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Attention-Tunable Safety Barriers for Human-Autonomy Teaming in
Specialized Aviation Missions

Carmen Jimenez Cortes1, Richard Agbeyibor2, Jack Kolb2, Ryan Bowers2, Karen Feigh2 and Samuel Coogan1

Abstract—The integration of autonomous systems into civil and
military aviation is shifting crew composition from purely human
to collaborative human-autonomy teams. Introducing autonomy
enables the implementation of automated safety mechanisms.
In this letter, we propose a novel safety barrier that adjusts
system behavior based on the operator’s attention state. The
aggressiveness of the adjustments is tunable, and we propose
tuning it based on the measured attention of the human to
avoid overly conservative or excessively aggressive behaviors of
the system. Our proposed solution is tested in human subject
experiments of an Intelligence, Surveillance, and Reconnaissance
mission in an immersive flight simulator where attention is
measured by tracking the operator’s eye gaze. Our experimental
results show that the proposed attention-tunable safety barrier
improves mission performance compared to a standard control
barrier function mechanism.

Index Terms—Safety in HRI, Human Factors and Human-in-
the-Loop, and Autonomous Vehicle Navigation

I. INTRODUCTION

IN many aviation domains, ranging from urban air mobility
[1] to military fighter operations [2], research and devel-

opment is underway to integrate human-autonomy teaming
(HAT), in which vehicle control and other critical functions
are offloaded to an advanced autonomous pilot (AP) while the
human maintains responsibility for high-level decision-making
and ultimate mission authority. HAT is often operationalized
in aviation as the human operator(s) providing high-level
commands, such as desired latitude, longitude and altitude,
while the AP executes the piloting tasks to achieve them.
Our research explores how various AP control frameworks
affect a human-autonomy team’s mission performance. Using
a flight simulator, we model an Intelligence, Surveillance,
and Reconnaissance (ISR) mission, where a joint human–AP
team identifies, classifies, and tracks ships in a designated
surveillance area. Certain high-threat ships possess weapon
employment zones (WEZs) that inflict damage if the aircraft
enters them. The operator collaborates with the AP to com-
plete the mission efficiently while avoiding threats. Previous

Manuscript received: March, 18, 2025; Revised June, 17, 2025; Accepted
July, 21, 2025.

This paper was recommended for publication by Editor Ki-Uk Kyung upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the Office of Naval Research, Science of
Autonomy grant N00014-21-1-2759 Human-AI Collaboration in Autonomous
Aerial Vehicles.

1Carmen Jimenez Cortes and Samuel Coogan are with the School of
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta
GA 30332, USA (ccortes9, sam.coogan)@gatech.edu

2Richard Agbeyibor, Jack Kolb and Karen Feigh are with the Daniel
Guggenheim School of Aerospace Engineering, Georgia Institute of Tech-
nology, Atlanta GA 30332, USA (richard.agbeyibor, kolb,
rbowers32, karen.feigh)@gatech.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Immersive Flight Simulator for joint human-AP ISR.

work demonstrated that implementing control barrier functions
(CBFs) in this joint human-AP ISR context improved safety
but increased mission duration by as much as 20% [3]. This
safety performance trade-off is also discussed in [4]. While
CBFs reduced the risk of aircraft damage by preventing
overflight of high-threat ships, they reduced aircraft speed and
lengthened trajectories.

