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Abstract— One of the most challenging aspects of nons-

mooth analysis is to overcome nondifferentiability. A pos-

sible approach is to use the generalized notions of the

classical gradient and directional derivatives. In this paper

we define a generalized directional derivative, the Mandalay

derivative, based on set-valued Lie derivatives. For this op-

erator, we derive the analogues to the classical chain rule,

superposition rule (for linear combinations of functions),

product rule, and quotient rule in the form of inequalities,

which facilitate the computation of the Mandalay derivative

in the context of nonsmooth system analysis and design.

Moreover, we demonstrate the application of the Mandalay

derivative for both first and high-order nonsmooth Control

Barrier Functions in multiple examples.

Index Terms— Lyapunov Methods, Constrained Control,

Optimization Algorithms

I. INTRODUCTION

NONSMOOTH functions have been explored in the op-
timization and controls community with the purpose of

extending classical results to broader classes of systems and
functions. Nonsmooth functions have been used in applications
from stability analysis using nonsmooth Lyapunov functions
[1] to multiagent robotic systems [2]–[4] and hybrid systems
[5], [6] to name a few.

When the function of interest is differentiable, its gradient
exists and the Lie derivative is a suitable tool to use. If the
function is nonsmooth, some type of generalized directional
derivative, satisfying the comparison lemma, is sought. One
obvious choice is the Dini derivative. However, Dini deriva-
tives are hard to compute because their associated subdiffer-
entials lack some desirable properties - the subdifferential can
be empty at some points even for locally Lipschitz functions.
It also lacks containment properties, for example, the subdif-
ferential of the sum of two locally Lipschitz functions is not
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contained in the sum of their subdifferentials. The chain rule
for Dini derivatives (in inequality form) is only available if
one of the functions is differentiable. In this work we use
the Mandalay derivative, based on Clarke’s subdifferentials,
which are compact, convex and nonempty when the function
is locally Lipschitz. Special cases of the Mandalay derivative
have been used in the nonsmooth literature [2], [7], without
naming it. Given that we are the first to consider taking
higher order derivatives, we define the Mandalay1 derivative
as a generalization of these previous notions and establish a
systematic and shared notation.

Additionally, we derive the chain rule, superposition rule,
product rule and the quotient rule of Mandalay derivatives for
locally Lipschitz functions. These rules compute a bound for
the Mandalay derivative of a complex function in terms of
Mandalay derivatives of simpler functions. For these simpler
functions, their Mandalay derivatives consist of maximums
and minimums of compact intervals. The Mandalay derivative
is a well suited operator for important aspects of nonsmooth
system analysis and design. For example, the Mandalay deriva-
tive can be used, instead of the classical derivative, to prove
system stability using nonsmooth Lyapunov functions.

In this paper we will focus on its application to CBFs.
CBFs [8]–[11] enforce forward invariance of the constraint
set so that no trajectory initialized within the constraint set
ever leaves or violates the constraint set. Nonsmooth CBFs
functions naturally arise in applications such as multiagent
systems, where they take maximums and minimums of con-
tinuously differentiable functions. In such cases, and with
control-affine systems, we show that using a nonsmooth CBF
allows us to obtain closed form solutions to CBF-based convex
optimization programs. Moreover, we also demonstrate how
the Mandalay derivative can be used to derive high-order
nonsmooth CBFs.

The organization of this paper is the following: Section II
includes key notations and definitions, background materials
from set operations, as well as a review of generalized deriva-
tives, dynamical systems, and smooth CBFs theory. Section
III presents the main results of this work and its application

1Mandalay is the name of a historical city in Myanmar, the birth place of
one of the authors. The authors chose the name, Mandalay, to encourage
participation in control research from underrepresented countries such as
Myanmar.



in examples with nonsmooth CBFs both first and high-order.
Lastly, Section IV summarizes the contributions of this work
to the existing nonsmooth systems literature.

