector field at the boundary between
pieces. We then show that this separation is especially well
suited for constructing discontinuous barrier functions that
are an appropriate generalization of high-order control barrier
functions to the piecewise setting and can be used to construct
controllers for forward invariance. In particular, the tangent
cone condition at the boundary of pieces does not depend
on the particular control strategy and can be checked, e.g.,
offline, while standard online methods can be used to enforce
the barrier-type inequality on the interior of pieces.

I. INTRODUCTION

Safety of control systems modeled as a constraint on the
system’s state arises in applications ranging from collision
avoidance [1] to motion planning [2] where safety is enforced
with a barrier at the constraint boundary. Such approaches
use barrier functions or control barrier functions (CBFs) [3]–
[6] to enforce forward invariance of the constraint set. Most
of the existing literature focuses on smooth functions as
candidate barrier functions or CBFs and controllers that are
at least Lipschitz continuous. However, nonsmooth candidate
functions arise naturally in many applications and often give
rise to discontinuous control strategies.

Discontinuous control strategies are used in [7], where
the authors proved forward invariance of the composed
set obtained as the intersection of multiple sets. Boolean
compositions of level sets of continuously differentiable
functions are considered in [8], [9] and applied to multiagent
robotic systems in [10]. This approach requires the barrier
function to still be continuous and uses a set-valued Lie
derivative construction to obtain a sufficient condition for
forward invariance that can be conservative in practice. The
paper [11] provides general sufficient conditions for forward
invariance of hybrid inclusions and allows for vector-valued
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barrier functions that are only locally Lipschitz using the
Clarke generalized gradient. In [12], sufficient conditions
for forward invariance of a set defined by a possibly dis-
continuous barrier function are given using the proximal
subdifferential of the barrier. These conditions are general
and applicable to hybrid inclusions but require computing
the proximal subdifferential at all points in a neighborhood
of the boundary of the candidate invariant set, which might
be challenging to check in practice. Moreover, [12] does not
particularly address the case of high-order barrier functions,
discussed next.

Given a candidate CBF, the system dynamics might be
such that the control input does not affect, up to first order,
the rate of change of the barrier, that is, the input does not
appear in the first time derivative of the barrier function.
In this case, the system is said to have high relative degree
with respect to the barrier and standard CBF approaches for
forward invariance are generally not applicable. A common
remedy is to obtain an alternative CBF constructed from
the original candidate CBF and CBF-type inequalities. The
resulting new CBF is called a high-order CBF (HO-CBF) to
emphasize its manner of construction [13]–[15], however, ex-
isting approaches exclusively assume sufficient smoothness
of the barrier function.

In this paper we prove forward invariance of sets defined
by the level sets of piecewise-defined barrier functions for
piecewise continuous dynamical systems. These barrier func-
tions arise when we extend HO-CBFs theory to the nons-
mooth setting, which leads to discontinuities. To do so, there
are two conditions that need to be met: the first condition
is barrier-type inequality on the interior of each piece of an
open finite partition of the state space; meanwhile, the second
condition imposes a well-behaved interaction between the
tangent cone and the vector field at the boundary between
each pair of pieces. To the best of our knowledge, this
problem has not yet been addressed in the existing literature.
Additionally, the second condition does not depend on the
control input and can be checked offline, while the first one
can be used to synthesize CBF-type controllers.

The rest of this paper is structured as follows: Section
II includes key definitions, a review of smooth (control)
barrier functions, and a review of high-order smooth control
barrier functions. Section III contains the main results of
this work, the definition and conditions for valid piecewise-
defined (control) barrier functions, as well as a detailed
example. Section IV extends the theory from Section III to
discontinuous high-order CBFs and includes an additional
example using the nonlinear dynamics of the Second-Order
Unicycle. Finally, Section V summarizes the main contri-



butions of the paper and how they extend the scope of the
current barrier functions and CBFs theory.

