
Prescribed-Time Control Barrier Functions for Semiautonomous
Navigation

Carmen Jimenez Cortes∗ and Samuel Coogan †

Georgia Institute of Technology, Atlanta, GA, 30332

This paper proposes a novel use of Control Barrier Functions (CBFs) to enforce Prescribed-
Time Safety in a semiautonomous navigation scenario in which an aerial vehicle navigates
through a sequence of waypoints. In particular, we use Prescribed-Time Control Barrier
Functions (PT-CBFs) to ensure a minimum traversal time between when the vehicle approaches
the vicinity of a waypoint and passes through the waypoint itself. Motivating applications
are those in which onboard personnel are required to, e.g., provide visual confirmation of the
waypoint availability. PT-CBFs are guaranteed to achieve the prescribed minimum waypoint
traversal time, and, as demonstrated via simulation, they also allow for faster mission completion
than a simple strategy that activates a traditional CBF for a specified duration.

I. Nomenclature

𝑇𝑠𝑎 𝑓 𝑒 = prescribed safe time
𝑇𝑚𝑎𝑟𝑔 = time margin around 𝑇𝑠𝑎 𝑓 𝑒

𝑡0 = initial time
𝜈𝑚 (𝑡) = 𝑚 power of the function 𝜈(𝑡)
𝜇𝑚 (𝑡) = blow-up function: inverse of the 𝑚 power of the function 𝜈

𝜓𝑟 𝑗 = 𝑗 𝑡ℎ waypoint 𝑟𝑡ℎ order high-order CBF
𝑑 𝑗 (𝑦) = 𝑗 𝑡ℎ waypoint proximity function to point 𝑦
𝐷

𝑗

𝑐𝑟𝑖𝑡
= critical proximity

𝐷
𝑗

𝑡ℎ𝑟𝑒𝑠ℎ
= threshold proximity

II. Introduction
An automated future is a shared milestone across many engineering fields such as driving [1, 2] manufacturing

[3, 4], and aviation [5]. Before an autonomous world can become a reality, a more immediate scenario will consist
of a collaboration between humans and partially autonomous systems to achieve common objectives. We denote
these systems, in which one or more partially autonomous agents interact with a human collaborator or supervisor, as
semiautonomous systems. Ideally, under nominal conditions, the system should be able to operate independently without
any human input. However, no task or mission is ever completely nominal, and it is in such unpredictable situations
when the human has to take action and rectify or approve commands generated by the system’s autonomous capabilities.
In such scenarios, and especially for dynamical systems operating in complex environments, safety must be guaranteed
while the system awaits action from the human. For example, consider a semiautonomous navigation scenario in which
a partially autonomous aerial vehicle, with onboard personnel, tracks a set of ordered waypoints at a given nominal
speed, as depicted in Figure 1. At each waypoint, after crossing an outer threshold proximity, a minimum traversal time
is required before the vehicle is allowed to cross an interior critical proximity nearer to the waypoint. This time gives the
onboard personnel the chance to verify the waypoint availability, its visibility conditions, or update the route if required
by the mission. This particular scenario constitutes the main focus of the paper, and will be further discussed in the
case study. Control Barrier Functions (CBFs) [6–8] are a popular tool for safety control applications, as they guarantee
forward invariance of a safe set. However, for the previous example, the system does not need to remain inside the
initial safe set indefinitely. The paper [9] introduces the concept of Prescribed-Time Safety (PTSf), a new approach to
CBFs for systems that only need to remain inside the safe set for a prescribed period of time. Inspired by this PTSf

∗Ph.D. Student, School of Electrical and Computer Engineering, AIAA Student Member
†Associate Professor, School of Electrical and Computer Engineering and School of Civil Engineering

1

Fig. 1 Semiautonomous navigation problem set-up. Threshold proximities of waypoints could overlap but not
their critical proximities, as it would mean that two waypoints have the same location.

technique, we now provide the mathematical underpinnings to guarantee the success of a semiautonomous navigation
mission using CBFs that are only active for a prescribed time. We name these CBFs as Prescribed-Time Control Barrier
Functions (PT-CBFs). Hence, the focus of this paper is on the theoretical foundations for a prescribed-time safety
approach to semiautonomous control. These PT-CBFs were tested against two alternative control strategies: one that
activates and deactivates a High-Order CBF (HO-CBF), and one that uses the nominal controller without any safety
filters. The trajectory generated by the HO-CBF is shown to result in a slower time to complete the mission than the
PT-CBFs, and the trajectory generated from the nominal controller is shown to be unsafe. Therefore, one can conclude
that PT-CBFs are the best suited strategy to address this semiautonomous control problem. We also present the results
of using PT-CBFs in a Microsoft Flight Simulator testing environment that we have developed and that will enable
testing with humans in the control loop in future research.

The rest of this paper is structured as follows: Section III includes an overview of Control Barrier Functions and
High-Order Control Barrier Functions in Subsection III.A, as well as the mathematical derivation of the PT-CBFs in
Subsection III.B. The semiautonomous system navigation problem is defined in Section IV. Section V includes a sample
case study with its simulated results, and an example of PT-CBFs running in our Microsoft Flight Simulator testing
platform. Finally, Section VI summarizes the main findings of this research.