II. BACKGROUND MATERIALS

A. Abbreviations and Acronyms
For a set S ✓ R, we use S = supS and S = inf S with

inf, sup : 2R 7! R, where R = R [ ±1. For a function
h : D ! R, D ✓ Rn, if it is continuously differentiable, we
use rh(x) to express the gradient of h and ḣ(x) = rh(x)ẋ
when x is understood to be a function of time t 2 R and
ẋ denotes derivative of x with respect to time. Otherwise, if
h is not differentiable, @h(x) ✓ D⇤ is used to express its
generalized gradient set as defined in [12, Pg. 10], where D⇤

is the dual space of D. If S is a set, @S denotes the boundary
of S instead. Lastly, R>0 is used to express the positive real
numbers and ; refers to the empty set.

B. Operations on Sets
The scalar multiplication of a nonempty set S ✓ R with

� 2 R is defined as �S = {�s 2 R|s 2 S}. The sum of two
nonempty sets S1, S2 ✓ R is the Minkowski sum, S1 + S2 =
{s1 + s2 2 R|s1 2 S1, s2 2 S2}. The Linear combination of
nonempty sets is such that given �1, . . . ,�m, m 2 N,

mX

i=1

�iSi =

(
mX

i=1

�isi 2 R|s1 2 Si, . . . , sm 2 Sm

)
. (1)

Let � = {{�i}mi=1 |m 2 N,�i � 0,
Pm

i=1 �i = 1, 81  i  m}.
The convex hull of S ✓ Rn is defined as

co{S} =

(
mX

i=1

�isi 2 Rn| {�i}mi=1 2 �, si 2 S

)
. (2)

The product of two nonempty sets X,Y ✓ R is defined as
X · Y = {xy 2 R | x 2 X, y 2 Y }.

Proposition 1: [13] If a = [a, a] and b = [b, b] are
nonempty compact intervals on R, then

a+ b = [a+ b, a+ b] (3)
a · b = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]. (4)

C. Regularity, General Derivatives and Dynamical
Systems

Definition 1: [12, Def. 2.3.4] Let X,Y be Banach spaces.
The function V : X ! Y is said to be regular at x provided
that for all v, the following limit exists and coincides with the
generalized directional derivative V �(x, v) [12, Pag. 10 Eq.
1], i.e, lim↵!0+

V (x+↵v)�V (x)
↵ = V �(x, v).

Definition 2: Let F : Rn⇥Rm ! 2R
n

be a set-valued map
and the function h : D ! R, D ✓ Rn, be locally Lipschitz.
The Lower Mandalay derivative of h with respect to F at
(x0, u0), x0 2 D, u0 2 Rm, is defined as

MFh(x
0, u0) = inf LW

F h(x0, u0).

When h is both regular and locally Lipschitz, the Strong
Lower Mandalay derivative is defined as

MS
Fh(x

0, u0) = inf LS
Fh(x

0, u0).

LW
F h(x0, u0) = {a 2 R : 9v 2 F(x0, u0), 9⇠ 2

@h(x0)s.t.h⇠, vi = a} and LS
Fh(x

0, u0) = {a 2 R : 9v 2
F(x0, u0), s.t.h⇠, vi = a, 8⇠ 2 @h(x0)}, with x0 2 D, u0 2
Rm, are the weak and strong set-valued Lie derivatives 2 [1],
[2]. Note that in the remainder of this paper, we will introduce
a slight change of notation for LW

F and use instead:

LW
F h(x0, u0) = {h⇠, vi 2 R | v 2 F(x0, u0), ⇠ 2 @h(x0)}.