II. BACKGROUND MATERIALS

A. Tangent Cones, Filippov Solutions, and Invariance
Given a closed set C ⊆ Rn, the Bouligand tangent cone

[16, Def. 2.2] to C at x is defined as

TC(x) =
{
z | lim inf

τ→0

dist(x+ τz, C)
τ

= 0

}
(1)

where dist(·, ·) is the distance function given by dist(x, C) =
miny∈C ‖x − y‖. Given a system ẋ = f(x) with x ∈ Rn,
x(t) is a Filippov solution [17] on [0, T ] if x(t) is absolutely
continuous on [0, T ] and for almost all t ∈ [0, T ] it holds
that ẋ ∈ K[f ](x) where

K[f ](x) !
⋂

δ>0

⋂

µN=0

cof(B(x, δ)\N), (2)

and
⋂

µN=0 denotes the intersection over all sets N of
Lebesgue measure zero, co denotes convex closure, and
B(x, δ) is the ball of radius δ centered at x.

An open finite partition of Rn is a collection of disjoint,
open, and connected sets {Xi}i∈I for finite index set I
whose closures cover Rn, that is ∪i∈Icl(Xi) = Rn where
cl(·) denotes closure. We denote the boundary of a part Xi

of the partition by ∂Xi = cl(Xi)\Xi.
The system ẋ = f(x) is piecewise continuous if there

exists an open finite partition {Xi}i∈I of Rn such that f
is continuous on Xi for all i ∈ I and admits a continuous
extension to cl(Xi), denoted fXi . For piecewise continuous
systems, there always exists a Filippov solution from each
initial condition x0 ∈ Rn. Moreover, the set-valued map
K[f ] is characterized as [18] K[f ](x) = co{fXi(x) |
x ∈ cl(Xi)}, a convex polyhedron in Rn. In particular,
K[f ](x) = {f(x)} if f is continuous at x. Otherwise, if
f is discontinuous at x, then x must be on the boundary
of some parts of the partition, and K[f ] is the convex hull
of the continuous extension of f on all these parts. We
will generally be interested in piecewise continuous systems
that also admit unique solutions, which is often (but not
exclusively) the case in practice, and restrict to such systems
by assumption. Sufficient conditions ensuring uniqueness are
provided in [18, Prop. 5].

A closed set S is forward invariant for the system ẋ =
f(x) if for all T > 0, all x0 ∈ S, and all Filippov solutions
x(t) on [0, T ] satisfying x(0) = x0, i.e., x0 is a initial
condition of the system, it holds that x(t) ∈ S for all
t ∈ [0, T ]. This definition does not exclude the possibility
of finite escape from within S, which can be ruled out with
further assumptions such as a linear growth condition on
K[f ] [16, Ch. 4, Cond. 1.2(c)] or compactness of S. Usually,
this notion of forward invariance is called strong forward
invariance since it requires all Filippov solutions to remain in
S, and weak forward invariance is then used if some solution
remains in S for each initial condition from S. Since we
restrict to systems with unique Filippov solutions, strong and
weak notions of forward invariance become equivalent.

The following fundamental result, which is an adaptation
of [16, Ch. 4, Thm. 2.10], connects all the concepts intro-
duced above.

Proposition 1. Let ẋ = f(x) for x ∈ Rn be piecewise
continuous and suppose it admits unique Filippov solutions.
The closed set S ⊂ Rn is forward invariant if and only if

K[f ](x) ∩ TS(x) (= ∅ for all x ∈ S. (3)

B. Barrier Functions and Control Barrier Functions
Suppose now S is defined as S = {x | h(x) ≥ 0} for some

continuously differentiable function h(x), called a Barrier
Function, with the property that h(x) = 0 implies ∇h(x) (=
0. The boundary of S, denoted ∂S = S\int(S), is given by
∂S = {x | h(x) = 0}. Its tangent cone is given by TS(x) =
Rn for x ∈ int(S), and TS(x) = {v | ∇h(x)T v ≥ 0} for
x ∈ ∂S. If, further, f is Lipschitz continuous, it holds that