III. Review of Control Barrier Functions

A. Foundations of High-Order Control Barrier Functions
Control Barrier Functions [10] are a mathematical tool used to generate controllers that render a given safe set

C = {𝑥 : ℎ(𝑥) ≥ 0} forward invariant for the control-affine system

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1)

where 𝑥 ∈ R𝑛 is the system state and 𝑢 ∈ R𝑚 is the control input. The set C is forward invariant if, for any initial
condition within the set C, the system will remain inside C for all time 𝑡 ≥ 0 [11]. The function ℎ(𝑥) used in the
definition of C is a Control Barrier Function (CBF) for the system if it is continuously differentiable and if there exists a
locally Lipschitz function 𝛼 : R→ R satisfying 𝛼(0) = 0, so that

sup
𝑢∈R𝑚

𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≥ −𝛼(ℎ(𝑥)) (2)

where 𝐿 𝑓 ℎ(𝑥) = ∇ℎ(𝑥)𝑇 𝑓 (𝑥) and 𝐿𝑔ℎ(𝑥) = ∇ℎ(𝑥)𝑇𝑔(𝑥) are the Lie derivatives of ℎ(𝑥) with respect to 𝑓 (𝑥) and 𝑔(𝑥).
Defining 𝑈 (𝑥) = {𝑢 | 𝐿 𝑓 ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≥ −𝛼(ℎ(𝑥))}, choosing any Lipschitz continuous feedback control strategy
𝑢(𝑥) such that 𝑢(𝑥) ∈ U(𝑥) for all 𝑥 ensures that C is forward invariant. The resulting control law is called a safe controller.
Given a smooth nominal feedback control strategy 𝑢̂(𝑥), a common approach is to obtain a safe control strategy by
choosing 𝑢(𝑥) to minimize ∥𝑢(𝑥)−𝑢̂(𝑥)∥ subject to 𝑢(𝑥) ∈ 𝑈 (𝑥). Equation (2) includes the directional derivative 𝐿𝑔ℎ(𝑥),
which could be equal to zero. In that case, the control input 𝑢 no longer intervenes in the equation. A possible solution
is to use High-Order Control Barrier Functions. To do so, a new function 𝜓 is defined as 𝜓(𝑥) = 𝐿 𝑓 ℎ(𝑥) + 𝛼(ℎ(𝑥)). If
there exists a locally Lipschitz function 𝛼2 that satisfies sup

𝑢∈R𝑚
𝐿 𝑓𝜓(𝑥) + 𝐿𝑔𝜓(𝑥)𝑢 ≥ −𝛼2 (𝜓(𝑥)) then 𝜓 is a CBF, and we

call it a HO-CBF to emphasize its construction from higher order derivatives of ℎ. The first time derivative of the new
HO-CBF candidate 𝜓 is given by

¤𝜓(𝑥) = 𝐿2
𝑓 ℎ(𝑥) + 𝐿𝑔𝐿 𝑓 ℎ(𝑥)𝑢 + ¤𝛼(ℎ(𝑥)). (3)

2

Continuing this process if needed, for a system of uniform relative degree 𝑟 from 𝑢 to ℎ(𝑥), the recursion of HO-CBFs
is built as follows [12]:

𝜓1 (𝑥) = ℎ(𝑥)
𝜓𝑖 (𝑥) = 𝐿 𝑓𝜓𝑖−1 (𝑥) + 𝛼𝑖−1 (𝜓𝑖−1 (𝑥)) ∀𝑖 = 2, ..., 𝑟

(4)

And the inequality constraint (2) is

𝑠𝑢𝑝
𝑢∈R𝑚

𝐿 𝑓𝜓𝑟 (𝑥) + 𝐿𝑔𝜓𝑟 (𝑥)𝑢 ≥ −𝛼𝑟 (𝜓𝑟 (𝑥)). (5)

Note that for a system with well-defined relative degree 𝑟, the process is repeated 𝑟 − 1 times to obtain a well-defined
HO-CBF and ¤𝜓𝑟 (𝑥, 𝑢) is the only explicit function of the control input 𝑢.

B. Prescribed-Time Safety with Control Barrier Functions
The focus of this paper is on applications where the system generally does not need to remain inside C for an

indefinite period of time. That is, there exists a time, denoted by 𝑇safe, that expresses the time from which the system is
allowed to exit the original safe set in order to continue with its mission. One immediate option is to deactivate or
eliminate the CBF once 𝑇safe expires. Instead, this paper proposes an alternative approach using Prescribed-Time CBFs,
which are CBFs that possess the prescribed-time safety property first introduced in [9]. PT-CBFs use auxiliary blow-up
functions in their definition that effectively make the right hand side of (2) increasingly negative so that the inequality
is easier to satisfy as time progresses. This allows the safe controller to match a nominal controller 𝑢̂ more closely,
especially as time approaches 𝑇safe, and enabling a smooth switch when deactivating the barrier.