(5)

When inf is replaced by sup, they will be referred to as
Upper Mandalay derivative and Upper Strong-Mandalay
derivative and denoted by MFh and M

S
Fh, respectively. When

MFh(x
0, u0) = MFh(x0, u0), the function is said to be

Mandalay differentiable with respect to F and its Mandalay
Derivative is denoted by MFh(x0, u0). When MS

Fh(x
0, u0) =

M
S
Fh(x

0, u0) the function is said to be strongly Mandalay
differentiable and its Strong Mandalay Derivative will be
denoted by MS

Fh(x
0, u0). If there is no explicit dependence

on u0, these generalized derivatives will simply be denoted as
MFh(x

0) and MS
Fh(x

0), MFh(x0) and M
S
Fh(x

0).
Remarks: (1) When F is a singleton f and if h is contin-

uously differentiable, the Mandalay derivative is the classical
directional derivative, which can be written in the Lie deriva-
tive notation as, Mfh(x, u) = Lfh(x, u). Note that both the
upper and lower Mandalay derivatives can be potentially taken
iteratively, e.g. MF{MFh(x)} is well-defined if MFh(x) is
locally Lipschitz. We will denote by Mk

Fh the kth successive
Mandalay derivative of h with respect to F . We allow MF
and MF to take values in the extended reals, therefore MF
and MF always exist albeit they may take infinite values.
However, when h is locally Lipschitz and F is compact, LW

F h
is compact and nonempty, and MF and MF are finite.

Definition 3: For X : Rd ! Rd, define the Filippov set-
valued map [14, Eq. 19] K[X] : Rd ! 2R

d

by

K[X](x) ,
\

�>0

\

µ(N)=0

co{X(B(x, �)\N)}, (6)

where
T

µ(N)=0 denotes the intersection over all sets N
of Lebesgue measure zero, co denotes convex closure, and
B(x, �) is the ball of radius � centered at x. Note that co and
co are equivalent for any compact subset of Rn.

Definition 4: [1, Def. 6] Given a differential equation with
discontinuous right hand side of the form

ẋ = X(x), (7)

a Filippov solution of (7) on a nondegenerate interval I ✓ R is
a function ' : I ! Rn such that '(·) is absolutely continuous
on any interval [t1, t2] ✓ I and

'̇(·) 2 K[X]('(t)) for almost all t 2 I. (8)

According to this definition, Filippov solutions replace the
right hand side of (7) by a differential inclusion defined using
the operator K.

2In [1], [2] F is only a function of x0. In this work F is a function of both
x0 and u0 and therefore the arguments of the strong and weak set-valued Lie
derivatives have been modified accordingly.



Proposition 2: [14, Prop. 3] Let X : Rd ! Rd be
measurable and locally essentially bounded, that is, bounded
on a bounded neighborhood of every point, excluding sets of
measure zero. Then for all x0 2 Rd, there exists a Filippov
solution of (7) with initial condition x(0) = x0.

D. Barrier Functions and Control Barrier Functions
Suppose now a closed set S defined as S = {x | h(x) � 0},

with boundary @S = {x | h(x) = 0}, for some continuously
differentiable function h(x), called a Barrier Function, with
the property that h(x) = 0 implies rh(x) 6= 0. The set S is
forward invariant for the system ẋ = f(x), x 2 Rn, if for all
T > 0, all x0 2 S, and all Filippov solutions x(t) on [0, T ]
satisfying x(0) = x0, it holds that x(t) 2 S for all t 2 [0, T ].
If, further, f is Lipschitz continuous, it holds for all x 2 @S
that

S is forward invariant () ḣ(x) = rh(x)T f(x) � 0

which is classically known as Nagumo’s Theorem. In the
barrier function literature, the righthand condition is often
strengthen to

ḣ(x) � �↵(h(x)) for all x 2 Rn (9)

for some locally Lipschitz function ↵ : R ! R satisfying
↵(0) = 0. The advantage is that this condition, which
must hold for all x rather than only on the boundary of S,
more readily leads to control design techniques. For example,
consider the controlled system

ẋ = f(x) + g(x)u, (10)

with input u 2 Rm, and the goal of designing a feedback con-
troller �(x) such that S is forward invariant. Then, condition
(9) leads to the design criterion that any Lipschitz continuous
feedback controller �(x) 2 U(x) where

U(x) = {u | rh(x)T (f(x) + g(x)u) � �↵(h(x))} (11)

ensures forward invariance of S. Notably, the inequality in
the definition of U(x) is affine in u and, therefore, can be
included in convex optimization programs that compute a
feedback controller �(x), possibly online at runtime. If such
a feedback controller exists, then h(x) is called a (classical)
Control Barrier Function (CBF).