S is forward invariant ⇐⇒ ḣ(x) = ∇h(x)T f(x) ≥ 0

for all x ∈ ∂S, (4)

which is classically known as Nagumo’s Theorem. In the
barrier function literature, the righthand condition is often
relaxed to

ḣ(x) ≥ −α(h(x)) for all x ∈ Rn (5)

for some locally Lipschitz function α : R → R satisfying
α(0) = 0. This condition must hold for all x rather than only
on the boundary of S, which more readily leads to control
design techniques. For example, consider the controlled
system ẋ = f(x) + g(x)u, now with input u ∈ Rm, and
the goal of designing a feedback controller σ(x) such that S
is forward invariant. Then, condition (5) leads to the design
criterion that any Lipschitz continuous feedback controller
σ(x) satisfying σ(x) ∈ U(x) where

U(x) = {u | ∇h(x)T (f(x) + g(x)u) ≥ −α(h(x))} (6)

ensures forward invariance of S. Notably, the inequality in
the definition of U(x) is affine in u and, therefore, can be
included in convex optimization programs that compute a
feedback controller σ(x), possibly online at runtime. If such
a feedback controller exists, then h(x) is called a (classical)
Control Barrier Function (CBF).

C. High-Order Control Barrier Functions
A common challenge in standard CBF-based control

design is that, for many physically meaningful systems,
∇h(x)T g(x) can be identically zero so that U(x) be-
comes empty for some x. A possible solution is to use
the theory of High-Order Control Barrier Functions (HO-
CBF) that systematically constructs an alternative barrier
function as follows: initialize ψ0(x) = h(x) and, as
long as ∇ψi(x)T g(x) ≡ 0, iteratively set ψi+1(x) =
∇ψi(x)T f(x) + αi(ψi(x)) for some user-chosen Lipschitz
functions αi(·). Suppose the process terminates after r
iterations. The resulting final ψr(x) can often (e.g., when the
system has a well-defined uniform relative degree) be used
as a CBF that guarantees forward invariance of ∩i:i≤r{x |
ψi(x) ≥ 0}, which is a subset of S.



III. PIECEWISE-DEFINED BARRIER FUNCTIONS

Consider the system ẋ = f(x, u) with state x ∈ Rn

and control input u ∈ Rm given by a feedback control
law u = σ(x). Suppose also a given nonsmooth function
h(x) and safe set S = {x | h(x) ≥ 0}. The objective is
to derive conditions ensuring that S is forward invariant for
the closed loop dynamics f(x,σ(x)) with the intention that
such conditions can be used to design the controller σ(x)
for safety. This paper focuses on piecewise-defined barriers
and piecewise continuous systems that naturally arise from
piecewise-defined controllers. To motivate this approach, we
first begin with an example and then formalize the insights
from this example in the remainder of this section.

Example 1. Consider the triple integrator system with
dynamics

ẋ1 = x2, ẋ2 = x3, ẋ3 = u, (7)

which can be written as ẋ = f(x) + g(x)u with x ∈ R3

and u ∈ R for appropriate f(x) and g(x), and consider
h0(x) = L − x2 + |x1| for some L > 0. At all x such
that h0(x) is differentiable, that is, all x such that x1 (= 0,
we have that ∇h0(x)T g(x) = 0, preventing the application
of existing nonsmooth CBF formulations. Consider instead
h(x) defined as

h(x) =






h1(x) if x ∈ X1

h2(x) if x ∈ X2

max{h1(x), h2(x)} if x ∈ cl(X1) ∩ cl(X2)
(8)

h1(x) = −x3 − x2 + β(L− x2 − x1), (9)
h2(x) = −x3 + x2 + β(L− x2 + x1) (10)

for some β > 0 where X1 = {x ∈ R3 : x1 < 0}, X2 =
{x ∈ R3 : x1 > 0}, and cl(X1) ∩ cl(X2) = {x ∈ R3 : x1 =
0}. As formalized in Section IV, h(x) can be considered a
generalized HO-CBF generated from the nonsmooth h0(x).
Note that h(x) is discontinuous when x1 = 0. Consider that
a Lipschitz feedback nominal controller unom is given. The
feedback safe controller u = σ(x) is defined as