We also introduce an updated version of blow-up functions defined in [9]. With this new formulation 𝜇𝑚 does not
take effect until 𝑡 is “close enough" to 𝑇safe. Only when 𝑡 enters a predefined margin 𝑇marg around 𝑇safe, 𝜇𝑚 increases its
value. Otherwise, without the use of 𝑇marg, the constraint in (2) will be increasingly relaxed as time progresses, leading
to greater disparity between the CBF and the PT-CBF, allowing more aggressive control inputs, and thus compromising
safety. These new blow-up functions are defined as

𝜈(𝑡) =
{

1 0 ≤ 𝑡 − 𝑡0 ≤ 𝑇safe − 𝑇marg
𝑇safe
𝑇marg

− 𝑡−𝑡0
𝑇marg

𝑇safe − 𝑇marg < 𝑡 − 𝑡0 ≤ 𝑇safe
(6)

𝜇𝑚 (𝑡) =
1

𝜈𝑚 (𝑡) ∀ 𝑡 − 𝑡0 ≥ 0 (7)

where 𝑡 is the current time, 𝑡0 is the time when the PT-CBF is triggered, 𝑇safe is the time since 𝑡0 that the system needs to
remain inside the safe region, and 𝑇marg is the time before 𝑇safe when 𝜇𝑚 will start to increase its value. PT-CBFs are
constructed in an analogous way to HO-CBFs using the auxiliary blow-up functions. For a control-affine system (1)
with uniform relative degree 𝑟 from 𝑢 to ℎ(𝑥), define for all 𝑖 = 1, ..., 𝑟

𝜓1 (𝑥) = ℎ(𝑥)
¤𝜓1 (𝑥) = 𝐿 𝑓 ℎ(𝑥)
𝜓𝑖 (𝑥, 𝑡) = ¤𝜓𝑖−1 (𝑥, 𝑡) + 𝛼𝑖−1 (𝜓𝑖−1 (𝑥, 𝑡)) ∀𝑖 ≥ 2 (8)

¤𝜓𝑖 (𝑥, 𝑡) = ¥𝜓𝑖−1 (𝑥, 𝑡) + 𝑐𝑖−1
[
2𝜇2 (𝑡)

𝜇1 (𝑡)
𝑇marg

𝜓𝑖−1 (𝑥, 𝑡) + 𝜇2 (𝑡) ¤𝜓𝑖−1 (𝑥, 𝑡)
]

∀𝑖 ≥ 2 (9)

𝛼𝑖 (𝜓𝑖) = 𝜇2 (𝑡)𝑐𝑖𝜓𝑖 (𝑥, 𝑡) , 𝑐𝑖 ∈ R>0. (10)

Note that similarly to HO-CBFs, for a system with well-defined relative degree 𝑟, ¤𝜓𝑟 (𝑥, 𝑡, 𝑢) is the only explicit
function of the control input 𝑢.

Remark 1 The first time derivative of 𝜇2 (𝑡) can also be expressed as

¤𝜇2 (𝑡) = 2
𝑇2

marg

(𝑇safe − 𝑡 + 𝑡0)3 = 2𝜇2 (𝑡)
𝜇1 (𝑡)
𝑇marg

. (11)

3

The new problem statement to implement PT-CBFs is as follows: given a control-affine system (1) and a continuously
differentiable function 𝑦 = ℎ(𝑥), find a safe controller 𝑢 that modifies the nominal controller 𝑢̂ in a minimally invasive
manner during a fixed time 𝑇safe:

minimize
𝑢

| |𝑢 − 𝑢̂ | |2

𝑠.𝑡. ¤𝜓𝑟 ≥ −𝛼𝑟 (𝜓𝑟)
(12)

According to [9, Thm. 1], using the safe controller 𝑢 instead of the nominal one 𝑢̂ guarantees that whenever the execution
time 𝑡 is lower than 𝑇safe, the system will stay within the safe region C = {𝑥 : ℎ(𝑥) ≥ 0}, while progressing towards its
goal. This result is formalized in Proposition III.1.

Proposition III.1 For a system ¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 that is initially safe (ℎ ≥ 0 at 𝑡0), the control law that solves (12)
guarantees that ℎ ≥ 0 for all time 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇safe) for sufficiently large constants 𝑐1, ..., 𝑐𝑟 in (10).

IV. Semiautonomous System Navigation
Consider an autonomous aerial vehicle with dynamics

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (13)
𝑦 = 𝑜(𝑥) (14)

for state 𝑥 ∈ R𝑛 and input 𝑢 ∈ R𝑚𝑖 along with output 𝑦 ∈ R𝑚𝑜 . The system is assumed to have a well-defined relative
degree 𝑟 ≥ 1 from input 𝑢 to output 𝑜(𝑥) uniform in 𝑥. The mission objective is for the resulting output trajectory 𝑦(𝑡)
to pass through a given sequence of waypoints {𝑧1, 𝑧2, . . . , 𝑧𝑁 } defined by 𝑧 𝑗 ∈ R𝑚𝑜 for each 𝑗 . Assume there exists a
collection 𝑢̂ 𝑗 (𝑥) of nominal feedback controllers for each waypoint 𝑗 that drives the system output to the waypoint.
Thus, a nominal strategy is to apply in succession 𝑢̂1 (𝑥) until waypoint 𝑧1 is reached, then 𝑢̂2 (𝑥) until waypoint 𝑧2 is
reached, etc. However, consider the following safety constraint that generally prevents direct application of this nominal
strategy: assume that each waypoint also possesses a proximity function 𝑑 𝑗 (𝑦) characterizing a distance between the
point 𝑦 and the waypoint 𝑧 𝑗 . For example, a choice for 𝑑 𝑗 could be 𝑑 𝑗 (𝑦) = ∥𝑦 − 𝑧 𝑗 ∥2