The primary contribution of this letter is the introduction
of Attention-Tunable CBFs (AT-CBFs) to mitigate the time-
safety trade-off that emerged in previous research. AT-CBFs
are inspired by Rate-tunable CBFs [5], which were presented
in the context of robotic multi-agent systems, and used trust
to adjust the CBF and avoid collisions between agents. In
[5], trust is obtained geometrically as a function of both
the distance and the angle between agents. In contrast, our
proposed AT-CBFs use information about the attention level
of the human operator onboard the aircraft to modify the
autonomy’s behavior. Eye tracking glasses collect operator
gaze position, direction, and fixations, and determine gaze
location. Based on operator gaze location, the AT-CBF frame-
work relaxes its constraints when the operator is focused on
the ISR Operator Station display, and tightens them when their
attention shifts elsewhere. The joint human-AP ISR simulator,
shown in Figure 1, was inspired by simulators used by the U.S.
Navy to train sensor operators for maritime patrol missions [6].
The design process was supervised by a U.S. Navy P-8 ISR
pilot, mission commander and instructor. Participants without
ISR experience were recruited for the study to resemble new
military recruits. Although they are less likely than trained
ISR operators to compensate for poor system performance,
novice participants impart a few limitations. Their lack of
domain expertise may lead to unrepresentative strategies, in-
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flated workload and confounded learning effects. Furthermore,
their perception of threat risk may be lower than experienced
operators.

The results of a user study with 21 participants confirm that
using AT-CBFs as a safety mechanism successfully minimizes
damage without extending the duration of the mission, leading
to an overall improved mission performance.

The remainder of this letter is structured as follows: Section
II presents relevant CBF and HAT literature, while Section
III introduces the main notation and definitions. Section IV
introduces AT-CBFs, how operator attention is measured and
what model is used for its dynamics. Section V describes
the specialized ISR aviation mission and the design of the
experiment. Section VI presents our results, followed by
discussion and the conclusion in Section VII.

II. RELATED WORKS

A. Control Barrier Functions
CBFs are a class of control-theoretic tools used to enforce

safety in dynamical systems by ensuring that the system’s
state remains within a predefined safe set. They act as real-
time filters or constraints on a controller, intervening only
when an action might lead to safety violations. CBFs have
been widely applied in safety-critical applications such as
autonomous driving [7], legged locomotion [8], and multi-
agent coordination [9], where the primary goal is to avoid
collisions, or ensure task feasibility under physical and op-
erational constraints. Most existing work on CBFs adopts a
standard formulation that enforces safety based on the system’s
state variables, such as position, velocity, or heading angles,
without accounting for human metrics. These methods are
well-suited for fully autonomous systems, but they can be
overly conservative when applied to shared human-autonomy
systems. In such settings, human behavior introduces dynamic
uncertainty and adaptation opportunities that are not captured
by traditional CBF formulations, leading to potential safety
failures or under performance.

B. Human-Autonomy Teaming
Human-machine feedback and adaptive control frameworks

have been employed to enhance collaboration between humans
and automated, semi-autonomous, and autonomous machines
[10]. Physiological feedback such as eye-tracking have been
shown to improve mission outcomes in HAT [11]. Specifically,
eye gaze (the direction of the operator’s visual attention) is a
key element [12] in predicting performance, situation aware-
ness (SA) [13], and human-machine interaction, particularly
during takeover events [14]. Gaze fixation duration, pupil
dilation, and gaze dispersion are common metrics used to
assess operator attention and SA [11], [12]. These metrics
provide insight into the operator’s cognitive state and are
crucial for adapting automation in real time. Longer fixa-
tion durations on mission-critical displays can indicate fo-
cused attention, whereas increased pupil dilation may indicate
heightened cognitive load [13]. By incorporating these metrics,
autonomous systems can adapt their behavior to support the
human more effectively, reducing workload and enhancing
mission performance.

C. Intelligence, Surveillance, and Reconnaissance
ISR missions can be conducted with either crewed or un-

crewed aircraft. Uncrewed ISR typically uses remotely piloted
aircraft (RPA) operated via satellite or data links. Although
crewed ISR involves higher costs related to personnel, training,
and logistics, it offers greater flexibility, sensitivity, and imme-
diate decision-making [15]. With an effective joint human-AP
control mechanism, crewed ISR could be conducted aboard
autonomous aircraft when data links are unavailable, retaining
these operational advantages.

To the authors’ knowledge, no previous work has explored
joint human-AP collaboration in the context of crewed ISR.
Related works are found in the literature on RPA operations
[16], human-AI flight planning [17], and end-to-end mission
level autonomy [18].