σ(x) =

{
min{unom,σ1(x)} if x ∈ X1

min{unom,σ2(x)} if x ∈ X2
(11)

where

σ1(x) = −x3 + β(−x3 − x2) + γh1(x) (12)
σ2(x) = x3 + β(−x3 + x2) + γh2(x) (13)

for some γ > 0. The result is a piecewise continuous
system ẋ = f(x) + g(x)σ(x) with unique Filippov solutions
according to [18, Prop. 5].

We claim S = {x | h(x) ≥ 0} is forward invariant, which
we show by establishing that system trajectories cannot cross
∂S, the boundary of S. By contradiction, suppose there exists
an initial condition x0 ∈ ∂S such that x(τ) (∈ S for all
sufficiently small τ > 0 for x(t) initialized at x0, x(0) =
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Fig. 1. Third order integrator chain trajectories. The safe region correspond-
ing to h0 ≥ 0 is the outside of the inverted triangle. The initial position of
the system is represented with a black square, and the final position with
a black asterisk. The nominal controller without the barrier function filter
violates safety (dashed blue line) whereas the trajectory obtained with the
barrier function (solid red line) successfully avoids the unsafe region.

x0. First consider the possibility that for small enough τ ,
the trajectory remains within either X1 or X2, that is, for
some fixed i ∈ {1, 2}, x(t) ∈ Xi and h(x(t)) = hi(x(t))
for all t ∈ [0, τ) for small enough τ , and therefore we are
reduced to the usual smooth setting. It is straightforward to
verify that ∇hi(x)T (f(x) + g(x)σi(x)) ≥ −γhi(x) for i ∈
{1, 2}, so that h(x(t)) remains nonnegative by standard CBF
arguments as summarized in Section II-B, a contradiction.

This leaves the second possibility that h(x0) = hi(x0) ≥ 0
while h(x(τ)) = hj(x(τ)) < 0 for all sufficiently small
τ > 0 for (i, j) = (1, 2) or (i, j) = (2, 1), that is, the
trajectory crosses from one part to the other, experiencing a
discontinuous decrease in h. This requires x0

1 = 0. Suppose
first that x0

2 ≥ 0. Then h2(x0) ≥ h1(x0) so h(x0) =
h2(x0) ≥ 0. But ẋ1 = x2 ≥ 0, so the system cannot cross
to X1. A symmetric contradiction is obtained for x0

2 ≤ 0.
We therefore conclude S is forward invariant. Simulation
results are shown in Figure 1, where we used a Proportional-
Derivative nominal controller. "

Definition 1. A function h : Rn → R is a piecewise-
defined barrier function candidate on the open finite partition
{Xi}i∈I if there exists a collection of continuously differ-
entiable {hi(x)}i∈I where each hi(x) is defined on cl(Xi)
such that

1) h(x) = max
i s.t. x∈cl(Xi)

{hi(x)}, and in particular h(x) =

hi(x) for all x ∈ Xi for all i ∈ I;
2) For each i (= j with cl(Xi)∩cl(Xj) (= ∅, there exists a

continuously differentiable ki,j(x) such that Xi ⊆ {x |
ki,j ≥ 0}, Xj ⊆ {x | ki,j(x) ≤ 0}, and Xi ∩ Xj ⊆
{x | ki,j(x) = 0}. Without loss of generality, we may
assume kj,i(x) = −ki,j(x) for all i, j.

"
The second condition of Definition 1 implies that the

boundaries between parts of the partition are characterized
with continuously differentiable functions. Due to the defini-
tion of h(x) in Definition 1, the safe set S is closed and its
boundary will be along the zero level sets of the constituent



{hi(x)}i∈I or along the boundaries between parts, leading
immediately to Lemma 1 below.