2, although the proposed method
accommodates more general proximity functions, as demonstrated in the case study. Further suppose there exists a
threshold distance 𝐷

𝑗

thresh and a critical distance 𝐷
𝑗

crit < 𝐷
𝑗

thresh for each waypoint 𝑗 . Then impose the following safety
constraints:

S1) If waypoint 𝑗 is the current target waypoint, and the vehicle output crosses the threshold proximity at time 𝑡0,
then the output cannot cross the critical proximity until time 𝑡0 +𝑇safe. Defining 𝑡∗ = 𝑡 − 𝑡0 such that 𝑡0 is the time
instant when 𝑑 𝑗 (𝑦(𝑡0)) = 𝐷

𝑗

thresh, then 𝑑 𝑗 (𝑦(𝑡∗)) ≥ 𝐷
𝑗

crit for all 𝑡∗ ≤ 𝑇safe.
S2) Moreover, the distance to all other nontarget waypoints should not be less than the waypoint’s critical proximity

i.e., 𝑑 𝑗′ (𝑦(𝑡)) ≥ 𝐷
𝑗′

crit for all 𝑗 ′ ≠ 𝑗 for all 𝑡.
The purpose of imposing constraint S1 is to provide sufficient time for a human supervisor to override the tracking
controller in the event that a waypoint is compromised, and the assumption is that the human is only able to determine
the status of the waypoint when within the threshold proximity. The proposed solution is to use HO-CBFs to ensure
constraint S2 and PT-CBFs to ensure constraint S1 as shown in Algorithm 1. To implement these safety filters in a
minimally invasive manner, the following optimization problem needs to be solved at each time 𝑡:

minimize
𝑢

| |𝑢 − 𝑢̂ | |2

𝑠.𝑡. ¤𝜓𝑟 𝑗 ≥ −𝛼𝑟 𝑗 (𝜓𝑟 𝑗) ∀ 𝑗 = 1, ..., 𝑁
(15)

where each 𝜓𝑟 𝑗 is either an HO-CBF or a PT-CBF, depending on the target waypoint at time 𝑡. This approach is
formalized in Algorithm 1 and in Theorem IV.1. Algorithm 1 explains how to update the different safety filters and
nominal controller 𝑢̂ 𝑗 , depending on which waypoint 𝑧 𝑗 is the target and if the system has crossed its 𝐷 𝑗

thresh. Theorem
IV.1 establishes that safety is guaranteed. Note that for clarity purposes, Algorithm 1 omits the code to initialize and
update the system’s state but addresses where in the code it would take place with text.

Theorem IV.1 If the quadratic program (15) is feasible for all time 𝑡 when the constraint set is defined as in Algorithm
1, then safety is always guaranteed.

4

Proof 1 Safety guarantees follow from [10, Thm. 2] when using CBFs, from [12, Thm. 1] when using HO-CBFs, and
from [9, Thm. 1] when using PT-CBFs. ■

Note that when the waypoints are sufficiently apart, no more than one constraint will be active at a time and therefore
the quadratic program (15) will always be feasible.

V. Case Study
We now demonstrate the performance benefits of PT-CBFs in a simulated semiautonomous navigation scenario.

The aerial vehicle is modeled as a second-order unicycle and its mission is to track a set of 𝑁 ordered waypoints. The
simulation results show how PT-CBFs satisfy all safety constraints while having an improved performance, measured as
total mission duration, compared to an alternative strategy that only uses HO-CBFs.

Algorithm 1 Semiautonomous Navigation
System Initialization
𝑗 = 1 ⊲ Initialize waypoint list index
𝑗 ′ = 1 ⊲ Initialize target list index. First target is 𝑧1