E. High-Order Control Barrier Functions
A common challenge in standard CBF-based control design

is that, for many physically meaningful systems, rh(x)T g(x)
can be identically zero so that U(x) becomes empty for some
x. A possible solution is to use the theory of High-Order
Control Barrier Functions (HO-CBF) [15]–[17] that system-
atically constructs an alternative barrier function as follows:
initialize  1(x) = h(x) and, as long as r i(x)T g(x) ⌘ 0,
iteratively set  i+1(x) = r i(x)T f(x)+↵i( i(x)) for some
user-chosen Lipschitz functions ↵i(·). Suppose the process
terminates after r iterations. Then the resulting final  r(x)
can often (e.g., when the system has a well-defined uniform
relative degree) be used as a CBF that guarantees forward
invariance of \1ir{x |  i(x) � 0}, which is a subset of S.

III. MAIN RESULTS

In this paper we focus on systems like (7) and feedback
control laws �(x) that make the right hand side piecewise
continuous in x. Under these assumptions, Proposition 2
guarantees the existence of Filippov solutions and its Filippov
set-valued map takes compact and convex values. Moreover,
if x(t) is a Filippov solution, it is absolutely continuous in
time. As discussed previously, potential applications of the
Mandalay derivative are nonsmooth CBFs and nonsmooth HO-
CBFs. Given a locally Lipschitz h : D ! R, D ✓ Rn at
x, h(x(t)) is also absolutely continuous in t. Under these
conditions [2, Thm. 2] shows that h is a valid non-smooth
CBF if there exists a � 2 R>0 such that

MFh(x, u) � ��h(x). (12)

The Mandalay derivative is in general a nonlinear operator,
and therefore, depending on the function h, computing the left
hand side of (12) may not be straightforward. One possible
solution is to express h as a composite function and bound
it in terms of the Mandalay derivative of simpler component
functions. To do so, in the remainder of this section, and as
the main results of this paper, we derive the analogues of the
classical chain rule, superposition rule (for linear combinations
of functions), product rule, and quotient rule in the form of
inequalities. We also demonstrate that these tools allow us to
derive closed form solutions for piecewise continuous control
laws under mild assumptions and even Lipschitz control laws
in some special cases.

A. Mandalay Derivative Of Composition Of Two Locally
Lipschitz Functions: The Chain Rule.

Lemma 1: Suppose F is defined as in Definition 2 and takes
only nonempty, compact and convex values, and h1 : R !
R, h2 : Rn ! R are locally Lipschitz near x. Then the product,
LW
F h2(x, u) · @h1(h2(x)), is a nonempty compact interval.

Proof: If h1, h2 are locally Lipschitz near x, it is
known that @h2(x) and @h1(h2(x)) are nonempty, compact
and convex [14, Prop. 6]. Since @h1(h2(x)) ✓ R, it is a
compact interval. If F takes only compact and convex values,
LW
F h2(x, u) is the set of inner products of the elements in

two compact and connected subsets of Rn. Thus, LW
F h2(x, u)

is compact and connected. Since LW
F h2(x, u) ✓ R, it is a

compact interval. As a product of two nonempty compact
intervals, LW

F h2(x, u) · @h1(h2(x)) is a nonempty compact
interval.

Theorem 1 (Chain Rule): Let h1 : R ! R and h2 : D !
R, D ✓ Rn, be locally Lipschitz. Define h(x) = h1(h2(x)).
If F is defined as in Definition 2 and takes only nonempty,
compact and convex values, then, the following holds 8x 2 D

MFh(x, u) � min{MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x))}. (13)

Moreover, the equality holds if F is a singleton, h2 is
continuously differentiable and h1 is regular.