Lemma 1. For a piecewise-defined barrier function candi-
date with S = {x | h(x) ≥ 0}, consider any x ∈ ∂S. Then,
one of the following two conditions is true for x:

1) There exists i such that x ∈ Xi and hi(x) = 0.
2) There exists i such that x ∈ ∂Xi and hi(x) ≥ 0.

Equivalently,

∂S ⊆
⋃

i∈I
{x | hi(x) = 0} ∪

⋃

i∈I
{x | x ∈ ∂Xi, h

i(x) ≥ 0},

(14)

which implies

∂S ⊆
⋃

i∈I
{x | hi(x) = 0} ∪

⋃

i∈I
∂Xi. (15)

Proof. To prove Lemma 1 we need to look at two different
cases. The first one corresponds to h(x) being continuous at a
given x, i.e., x ∈ Xi. Using the mean value theorem we know
that h(x) would have to have zero value before becoming
negative and therefore according to the definition of S,
h(x) = 0. The second case corresponds to an x in the bound-
ary between parts of the partition, i.e., x ∈ cl(Xi)∩ cl(Xj).
According to Definition 1, h(x) = max

i,j
{hi(x), hj(x)} which

implies h(x) ≥ 0.

To facilitate the main result of this section, we introduce
some further notation. First, given a piecewise-defined bar-
rier function candidate h(x) and corresponding open finite
partition {Xi}i∈I , define the sets

O = ∪i∈IXi (16)
B = Rn\O = ∪i∈I∂Xi. (17)

Define now the operator ι : O → I as

ι(x) = i if and only if x ∈ Xi, (18)

and finally, let I : B → 2I be defined as

I(x) = {i : x ∈ cl(Xi)}. (19)

Equivalently, I(x) = {i : x ∈ ∂Xi}. For x ∈ B, define the
following three sets:

I+h (x) = {i ∈ I(x) : hi(x) > 0} (20)
I−h (x) = {i ∈ I(x) : hi(x) < 0} (21)
I=h (x) = {i ∈ I(x) : hi(x) = 0}. (22)

With this notation, Lemma 1 can be equivalently stated
as: for any x ∈ ∂S, if x ∈ O then hι(x)(x) = 0, otherwise,
x ∈ B and I+h (x) ∪ I=h (x) is nonempty. We now impose
the following mild technical assumption on the gradients of
ki,j(x) and hi(x), which holds in many practical scenarios
as shown in the examples in Sections III and IV.

Assumption 1. For any x ∈ ∂S ∩ B,

∇hi(x) (= 0 ∀i ∈ I=h (x) (23)
∇ki,j(x) (= 0 ∀i, j s.t. i ∈ I+h (x), j ∈ I−h (x). (24)

Moreover, the collection of vectors
{∇ki,j(x),∇hi(x),∇hj(x)}, noted as {vi}, satisfies
that for all vi, vj ∈ {vi} with i (= j there is no α > 0 such
that vi + αvj = 0, i.e. vi and vj are not anti-parallel.

We now state the main results of this paper. Theorem 1
enforces the vectorfield to point inside of the safe set S at its
boundary, while Theorem 2 uses Proposition 1 and Theorem
1 to establish sufficient conditions for forward invariance of
S.

Theorem 1. Given piecewise-defined barrier function candi-
date h(x) and corresponding open finite partition {Xi}i∈I ,
let S = {x | h(x) ≥ 0}. For any x ∈ ∂S ∩ B, let

Z1(x) = {z | ∇hi(x)
T z ≥ 0 ∀i ∈ I=h (x)} (25)

Z2(x) = (26)
{z | ∇ki,j(x)

T z ≥ 0 ∀i, j s.t. i ∈ I+h (x), j ∈ I−h (x)}.