𝑢̂ = 𝑈̂ (𝑗 ′) ⊲ First nominal controller is 𝑢̂1

𝑐𝑠𝑡𝑟 = {} ⊲ Constraint set starts empty
𝑡 = 𝑡0 = 0
while true do

𝑡 = 𝑡 + Δ𝑡

𝑡∗ = 𝑡 − 𝑡0
for 𝑗 = 1 : 1 : 𝑁 do

if 𝑗 ≠ 𝑗 ′ then ⊲ 𝑗 is not target waypoint
𝑐𝑠𝑡𝑟 = 𝑐𝑠𝑡𝑟 ∪ {𝜓𝑟 𝑗 = ¤𝜓𝑟−1 𝑗 + 𝑐𝑟 𝑗𝜓𝑟−1 𝑗 } ⊲ Use HO-CBF

else ⊲ 𝑗 is target waypoint
if 𝑑 𝑗 (𝑦(𝑡∗)) > 𝐷

𝑗

thresh then ⊲ System outside threshold. Use HO-CBF
𝑐𝑠𝑡𝑟 = 𝑐𝑠𝑡𝑟 ∪ {𝜓𝑟 𝑗 = ¤𝜓𝑟−1 𝑗 + 𝑐𝑟 𝑗𝜓𝑟−1 𝑗 }

else ⊲ System inside threshold
if 𝑡0 == 0 then ⊲ First time crossing 𝐷

𝑗

thresh
𝑡0 = 𝑡 ⊲ Save 𝐷

𝑗

thresh crossing time
𝑡∗ = 𝑡 − 𝑡0 ⊲ Update 𝑡∗

end if
if 𝑡∗ < 𝑇safe then ⊲ Use PT-CBF

𝑐𝑠𝑡𝑟 = 𝑐𝑠𝑡𝑟 ∪ {𝜓𝑟 𝑗 = ¤𝜓𝑟−1 𝑗 + 𝜇2𝑐𝑟 𝑗𝜓𝑟−1 𝑗 }
else ⊲ 𝑑 𝑗 (𝑦(𝑡∗)) ≤ 𝐷

𝑗

crit allowed
𝑐𝑠𝑡𝑟 = 𝑐𝑠𝑡𝑟 ∪ {𝜓𝑟 𝑗 = 0} ⊲ Remove constraint

end if
end if

end if
end for
𝑢 = 𝑚𝑖𝑛(| |𝑢 − 𝑢̂ | |2 𝑠.𝑡. 𝑐𝑠𝑡𝑟) ⊲ Solve QP
Update System
if 𝑑 𝑗′ (𝑦(𝑡∗)) == 0 then ⊲ Target waypoint reached

𝜓𝑟 𝑗′ = ¤𝜓𝑟−1 𝑗′ + 𝑐𝑟 𝑗′𝜓𝑟−1 𝑗′ ⊲ HO-CBF active again
𝑗 ′+ = 1 ⊲ Update 𝑗 ′

𝑢̂ = 𝑈̂ (𝑗 ′) ⊲ Update 𝑢̂
𝑡0 = 0 ⊲ Reset 𝐷 𝑗

thresh crossing time
end if

end while

5

A. Autonomous System Model: Second-Order Unicycle
Rotary-wing aircraft, as well as any other driftless differential drive systems, are often modeled as unicycles

[8, 13, 14]. The most common unicycle model uses the system’s position and its heading angle as state variables. Its
available control inputs are the translational velocity or speed, and the angular velocity. In a more realistic navigation
scenario, the inputs are the translational and angular accelerations of the system, as any force applied relates to the
system’s accelerations through its mass and moment of inertia. This motivates the use of a higher-order model, known
as the second-order unicycle [15]. The second-order unicycle is a five-dimensional, nonholonomic, non-linear system
with dynamics

(¤𝑥1, ¤𝑥2) = (𝑠 cos 𝜃, 𝑠 sin 𝜃) ¤𝑠 = 𝑢𝑎 ¤𝜃 = 𝜔 ¤𝜔 = 𝑢𝛼 (16)

where 𝑢 = (𝑢𝑎, 𝑢𝛼) is the two dimensional control input vector, and the state vector 𝑥 = (𝑥1, 𝑥2, 𝑠, 𝜃, 𝜔) consists of the
following variables:

• (𝑥1, 𝑥2): Unicycle center of mass position
• 𝑠: Unicycle translational velocity
• 𝜃: Unicycle heading angle. Counter-clockwise rotations are considered positive
• 𝜔: Unicycle angular velocity. Its sign criteria is the same as for the angle 𝜃.
A common approach to set point stabilization or position tracking uses feedback linearization, but the second-order

unicycle model is not feedback linearizable, as the requisite matrix of Lie derivatives is rank deficient. The problem of
having a non-feedback linearizable system can be solved by controlling a displaced point instead of the center of mass
of the unicycle [16]. This displaced point has coordinates (𝑦1, 𝑦2) = (𝑥1 + 𝑝 cos 𝜃, 𝑥2 + 𝑝 sin 𝜃), and its distance to the
system’s center of mass 𝑝 does not need to be large. By using the displaced point (𝑦1, 𝑦2) instead of the center of mass
of the system, the requisite matrix of Lie derivatives has now full rank. Applying the state feedback

𝜎1 = 𝑢𝑎 cos 𝜃 − 𝑢𝛼𝑝 sin 𝜃 − 𝜔𝑠 sin 𝜃 − 𝜔2𝑝 cos 𝜃

𝜎2 = 𝑢𝑎 sin 𝜃 + 𝑢𝛼𝑝 cos 𝜃 + 𝜔𝑠 cos 𝜃 − 𝜔2𝑝 sin 𝜃
(17)

the second order unicycle displaced point dynamics are

(¤𝑦1, ¤𝑦2) = (𝑣𝑦1 , 𝑣𝑦2)
(¤𝑣𝑦1 , ¤𝑣𝑦2) = (𝜎1, 𝜎2)
¤𝑠 = −𝜔2𝑝 + 𝜎1 cos 𝜃 + 𝜎2 sin 𝜃 (18)
¤𝜃 = 𝜔

¤𝜔 =
𝜎2 cos 𝜃 + 𝜎1 sin 𝜃 + 𝜔𝑠

𝑝

where 𝜎 = (𝜎1, 𝜎2) is now the new virtual nominal control input to be chosen.