Proof: From Clarke’s first Chain Rule [12, Thm. 2.3.9]

@h(x) ✓ co{↵⇣ | ↵ 2 @h1(h2(x)), ⇣ 2 @h2(x)}. (14)

Note that co and co are equivalent for any compact sub-
set of Rn. Since @h1(h2(x)) and @h2(x) are compact, the
set {↵⇣ | ↵ 2 @h1(h2(x)), ⇣ 2 @h2(x)} is a continuous im-
age of a compact set. Therefore, it is a compact set. De-
fine now the set, W, where W = {hv, ✓i 2 R | v 2
F(x, u), ✓ 2 co {↵⇣ | ↵ 2 @h1(h2(x)), ⇣ 2 @h2(x)}}, and
note that LW

F h(x, u) ✓ W. Using (2) W can also be expressed
as

W ={hv,
mX

i=1

�i↵i⇣ii 2 R |

{�i} 2 �, v 2 F(x, u),↵i 2 @h1(h2(x)), ⇣i 2 @h2(x)}

={
mX

i=1

�ihv, ⇣ii↵i 2 R | (15)

{�i} 2 �, v 2 F(x, u),↵i 2 @h1(h2(x)), ⇣i 2 @h2(x)}.

In (15), ↵i is a scalar and it can scale the bilinear product. By
definition of the co, (15) is equivalent to

W =
[

v2F
co {hv, ⇣i↵ 2 R | ↵ 2 @h1(h2(x)), ⇣ 2 @h2(x)}

✓ co {hv, ⇣i↵ 2 R | v 2 F(x, u),↵ 2 @h1(h2(x)), ⇣ 2 @h2(x)}
(16)

= co {{hv, ⇣i 2 R | v 2 F(x, u), ⇣ 2 @h2(x)} · @h1(h2(x))}
= co

�
LW
F h2(x, u) · @h1(h2(x))

 
. (17)

Taking now the infimum of both sides in (17)

infW � inf
�
co
�
LW
F h2(x, u) · @h1(h2(x))

  

= inf
�
LW
F h2(x, u) · @h1(h2(x))

 

=min{MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x))}. (18)

Equation (18) follows from Lemma 1 and Proposition 1. Since
LW
F h(x, u) ✓ W, MFh(x, u) = inf

�
LW
F h(x, u)

 
� infW,

the result follows. If F is a singleton, equality is obtained in
(16). If h1 is regular and h2 is continuously differentiable, by
[12, Thm. 2.3.9], equality holds in (14) and LW

F h(x, u) = W.

Proposition 3: Consider the system in (10), with piecewise
continuous feedback controller �(x), and let F(x,�(x)) be
the Filippov operator generated. Suppose ẋi = fi(x) are
continuous 8i 2 I ⇢ {1, . . . , n}, and also suppose h : Rn !
R is continuously differentiable in x and @h

@xi
= 0, 8i 2 IC ,

then h is Mandalay differentiable with respect to F and
MFh(x) = ḣ.

Proof: For any v 2 F ,

hv,rhi =
nX

i=1

vi
@h

@xi
=
X

i2I

ẋi
@h

@xi
+

X

i2IC

vi
◆
◆
◆7
0

@h

@xi

=
nX

i=1

ẋi
@h

@xi
= rhẋ = ḣ. (19)

As h is continuously differentiable in x, @h(x) = {rh(x)}.
The weak set-valued Lie derivative (5) of h equals

LW
F h(x) = {hv,rh(x)i 2 R | v 2 F(x,�(x)}.