III. PRELIMINARIES

A. Notation and Main Definitions
For a continuously differentiable function h : D → R, D ↑

Rn, ↓h(x) denotes the gradient of h and ḣ(x) = ↓h(x)T ẋ
when x is understood to be a function of time t ↔ R and
ẋ denotes derivative of x with respect to time. If S is a set,
ωS denotes the boundary of S. The positive real numbers are
denoted R>0, and ↗x↗ is the standard Euclidean norm of a
vector x. A continuous function ε : R → R is said to be of
extended class-K→ if ε(0) = 0, it is strictly increasing, and
if lims↑→ ε(s) = ↘.

B. Standard CBFs Formulation
Safety is understood as forward invariance [19, Ch. 4] of a

subset of the state space S = {x | h(x) ≃ 0} with respect to
a controlled system ẋ = f(x) + g(x)u, with x ↔ D ↑ Rn,
u ↔ Rm, and f , g locally Lipschitz. h(x) : D → R is said to
be a CBF if it satisfies Def. 1.

Definition 1: [20, Def. 2] A continuously differentiable
function h(x) : D → R, with S = {x | h(x) ≃ 0}, is a control
barrier function (CBF) for the system ẋ = f(x) + g(x)u, if
there exists an extended class-K→ function ε such that for all
x ↔ D

sup
u↓Rm

↓h(x)T (f(x) + g(x)u) ≃ ⇐ε(h(x)). (1)

Any Lipschitz feedback controller u(x) satisfying (1) for
all x guarantees that S is forward invariant. It is common to
choose ε(h(x)) = ϑ · h(x), with ϑ ↔ R>0.

C. Rate-Tunable CBFs
In contrast to standard CBF theory, [5] proposed treating

ϑ as an additional state variable with Lipschitz continuous
dynamics. The new system with the extended state is now

[
ẋ
ϑ̇

]
=

[
f(x) + g(x)u

f↔(x, ϖ)

]
(2)

where f↔ : D⇒ [⇐1, 1] → R, D ↑ Rn, is Lipschitz continuous
and monotonically increasing in ϖ, and ϖ is a variable that
changes over time. The paper [5] uses ϖ to model trust among
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a group of robots, and denotes this new class of CBFs as Rate-
Tunable CBFs (RT-CBFs). In addition, RT-CBFs replace the
extended class-K→ function in the right-hand side of (1) by
a linear function ε(h(x)) = ϑ · h(x). More specifically, a
continuously differentiable function h(x) : D → R with S =
{x | h(x) ≃ 0} is an RT-CBF for the augmented system in (2)
and the set S if there exists a compact set A ⇑ R>0 such that
for all x ↔ D, ϑ ↔ A, and supu↓Rm ↓h(x)T (f(x)+g(x)u) ≃
⇐ϑ · h(x) holds. Thm. 1 guarantees forward invariance of the
safe set S for the system in (2) using RT-CBFs.

Theorem 1: [5, Thm. 1] Consider the augmented system in
(2) and a safe set S = {x | h(x) ≃ 0}, where h is a RT-
CBF. For a locally Lipschitz continuous reference controller
û : D → Rm, let the controller u = ϱ(x,ϑ), where ϱ :
D ⇒ R → U , be formulated as

ϱ(x,ϑ) = argmin
u↓U

↗u⇐ û(x)↗2 (3)

s.t. ↓h(x)T (f(x) + g(x)u) ≃ ⇐ϑ · h(x) (4)

where ↓h(x) is also locally Lipschitz continuous. Suppose
there exists an upper h > 0 such that h(x) < h for all x ↔ S.
Then, the set S is forward invariant.

IV. ATTENTION-TUNABLE CBFS

In contrast to [5], where trust is obtained geometrically
and is a function of both the distance and the angle between
autonomous agents, we propose to use instead the human
operator’s attention level in real time to modify the CBF
constraint. We denote this new variant as Attention-Tunable
CBFs (AT-CBFs), a variant of RT-CBFs that relies on the
operator’s attention level to modify the CBF constraint.