B. Safety Filters
For this case study, the waypoints’ proximity function 𝑑 𝑗 (𝑦) was characterized using Lamé curves [17]:��� 𝑦1 − 𝑧

𝑗

1
𝑟𝑠 𝑗

���𝑛 + ��� 𝑦2 − 𝑧
𝑗

2
𝑟𝑠 𝑗

���𝑛 = 1 ∀ 𝑗 ∈ 𝑁 (19)

𝑟𝑠 𝑗 in (19) corresponds to the critical proximity to the 𝑗 𝑡ℎ waypoint 𝐷 𝑗

crit, 𝑦1 and 𝑦2 are the coordinates of the displaced
point, and 𝑧

𝑗

1 and 𝑧
𝑗

2 are the coordinates of the 𝑗 𝑡ℎ waypoint. The motivation behind using superellipses is to show how
PT-CBFs can accommodate different shaped safe sets, which depend on the degree 𝑛. The resulting first-order CBFs
and their derivative for all waypoints 𝑗 = 1, ..., 𝑁 are

ℎ 𝑗 = 𝜓1 𝑗 = (𝑦1 − 𝑧
𝑗

1)
𝑛 + (𝑦2 − 𝑧

𝑗

2)
𝑛 − 𝑟𝑠 𝑗 (20)

¤ℎ 𝑗 = ¤𝜓1 𝑗 = 𝑛(𝑦1 − 𝑧
𝑗

1)
𝑛−1𝑣𝑦1 + 𝑛(𝑦2 − 𝑧

𝑗

2)
𝑛−1𝑣𝑦2 (21)

6

The second order unicycle model from (18) requires a HO-CBF, as it has a relative degree of 2. The expressions for 𝜓
and ¤𝜓 used in (15) depend on the PT-CBFs being active or not, as shown in Algorithm 1. If the system has not entered
the proximity threshold 𝐷

𝑗

thresh, the safety filter applied uses HO-CBFs given by

𝜓2 𝑗 = ¤𝜓1 𝑗 + 𝑐1 𝑗𝜓1 𝑗 (22)
¤𝜓2 𝑗 = 𝑛(𝑛 − 1) (𝑦1 − 𝑧

𝑗

1)
𝑛−2𝑣2

𝑦1 + 𝑛(𝑦1 − 𝑧
𝑗

1)
𝑛−1𝜎1 + 𝑛(𝑛 − 1) (𝑦2 − 𝑧

𝑗

2)
𝑛−2𝑣2

𝑦2 + 𝑛(𝑦2 − 𝑧
𝑗

2)
𝑛−1𝜎2 (23)

Once the system enters 𝐷thresh, the PT-CBFs are triggered:

𝜓2 𝑗 = ¤𝜓1 𝑗 + 𝜇2𝑐1 𝑗𝜓1 𝑗 (24)
¤𝜓2 𝑗 = 𝑛(𝑛 − 1) (𝑦1 − 𝑧

𝑗

1)
𝑛−2𝑣2

𝑦1 + 𝑛(𝑦1 − 𝑧
𝑗

1)
𝑛−1𝜎1 + 𝑛(𝑛 − 1) (𝑦2 − 𝑧

𝑗

2)
𝑛−2𝑣2

𝑦2 + 𝑛(𝑦2 − 𝑧
𝑗

2)
𝑛−1𝜎2

+ 𝑐1 𝑗 (2𝜇2
𝜇1

𝑇marg
𝜓1 𝑗 + 𝜇2 ¤𝜓1 𝑗) (25)

C. Simulation Results
Simulation experiments were conducted using a set of three waypoints (𝑁 = 3). Two of these waypoints use (19) with

𝑛 = 2, and the third uses 𝑛 = 4. All of them have threshold and critical proximity radii equal to 10 and 1; respectively.
The system is initialized with initial position (𝑥10 , 𝑥20) = (30,−5), heading angle 𝜃0 = 0, angular velocity 𝜔 = 0, and
speed 𝑠0 = −1.5. The distance between the center of mass of the unicycle and the displaced point is 𝑝 = 0.5. The
nominal controller is a tracking derivative (D) controller with reference speed 𝑠 = 1 and control gains 𝑘𝑣𝑦1 = 𝑘𝑣𝑦2 = 10.
The results consist of a comparison between three different output trajectories. The first one is obtained when the system
uses PT-CBFs, the second corresponds to the system under the action of HO-CBFs that turn off when 𝑇safe expires,
and the last one is the output of the system when it is only driven by the nominal derivative controller. The constants
𝑐𝑖 𝑗 of the class-k functions (10) have a value of 1.4 for all 3 waypoints. The intuition is that knowing in advance the
time when the barrier has to be deactivated would lead to better results than simply turning the barrier off once this
time expires. Additionally, it is also expected that the system without the action of any safety filters will violate the
conditions S1 and S2 from Section IV.