From (19) hv,rh(x)i = ḣ for all v 2 F(x,�(x)). Thus,
LW
F h(x) = {ḣ}, which yields MFh(x) = MFh(x) =

MFh(x) = ḣ.
Thanks to Proposition 3, Theorem 1 can be now simplified

as shown in Corollary 1.
Corollary 1: In Theorem 1, if h2 is Mandalay differen-

tiable, 8x 2 D

MFh(x, u) �
(
MFh2(x, u) @h1(h2(x)), MFh2(x, u) � 0

MFh2(x, u) @h1(h2(x)), MFh2(x, u) < 0.
Proof: If h2 is Mandalay differentiable, MFh2(x) =

MFh2(x) = MFh2(x). Thus, by Theorem 1, 8x 2 D,

MFh(x, u) � min{MFh2(x, u) @h1(h2(x)),

MFh2(x, u) @h1(h2(x))}

MFh(x, u) �
(
MFh2(x, u) @h1(h2(x)), MFh2(x, u) � 0

MFh2(x, u) @h1(h2(x)), MFh2(x, u) < 0.

B. Application: Lipschitz CBF Using Chain Rule
Consider the system

ẋ1 = x2 , ẋ2 = u (20)

which satisfies Proposition 3. Consider as well a candidate
nonsmooth CBF h = L � x2� | x2

1 � x1 |, with L 2 R>0. h
can also be expressed as h = h0+h1(h2), where h0 = L�x2

is continuously differentiable and h1(h2) = � | x2
1 � x1 |=

� | h2 |, which satisfies the set up of Theorem 1. Thus, at
points where x2

1 � x1 = 0, @h1 = [�1, 1], @h2 = rh2, and
@h0 = rh0. Also note that h2 satisfies Proposition 3, which
implies MFh2(x) = ḣ2. Using now Corollary 1, at points
where x2

1 � x1 = 0,

MF (h1(h2))(x) �
(
�ḣ2(x), ḣ2(x) � 0

ḣ2(x), ḣ2(x) < 0,
(21)

which yields, MF (h1(h2))(x) � �|ḣ2(x)|. The Mandalay
derivative of h is therefore

MFh(x, u) �

8
><

>:

�u� (2x1x2 � x2), x2
1 � x1 > 0

�u+ (2x1x2 � x2), x2
1 � x1 < 0

�u� |2x1x2 � x2|, x2
1 � x1 = 0.

(22)

It is clear that a piecewise continuous feedback controller
satisfying MFh(x, u) � ��h(x) can be derived from (22). As
we have an affine system, given a Lipschitz feedback controller



unom, we can choose u(x) to minimize ku(x) � unom(x)k2
subject to u(x) 2 U(x) = {u | MFh � ��h}, � 2 R>0. The
results are shown in Figure 1, in which the safe region is the
interior of the two intersected parabolas. The trajectory using
h as a CBF successfully remains within the safe region (solid
red line).

-2 0 2 4 6 8 10 12 14

-6

-4

-2

0

2

4

6

Fig. 1. The safe region corresponds to the inside area delimited by

the solid black line. The initial condition of the system is represented

with a square, and the final position with an asterisk. The nominal

trajectory (dashed blue line), without the barrier function filter violates

safety whereas the trajectory obtained with the Lipschitz CBF (solid red

line) successfully avoids the unsafe region.

C. Mandalay Derivative Of Linear Combinations Of
Locally Lipschitz Functions: The Superposition Rule.

Lemma 2: Let hi : D ! R, D ✓ Rn be locally Lipschitz
81  i  N . Let h =

PN
i=1 sihi, si > 0, 81  i  N . If F is

defined as in Definition 2 and takes only nonempty, compact
and convex values, the following inequality holds 8x 2 D

MFh(x, u) �
NX

i=1

siMFhi(x, u). (23)

Proof: First, define the set W

W = {hv, ⇠i 2 R | v 2 F(x, u), ⇠ 2
NX

i=1

si@hi(x)}

= {hv,
NX

i=1

si⇠ii 2 R | v 2 F(x, u), ⇠i 2 @hi(x)}

✓
NX

i=1

si{hv, ⇠ii 2 R | v 2 F(x, u), ⇠i 2 @hi(x)} (24)

=
NX

i=1

siL
W
F hi(x, u). (25)

Since all si > 0, taking the infimum of both sides in (25)

infW �
NX

i=1

si inf L
W
F hi(x, u) =

NX

i=1

siMFhi(x, u).