A. Human Attention Metric
The signal ϖ ↔ {⇐1, 1} is constructed by obtaining the

Live Area of Interest (LAOI) that the operator is fixated
on in the cabin. LAOIs are defined for the ISR Operator
Station, the radio communication panel, and for the windows
shown in Figure 1. While we considered various eye-tracking
metrics, including fixation duration and pupil dilation, we
ultimately determined that gaze location provided the most
direct measure of attention for our task design. When the
operator’s gaze is on the Operator Station LAOI, it is assumed
that they are attentive and have good SA, so ϖ = 1. When the
operator looks away, ϖ = ⇐1 and it is assumed that they are
not attentive or distracted.

Given the dynamics of ϑ presented in (2), a positive value
of f↔(x, ϖ) increases the value of ϑ and, as a consequence,
relaxes the AT-CBF condition in (4). Otherwise, a negative
value decreases ϑ and requires more conservative control
actions to satisfy (4). These changes on the conservatism of the
AT-CBF directly impact the aircraft’s behavior. An increased
ϑ allows the aircraft’s AP to approach target ships at a faster
speed and maneuver closer to them, which we hypothesize will
lead to a decrease in mission duration times. From the human
perspective, the different values of f↔(x, ϖ) are understood as
if the AP is aware of when to be more vigilant and self-reliant,
or when to rely more on the human.

B. Human Attention Dynamics
Treating ϑ as an additional state variable and extending

the state to now include its dynamics allows ϑ to evolve
as a continuous function over time, as it is updated every
30 milliseconds, regardless of ϖ, the human attention, being
detected as a binary variable.

We choose f↔ = ς ·φ ·ϖ, with ς,φ ↔ R>0. φ corresponds to
the fixed value used with standard CBFs and a linear extended
class-K→ in the Collision Avoidance behavior. ς is a scaling
factor that quantifies how rapidly ϑ changes in each iteration.
We limit ϑ ↔ [φ, 100φ], satisfying the requirement for h
to be a RT-CBF, with ϑ only taking values in a compact
subset A ⇑ R>0. For this choice of the lower bound, the AT-
CBF is equivalent to the standard CBF, used in the Collision
Avoidance mode, at its most conservative behavior, and as the
human is attentive to the mission, they are rewarded with a
more relaxed constraint. The values of ς and φ depend on the
experiment design, and in this work they were tuned in pilot
experiments based on the testers’ feedback during their trials.
The nature of human-in-the-loop trials limits the number of
runs feasible within this study, thereby constraining our ability
to perform exhaustive parameter tuning and comprehensive
sensitivity analysis. For all 21 participants, ς = 5 and φ = 0.1
were used. By normalizing ϑ (i.e. dividing over φ), we obtain
the operator’s accumulated attention during the experiment.
Figure 2 validates the choice of ς = 5 for two participants
with very different gaze patterns: participant 08, who spent
longer time looking away from the Operator Station LAOI,
and participant 17, who looked back and forth between LAOIs
more frequently.
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Fig. 2. Attention over time for participants 08 and 17. ω → R>0 is the fixed
constant for standard CBFs and the lower bound for ε with AT-CBFs.

In this work, we assume that at each time t > 0, there
always exists ϑ ↔ R>0 such that the QP in (3)-(4) remains
feasible whenever h(x) > 0 and that ϑ ↔ A. Formally proving
that the AT-CBF condition holds uniformly over a compact set
is left as future work.