If Assumption 1 holds, then for all x ∈ ∂S ∩ B,

Z1(x) ∩ Z2(x) ⊆ TS(x). (27)

Proof. Define the auxiliary sets Ci = {x | hi(x) ≥ 0} and
Ki,j = {x | ki,j(x) ≥ 0} for all i, j. Fix x ∈ ∂S ∩ B.
Assumption 1 ensures TCi(x) = {v | ∇hi(x)T v ≥ 0} and
TKi,j (x) = {v | ∇ki,j(x)T v ≥ 0}. There exists an open
neighborhood U of x such that

U ∩
[( ⋂

i∈I=(x)

Ci

)
∩
( ⋂

i,j s.t.
i∈I+(x)
j∈I� (x)

Ki,j

)]

︸ ︷︷ ︸
=:Σ

⊂ (U ∩ S). (28)

Since tangency is a local property, TΣ(x) = TU∩Σ(x) and
TS(x) = TU∩S(x). As it holds that (U ∩ Σ) ⊂ (U ∩ S), by
[16, Pg. 99, Cond. a)] their tangent cones satisfy TU∩Σ(x) ⊂
TU∩S(x). We thus obtain TΣ(x) ⊂ TS(x). As the collection
of vectors {∇ki,j(x),∇hi(x),∇hj(x)} satisfies Assumption
1, the sets Ci and Ki,j are transversal [16, Pg 99, Cond. c)]
and therefore

TΣ(x) = (
⋂

i∈I=(x)

TCi(x)) ∩ (
⋂

i,j s.t.
i∈I+(x)
j∈I� (x)

TKi,j (x)) (29)

= Z1 ∩ Z2 ⊂ TS(x). (30)

Theorem 2. Given a piecewise continuous system ẋ = f(x)
with unique Filippov solutions and piecewise-defined barrier
function candidate h(x), both with the same corresponding
open finite partition {Xi}i∈I , satisfying Assumption 1. If
there exists Lipschitz class-k functions αi(·) such that

∇hi(x)
T f(x) ≥ −αi(h(x)) ∀i ∈ I and all x ∈ Xi (31)

∇ki,j(x)
T f(x) ≥ 0 ∀x ∈ ∂S ∩ B and ∀i, j s.t. (32)

i ∈ I+h (x) and j ∈ I−h (x),

then S = {x | h(x) ≥ 0} is forward invariant.



Proof. We want to prove that the intersection of the Filippov
operator of f(x) with the tangent cone of the safe set S is
not empty, i.e. K[f(x)] ∩ TS(x) (= ∅. There is two different
cases of this proof: The first case corresponds to x ∈ ∂S ∩
O, what implies that hi = 0. Due to the barrier condition
∇hi(x)T f(x) ≥ 0 holds, and Theorem 1 is satisfied for
z = f(x). The second case corresponds to x ∈ ∂S ∩ B.
Equations (31) and (32) imply that f(x) ⊆ TS(x), which
according to Theorem 1 is true. Therefore, by definition of
the Filippov operator [17] f(x) ∈ K[f(x)] we have that
K[f(x)] ∩ TS(x) (= ∅. According to Proposition 1 the set S
is forward invariant.

Example 2 (Example 1 continued). Given the system in (7)
and the open finite partition {X1, X2}, define the boundary
between X1 and X2 as k2,1(x) = −k1,2(x) = x1. Using
h(x) as defined in (8)–(10), Assumption 1 holds since
∇k1,2(x), ∇h1(x), and ∇h2(x) are always nonzero and
not mutually in opposite directions. Choosing u(x) as in
(11)–(13) satisfies (31) by construction. u(x) is piecewise
differentiable and given the dynamics of the system, [18,
Prop. 5] guarantees that Filippov solutions exist and are
unique. To verify (32), consider x ∈ ∂S ∩ B where B =
∂X1∪∂X2 = {x | x1 = 0}. First, consider the case x2 ≥ 0,
for which h1(x) ≤ h2(x). If I+h (x) and I−h (x) are nonempty,
it must be that I+h (x) = {2} and I−h (x) = {1}. Equation
(32) gives ∇k2,1(x)T f(x) =