The simulation starts with the autonomous aerial vehicle navigating towards the first waypoint, the purple circle in
Figure 2. Due to its initial position, the system would fly over the target region of the third waypoint, the blue square in
Figure 2, unless a safety filter is active around it. Both the PT-CBF and HO-CBF trajectories successfully avoid this area,
whereas the output trajectory with only the D controller transverses across it. Once the target area around waypoint 1
is reached, the waypoint to track is updated and the system starts navigating towards the second waypoint and so on.
Figures 3a, 3b, and 3c show the value of the PT-CBFs and HO-CBFs around waypoints 1, 2 and 3 respectively. In all
three figures the PT-CBFs value is presented in a blue solid line, the HO-CBFs value corresponds to the solid orange
line, the time instant when 𝑇safe expires for the system using PT-CBFs is represented with a blue dashed vertical line,
and the time instant when 𝑇safe expires for the system using HO-CBFs corresponds to the orange dashed vertical line.
Note that when ℎ 𝑗 becomes negative it implies that the system has entered the critical proximity 𝐷

𝑗

crit. All PT-CBFs
decrease up to ℎ 𝑗 = −1 because 𝐷

𝑗

crit was chosen to be a radius 𝑟𝑠 𝑗 = 1. Once the system reaches the waypoint, the
corresponding PT-CBF and HO-CBF start increasing its value because the target waypoint has been updated, and now
the autonomous aerial vehicle is flying towards the new goal. Figures 3a, 3b, and 3c prove how the system output using
PT-CBFs enters the critical proximity faster than the system with HO-CBFs. As the simulation continues, the system
using PT-CBFs reaches each target earlier than the one using only HO-CBFs. As a consequence, the time when each
of these simulated outputs is allowed to enter the target region becomes further apart, which in addition to the faster
transitions of the PT-CBFs once 𝑇safe expires, leads to an overall better performance.

D. Implementation of PT- CBFs in Microsoft Flight Simulator
The final contribution of this work is to develop a Microsoft Flight Simulator (MSFS) based testing environment and

implement PT-CBFs to generate safe navigation controllers. The testing platform has been built using Matlab-Simulink,
where we have implemented the control strategy, the model dynamics, communications with MSFS and some real time
monitoring of variables. The Simulink project is divided into four different subsystems as shown in Figure 4a. The
System Model Subsystem, in Figure 4b, includes the second order unicycle dynamics and all the coordinate changes
required to have an accurate visualization in MSFS. All simulations are run at a constant altitude. In Figure 4c the

7

Fig. 2 Output trajectories compared: Nominal D (blue), PT-CBF (orange), and HO-CBF (dashed yellow). The
autonomous aerial vehicle is tracking waypoints 1 (purple circle), 2 (green circle), and 3 (light blue square). The
system’s initial position is represented with an asterisk. The nominal trajectory (blue) violates safety as it fails to
avoid the unsafe region.

38 39 40 41 42 43
-1

-0.5

0

0.5

1

1.5

(a) Waypoint 1 - ℎ1

70 71 72 73 74 75
-1

-0.5

0

0.5

1

1.5

(b) Waypoint 2 - ℎ2

100 101 102 103 104 105
-1

-0.5

0

0.5

1

1.5

(c) Waypoint 3 - ℎ3

Fig. 3 Comparison between PT-CBFs (blue) and HO-CBFs (orange) for all waypoints in a semiautonomous
navigation scenario. Both PT-CBFs and HO-CBFs are positive until their respective 𝑇𝑠𝑎 𝑓 𝑒 expires and they are
removed.

Matlab function block includes the nominal controller, a Derivative waypoint tracking control, and the PT-CBFs used to
avoid violating safety before the prescribed safe time 𝑇𝑠𝑎 𝑓 𝑒 expires.

The code used to run this experiment can be found in https://github.com/gtfactslab/JimenezCortes_
AIAA2024. All three waypoints are modelled using 𝑛 = 2 in Equation (19) with threshold and critical proximity radii
equal to 1000 and 10 ft. The vehicle used for visualization is a Bell Model 407, Figure 5a, and the dynamics are modelled
as a second order unicycle as they are run at a fixed altitude. Once the simulation starts, the helicopter tracks the waypoints
with latitude and longitude (33.7157◦𝑁, 84.2821◦𝑊), (33.7472◦𝑁, 84.2821◦𝑊), and (33.7759◦𝑁, 84.3107◦𝑊). Once
the systems reaches the third waypoint, it hovers at the target location and the mission ends. The resulting trajectory can
be seen in Figure 5b.