V. ISR EXPERIMENT DESCRIPTION

The performance of the AT-CBFs is tested in an updated
version of the ISR simulator [6]. The simulator features a full-
scale electric vertical takeoff and landing (eVTOL) aircraft
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cabin. The cabin includes seating with seatbelts, touchscreen
interfaces, simulated radio communications equipment, and
large windows. Through these windows, participants observe a
wall-to-ceiling projection of the external environment provided
by Microsoft Flight Simulator. This setup enables high-fidelity
immersion while maintaining experimental control, offering a
level of realism that goes well beyond typical “game-like”
experiences. Figure 3 shows the center panel of the ISR
Operator Station user interface. The center panels shows a
map of the surveillance area with the position of the user
aircraft and the target ships. An alerts panel on the right
side of the interface shows messages from the AP to the
operator, and a score panel to the left shows time elapsed and
damage. The aircraft is modeled as a second order unicycle,
as the mission occurs at a constant altitude. The ships are
initialized at random positions and do not move. We note
that the initial conditions and seeds were selected to be well-
separated from constraint boundaries and, in practice, did
not lead to infeasibility or multiple simultaneously active
constraints during runtime.

Fig. 3. ISR Operator Station Map. Participants identify ships by overflying
them with their long-range sensor (dashed semicircle in front of the aircraft),
then classify the ship’s weapons by overflying them with the high-resolution
sensor (solid circle around the aircraft). In the Collision Avoidance and
Adaptive Collision Avoidance behaviors, the AP displays and when necessary
intervenes to fly this Collision Avoidance Path that avoids enemy Weapon
Engagement Zones.

A. ISR Task

The mission of the joint human-AP team aboard the ISR
aircraft is to identify and classify ships in the assigned
surveillance area. On the map, unclassified ships are displayed
in yellow, neutral ships in purple, and enemy ships in red.
The enemy ships have a red circle that represents their WEZ.
Once an enemy ship is found, the human must report its ID
and the size of its WEZ via radio. At the beginning of the
round, all ships are shown as yellow and must be classified
by flying within sensor range of the ship. The AP behavior is
an independent variable, representing specified combinations
of control framework, autonomy, and interaction capabilities:

a) Waypoint: Baseline behavior. The AP defaults to
flying a pre-determined navigation pattern but deviates to any
arbitrary waypoint input by the operator. Without any operator
input and regardless of the position of enemy ships, the AP
flies one of two programmed search patterns: 1) Hold which
resembles a rectangular orbit or 2) Ladder which stair steps
horizontal scans across the surveillance area.

b) Collision Avoidance: In addition to the waypoint
behavior, it also includes evasive maneuvers to avoid overflight
of enemy WEZs. The AP accepts all operator waypoints as
long as they are not inside a WEZ. The Collision Avoidance
behavior is implemented using standard CBFs. The CBFs
model the WEZ of each enemy according to its position and
size, and forces the aircraft controller to avoid overflight of
these enemies. However, ϑ is fixed and limits the maximum
rate at which the aircraft can approach the WEZs, which can
lead to an overly conservative behavior.

c) Adaptive Collision Avoidance: The AP continues its
search pattern and proactively executes evasive maneuvers,
however, the speed and aggressiveness of the AP continuously
adapt to the operator’s attention state. The Adaptive Collision
Avoidance behavior employs AT-CBFs to create an AP that
adapts to the operator’s level of attention during the mission.

In this letter, we show how human-autonomy team mission
performance (operationalized by aircraft damage and mission
duration) can be improved by adapting to the human’s real-
time physiological state.

B. Experimental Design

The study employs a full factorial within-subjects design
with two independent variables: task load (low and high) and
AP behavior (Waypoint, Collision Avoidance, and Adaptive
Collision Avoidance). At the low task load level, participants
face 15 targets in their surveillance area, and the AP flies
a simple but less efficient Hold search pattern. At the high
task load level, participants face 20 targets and the AP flies a
more complicated Ladder search pattern. The Ladder and Hold
patterns are based on real-world operational techniques. While
the Hold pattern maintains a predictable rectangular orbit, the
Ladder pattern involves step-down horizontal sweeps across
the surveillance area, enabling broader coverage but requiring
increased operator supervision to avoid incurring damage. The
selection of 15 and 20 targets to represent low and high
task load levels, respectively, was informed by prior studies
and further validated by statistically significant differences
in workload scores (p < 0.01). Balanced Latin Square [21]
sequencing is used to minimize learning and other carry-over
effects.