[
1 0 0

]T
f(x) = x2 ≥ 0,

which holds when x2 ≥ 0 as assumed. A symmetric argument
holds for x2 < 0. As all conditions are met, Theorem 2
guarantees forward invariance of S = {x | h(x) ≥ 0}. "

IV. DISCONTINUOUS HIGH-ORDER CONTROL BARRIER
FUNCTIONS

A salient feature of Example 2 is that (32) holds regardless
of any chosen control, while (31) is enforced by choosing a
controller to satisfy a classical CBF-type requirement. This
is a consequence of h(x) being built as a HO-CBF from
a nonsmooth barrier function, as formalized in this section.
Consider the system

ẋ1 = f1(x) (33)
ẋ2 = f2(x) + g(x)u (34)

for f1, f2, g Lipschitz, x1 ∈ Rn1 and x2 ∈ Rn2 . Now
consider a restricted class of piecewise-defined barrier func-
tions on an open finite partition satisfying the following
assumption.

Assumption 2. For x = (x1, x2) ∈ Rn with x1 ∈ Rn1

and x2 ∈ Rn2 , the open finite partition {Xi}i∈I of Rn

satisfies the conditions of Assumption 1 and, furthermore,
each ki,j(x) is a function of x1 only, for which we instead
write ki,j(x1).

Assumption 2 implies that each open finite partition Xi ∈
Rn is of the form X1

i × Rn2 for appropriate X1
i ⊆ Rn1 .

Partitions of this form arise naturally when constructing
high-order barrier functions from piecewise functions of x1.
Indeed, consider the system in (33)–(34) and let h̃(x1) be a

piecewise-defined Lipschitz function of x1 on the open finite
partition {X1

i }i∈I of Rn1 so that, for all i, h̃(x) = h̃i(x) for
continuously differentiable h̃i(x) for all x ∈ X1

i . In general,
this function cannot be used as a CBF for (33)–(34) because
the relative degree between u and h̃(x1) is greater than 1,
i.e., u affects x1 only through its effect on x2 in (34). An
alternative barrier candidate h(x) can be defined piecewise

hi(x) = ∇x1 h̃i(x1)
T f1(x) + αi(h̃i(x1)) for x ∈ Xi (35)

where Xi = X1
i ×Rn2 and defining h(x) = maxi∈I(x) hi(x)

for all x ∈ ∪i∈I∂Xi. A collection {ki,j(x1)} satisfying
Assumption 1 for {X1

i }i∈I then satisfies Assumption 2
for {Xi}i∈I . The candidate barrier function (8)–(10) arises
from such a construction as shown in Example 3. Under
Assumption 2, we now specialize the conditions of Theorem
2 in the following corollary.

Corollary 1. Given system (33)–(34) and a piecewise-
defined barrier function candidate h(x) defined on the open
finite partition {Xi}i∈I satisfying Assumptions 1 and 2.
Suppose that

∇x1ki,j(x1)
T f1(x) ≥ 0 ∀i, j, ∀x = (x1, x2) (36)

s.t. ki,j(x1) = 0, hi(x) > 0, and hj(x) < 0.

If u(x) is a piecewise-defined feedback control strategy that
results in (33)–(34) being piecewise continuous on {Xi}i∈I
with unique Filippov solutions and satisfies

∇x1hi(x)
T f1(x1) +∇x2hi(x)

T (f2(x) + g(x)u(x)) (37)
≥ −αi(hi(x)) ∀i ∈ I, ∀x ∈ Xi,

then S = {x | h(x) ≥ 0} is forward invariant.

The key feature of Corollary 1 is that (36) is independent
of the control strategy u(x) and therefore can be checked,
e.g., offline. Then, standard CBF-based control synthesis
methods can be used to enforce (37) at runtime.