According to [12, Cor. 2, Pg. 39]:

@h(x) ✓
NX

i=1

si@hi(x). (26)

Thus, LW
F h(x, u) ✓ W, which implies inf LW

f h(x, u) �
infW, and MFh(x, u) �

PN
i=1 siMFhi(x, u).

Corollary 2: In Lemma 2, if si < 0, 81  i  N . Then the
following inequality holds 8x 2 D

MFh(x, u) �
NX

i=1

siMFhi(x, u). (27)

Proof: The proof is exactly the same as that of Lemma 2
noting that when a nonempty compact set S ✓ R is multiplied
by a negative number, inf becomes sup.

Theorem 2: Let hi : D ! R, D ✓ Rn be locally Lipschitz
81  i  N . Let h =

PN
i=1 sihi, where si > 0, 8i 2 I ✓

{1, . . . , N} and si < 0, 8i 2 IC = {1, · · · , N} \ I . If F is
defined as in Definition 2 and takes only nonempty, compact
and convex values, the following inequality holds 8x 2 D

MFh(x, u) �
X

i2I

siMFhi(x, u) +
X

i2IC

siMFhi(x, u).

Moreover, equality holds if F is a singleton, IC is empty and
hi are regular 8i 2 I .

Proof: The proof follows directly from Lemma 2 and
Corollary 2. The claim of equality can be readily verified by
noting that the equality holds in (24) if F is a singleton, and
also in (26) for regular hi and si > 0, according to [12, Cor.
3, Pg. 40].

D. Application: Recursive Nonsmooth HO-CBFs

In this example we now show how the property of Mandalay
derivative in Theorem 2 is particularly helpful to define HO-
CBFs that are nonsmooth and Lipschitz recursively. Given the
system:

ẋ1 = �x3
1 , ẋ2 = x3 , ẋ3 = u (28)

and the candidate nonsmooth CBF h = L � x2+ | x1 | with
L 2 R>0, we can observe that the relative degree between h
and u is two, and thus the system requires a HO-CBF. This
new HO-CBF is built as,  1 = L�x2+ | x1 |,  2 = Mf 1+
�1 1 , �1 2 R>0. Taking Mandalay derivative of  2 yields,
Mf 2 = Mf (Mf 1+�1 1). From Theorem 2 we know that

Mf (Mf 1 + �1 1) � M2
f 1 + �1Mf 1. (29)

The right hand side is easier to compute and in this case yields,
8x 2 D, Mf 1 = �x3� | x3

1 |, M2
f 1 = �u+ | 3x5

1 |. We
can now conclude that, if M2

f 1 + �1Mf 1 � ��2 2 then
the CBF inequality Mf 2 � ��2 2 is also satisfied. As we
have an affine system, given a Lipschitz feedback controller
unom, we can choose u(x) to minimize ku(x) � unom(x)k2
subject to u(x) 2 U(x) = {u | M2

f 1 + �1Mf 1 � ��2 2},
�1,�2 2 R>0. The results obtained are shown Figure 2. The
safe region corresponds to the outside of the inverted triangle.
The trajectory obtained with the safe controller u successfully
avoids violating safety (red solid trajectory).
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Fig. 2. The safe region corresponds to the outside of the inverted

triangle. The initial condition of the system is represented with a square,

and the final position with an asterisk. The nominal trajectory (dashed

blue line), without the barrier function filter violates safety whereas the

trajectory obtained with the Lipschitz CBF (solid red line) successfully

avoids the unsafe region.