VI. Conclusions and Discussion
Coordinating humans’ and autonomous systems’ actions can be one of the most challenging aspects for the success of

semiautonomous systems’ missions. This collaboration between humans and autonomous systems becomes particularly
challenging when the autonomy needs to perform an action that requires human intervention. While the system is

8

https://github.com/gtfactslab/JimenezCortes_AIAA2024
https://github.com/gtfactslab/JimenezCortes_AIAA2024

(a) Main Simulator Screen (b) System Model Subsystem (c) Control Subsystem

Fig. 4 Microsoft Flight Simulator Testing Platform.

(a) MSFS visualization during the mission (b) MSFS trajectory using PT-CBFs

Fig. 5 Microsoft Flight Simulator example. The system tracks three ordered waypoints (33.7157◦𝑁, 84.2821◦𝑊),
(33.7472◦𝑁, 84.2821◦𝑊), and (33.7759◦𝑁, 84.3107◦𝑊), but it is not allowed in their proximity before𝑇𝑠𝑎 𝑓 𝑒 expires.

waiting for the human response, which can take a maximum time of 𝑇safe, the system must remain safe, and execute the
next command immediately after this time expires. This work shows that Prescribed-Time Control Barrier Functions
facilitate coordination of humans’ and autonomous sytems’ actions in an efficient and risk-free way, outperforming
simple strategies with CBFs or without safety filters, in these semiautonomous scenarios. Prescribed-Time Control
Barrier Functions were also tested in a Microsoft Flight Simulator based testing platform, which, in future developments
of this research, will enable running real experiments with humans in the control loop.

Acknowledgment
This work was funded in part by the Office of Naval Research, Science of Autonomy grant N00014-21-1-2759

Human-AI Collaboration in Autonomous Aerial Vehicles.

References
[1] Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J. Z., Langer, D., Pink, O., Pratt, V., et al.,

“Towards fully autonomous driving: Systems and algorithms,” 2011 IEEE intelligent vehicles symposium (IV), IEEE, 2011, pp.
163–168.

[2] Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K., “A survey of autonomous driving: Common practices and emerging
technologies,” IEEE access, Vol. 8, 2020, pp. 58443–58469.

[3] Bourne, D. A., and Fox, M. S., “Autonomous manufacturing: automating the job-shop,” Computer, Vol. 17, No. 09, 1984, pp.
76–86.

[4] Park, H.-S., and Tran, N.-H., “An autonomous manufacturing system based on swarm of cognitive agents,” Journal of
Manufacturing Systems, Vol. 31, No. 3, 2012, pp. 337–348.

9

[5] Frew, E., McGee, T., Kim, Z., Xiao, X., Jackson, S., Morimoto, M., Rathinam, S., Padial, J., and Sengupta, R., “Vision-based
road-following using a small autonomous aircraft,” 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720),
Vol. 5, IEEE, 2004, pp. 3006–3015.

[6] Ames, A. D., Grizzle, J. W., and Tabuada, P., “Control barrier function based quadratic programs with application to adaptive
cruise control,” 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp. 6271–6278.

[7] Notomista, G., and Egerstedt, M., “Persistification of robotic tasks,” IEEE Transactions on Control Systems Technology, Vol. 29,
No. 2, 2020, pp. 756–767.

[8] Squires, E., Pierpaoli, P., and Egerstedt, M., “Constructive barrier certificates with applications to fixed-wing aircraft collision
avoidance,” 2018 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2018, pp. 1656–1661.

[9] Abel, I., Steeves, D., and Krstic, M., “Prescribed-Time Safety Design for a Chain of Integrators,” arXiv preprint arXiv:2201.09447,
2022.

[10] Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., and Tabuada, P., “Control Barrier Functions: Theory and
Applications,” 2019 18th European Control Conference (ECC), 2019, pp. 3420–3431.

[11] Khalil, H. K., Nonlinear systems; 3rd ed., Prentice-Hall, 2002.

[12] Nguyen, Q., and Sreenath, K., “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,”
IEEE, 2016, pp. 322–328.

[13] Lee, T.-C., Song, K.-T., Lee, C.-H., and Teng, C.-C., “Tracking control of unicycle-modeled mobile robots using a saturation
feedback controller,” IEEE transactions on control systems technology, Vol. 9, No. 2, 2001, pp. 305–318.

[14] Van den Broek, T. H., van de Wouw, N., and Nĳmeĳer, H., “Formation control of unicycle mobile robots: a virtual structure
approach,” Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, IEEE, 2009, pp. 8328–8333.

[15] LaValle, S. M., Planning algorithms, Cambridge university press, 2006.

[16] De Luca, A., Oriolo, G., and Vendittelli, M., “Control of wheeled mobile robots: An experimental overview,” Ramsete, 2001,
pp. 181–226.

[17] Lamé, G., Lamé ovals. The mathematical Gazette, N.T. Gridgeman, 1970.

10

	Nomenclature
	Introduction
	Review of Control Barrier Functions
	Foundations of High-Order Control Barrier Functions
	Prescribed-Time Safety with Control Barrier Functions

	Semiautonomous System Navigation
	Case Study
	Autonomous System Model: Second-Order Unicycle
	Safety Filters
	Simulation Results
	Implementation of PT- CBFs in Microsoft Flight Simulator

	Conclusions and Discussion