Example 3 (Example 1 revisited). Consider (7) and take
X1

1 = {(x1, x2) : x1 < 0)}, X1
2 = {(x1, x2) : x1 > 0},

h̃1(x1, x2) = L − x2 − x1 and h̃2(x1, x2) = L − x2 + x1

for some L > 0, and h̃(x1, x2). The resulting piecewise-
defined barrier function candidate on {X1

1 , X
1
2} is given by

h̃(x1, x2) = L− x2 + |x1|. Taking α1(s) = α2(s) = βs for
some β > 0, and following the construction of (35) gives
h(x) as in (8)–(10). "
Example 4. The second-order unicycle is a five-dimensional,
nonholonomic, nonlinear system with dynamics

(ẋ1, ẋ2) = (s cos θ, s sin θ)

ṡ = ua, θ̇ = ω, ω̇ = uα, (38)

where u = (ua, uα) is the two dimensional control input
vector, and x = (x1, x2, s, θ,ω) is the state vector with
state variables: (x1, x2) the unicycle center of mass position,
s its translational velocity, θ its heading angle, and ω its
angular velocity. A barrier function that only depends on
position (x1, x2) cannot generally be used to construct a
HO-CBF because the system does not have a well-defined
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Fig. 2. Nonlinear second-order unicycle trajectories. The safe region
corresponding to h̃ ≥ 0 is the outside of the inverted triangle. The initial
position of the system is represented with a black dot, and the final position
with a black asterisk. The nominal controller without the barrier function
filter violates safety (dashed blue line) whereas the trajectory obtained with
the barrier function (solid red line) successfully avoids the unsafe region.

uniform relative degree. A standard solution for this system
is to instead consider applying a barrier function to the
point (y1, y2) = (x1 + p cos θ, x2 + p sin θ), displaced
from the center of mass by distance p in the direction of
the heading θ [19]. Here, we take h̃(x1, x2, θ) = L −
(x2 + p sin θ) + |x1 + p cos θ|. h̃ is defined on the open
finite partition X1

1 = {(x1, x2, θ) : x1 + p cos θ < 0},
X1

2 = {(x1, x2, θ) : x1 + p cos θ > 0}, with boundary
function k2,1(x) = −k1,2(x) = x1 + p cos θ. Following the
construction in equation (35) using α1(s) = α2(s) = βs for
β > 0, we obtain

h(x) =






h1(x) if x ∈ X1
1

h2(x) if x ∈ X1
2

max{h1(x), h2(x)} if x ∈ cl(X1
1 ) ∩ cl(X1

2 ),
(39)

h1(x) =− s sin θ − s cos θ − pω cos θ + pω sin θ (40)
+ β(L− x2 − p sin θ − x1 − p cos θ),

h2(x) =− s sin θ + s cos θ − pω cos θ − pω sin θ (41)
+ β(L− x2 − p sin θ + x1 + p cos θ).

This barrier function satisfies (36) and we are able to find
a piecewise-defined feedback control strategy satisfying (37).
In particular, we take p = 0.5, and L = 0.7 and consider a
nominal controller that tracks a circular trajectory. At each
time instant, apply a CBF-based quadratic program to solve
for the control input that is closest in Euclidean distance to
the nominal input while satisfying the constraint in (37), and
apply this input as the feedback control strategy. An example
of the resulting trajectory is shown in Figure 2 plotted in y1-
y2 coordinates, where we observe that the trajectory is such
that h̃ remains positive, as desired. "

V. CONCLUSION

This paper presented a new method to certify forward
invariance of a set defined as a level set of a piecewise-
defined function. There are two key conditions to guarantee
forward invariance: the first condition is a barrier function

requirement on the interior of each piece of the state space
partition, while the second condition requires the vectorfield
to point inside of the safe set at the boundary between each
pair of pieces of the partition. The second condition is inde-
pendent of the control strategy and can be checked offline,
whereas the first one can be used to design controllers in a
CBF setting. These properties make our method particularly
applicable for the discontinuous barrier functions that arise
when building a high-order CBF from a piecewise-defined
barrier candidate.
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