E. Product and Quotient Rules
Lastly, we derive the Mandalay derivative of products and

quotients of Lipschitz functions.
Theorem 3: Suppose F is defined as in Definition 2 and

takes only nonempty, compact and convex values. Let h1, h2 :
Rn ! R, D ✓ Rn be locally Lipschitz at a point x0 2 D.
Then h = h1 · h2 satisfies

MFh(x
0, u) �

min{h2(x
0)MFh1(x

0, u) + h1(x
0)MFh2(x

0, u),

h2(x
0)MFh1(x

0, u) + h1(x
0)MFh2(x

0, u),

h2(x
0)MFh1(x

0, u) + h1(x
0)MFh2(x

0, u),

h2(x
0)MFh1(x

0, u) + h1(x
0)MFh2(x

0, u)}. (30)

Moreover, equality holds if F is a singleton, h1, h2 are regular
at x0 and h1(x0) > 0, h2(x0) > 0.

Proof Sketch 1: Using [14, Pag. 21 Eq. 40] given locally
Lipschitz functions h1, h2 : Rn ! R at a point x0 2 Rn,
the composite function h3 = h1 · h2 satisfies LW

F h3(x0, u) ✓
S(x0, u), where S(x0, u) = {hv, ⇠i 2 R | v 2 F(x0), ⇠ 2
(h2(x0)@h1(x0)+h1(x0)@h2(x0))}. Therefore MFh3(x0, u) �
inf S(x0, u).

Theorem 4: Suppose F is defined as in Definition 2 and
takes only nonempty, compact and convex values. Let h1, h2 :
Rn ! R, D ✓ Rn be locally Lipschitz at a point x0 2 D and
h2(x0) 6= 0. Then h = h1

h2
satisfies

MFh(x
0, u) � (31)

1

h2(x0)2
min{h2(x

0)MFh1(x
0, u)� h1(x

0)MFh2(x
0, u),

h2(x
0)MFh1(x

0, u)� h1(x
0)MFh2(x

0, u),

h2(x
0)MFh1(x

0, u)� h1(x
0)MFh2(x

0, u),

h2(x
0)MFh1(x

0, u)� h1(x
0)MFh2(x

0, u)}.

Moreover, equality holds when F is a singleton, h1 and �h2

are regular at x0 and h1(x0) > 0 and h2(x0) > 0.
Proof Sketch 2: The proof can be derived similarly to the

proof of Theorem 3 but using [14, Pag. 21 Eq. 41] instead.

IV. CONCLUSIONS

In this paper we presented the Mandalay derivative, a
generalized directional derivative, based on set-valued Lie
derivatives to handle nondifferentiability in nonsmooth anal-
ysis. We derived the analogues to the classical chain rule,
superposition rule, product rule, and quotient rule in the form
of inequalities. Having a new set of rules to compute the
Mandalay derivative of more complex functions facilitates
using nonsmooth functions for system analysis and design,
as demonstrated in our applications with nonsmooth CBFs
and HO-CBFs. Additionally, our results are derived from
well-established interval operations and connect the Mandalay
derivative to the emerging field of interval arithmetic.

REFERENCES

[1] A. Bacciotti and F. Ceragioli, “Stability and stabilization of discon-
tinuous systems and nonsmooth lyapunov functions,” ESAIM: Control,
Optimisation and Calculus of Variations, vol. 4, pp. 361–376, 1999.

[2] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE control systems letters,
vol. 1, no. 2, pp. 310–315, 2017.

[3] ——, “A nonsmooth approach to controller synthesis for boolean
specifications,” IEEE Transactions on Automatic Control, vol. 66, no. 11,
pp. 5160–5174, 2020.

[4] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier
functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1303–1310, 2019.

[5] M. Maghenem and R. G. Sanfelice, “Sufficient conditions for forward
invariance and contractivity in hybrid inclusions using barrier functions,”
Automatica, vol. 124, p. 109328, 2021.

[6] ——, “Characterizations of safety in hybrid inclusions via barrier
functions,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, 2019, pp. 109–118.

[7] A. Bacciotti and F. Ceragioli, “Nonpathological lyapunov functions and
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