Dependent variables include two mission performance met-
rics: safety (operationalized as aircraft damage) and mission
duration. Two additional dependent variables capture the hu-
man’s physiological state: workload and attention. Workload
is measured via the NASA Task Load Index (TLX), a multi-
dimensional rating scale that assesses workload based on a
weighted average of ratings on six subscales [22]. Finally, we
measure human attention using eye gaze, measured with eye-
tracking glasses.
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C. Participants
The human subjects research protocol was approved by the

Georgia Institute of Technology Institutional Review Board.
Participants were recruited from the university community and
compensated for their time. The results reported in this paper
are those of 21 participants (33% female). Five participants
had piloting experience (private pilot license or above), and
10 had an undergraduate- or graduate-level AI education.
Participants without prior ISR experience were recruited to
minimize compensatory strategies and better isolate the effects
of AP behavior on mission performance.

Participants were first trained on the ISR simulator, where
they were shown a video of the simulator in action, and then
given hands-on training. As part of the hands-on training,
participants completed two example scenarios: one with the
Waypoint AP and a second with the Collision Avoidance AP.

VI. RESULTS

A. Workload
As shown in Figure 4, participants reported higher workload

in the high task load scenarios, validating the experimental
design. Our NASA TLX analysis used equal weights for each
subscale in the composite workload and a scale of 1 to 100. As
for AP behaviors, workload was reported in order of highest
to lowest as 1) Waypoint, 2) Adaptive Collision Avoidance, 3)
Collision Avoidance. Adaptive Collision Avoidance success-
fully reduces workload as compared to the baseline. However,
it still demands more vigilance from the operator than the
Collision Avoidance behavior, as expected given the higher
speeds and maneuverability of the aircraft. It is unclear if this
workload difference would dissipate over time as the crew
became more accustomed to the AP behavior.

Fig. 4. Distribution of participant composite workload scores for each AP
mode, for high and low task load conditions.

The Argus Science ETVision eye tracker recorded measures
of pupil diameter, gaze location, and fixation duration. In terms
of pupillometry, each participant has a unique physiological
baseline, so data were analyzed individually. Pupil dilation has
been shown to correlate with increased cognitive workload
in aviation contexts [13]. During the study, 19 out of 21
participants experienced an increase in pupil diameter at high
task load, also validating our experimental design.

B. Mission Safety
The mission goal is to identify all targets and report all

enemy targets, while minimizing damage and in the mini-
mum possible time. This becomes harder to accomplish with
the larger number of targets and the more complex search
pattern in the high task load scenarios as shown in Figure
5. Figure 5 shows that without any CBF mechanisms, the
participants were likely to incur damage, especially in high
task load situations. Meanwhile, the standard CBF and AT-
CBF mechanisms in the Collision Avoidance and Adaptive
Collision Avoidance behaviors almost entirely eliminate air-
craft damage. The outlier points correspond to occasions when
the participant changed the destination waypoint at the edge
of a WEZ boundary at maximum speed. These corner cases
caused the quadratic program solver to fail to find a solution
to (3), or its CBF equivalent. This is a challenging area for
the AP to provide safety in, and it is expected that with
experience, operators would learn to exercise caution in these
areas of operation. We also note that participants were not
provided visual cues of CBFs versus AT-CBFs being active,
as we did not want to influence their strategy. Ultimately,
it is not possible to guarantee a completely fail-safe system
in complex operational representative environments, despite
theoretical achievements in simplified environments.

Fig. 5. Distribution of aircraft damage across all participants for each AP
mode, for high and low task load conditions.

C. Mission Duration
Figure 6 shows the mission times for each AP behavior

for both low and high task load scenarios. For the Waypoint
behavior, the mean mission duration was 229.2 seconds, with
a median of 217.4 seconds. For the Collision Avoidance
behavior, the mean mission duration was 367.4 seconds,
with a median of 357.0 seconds. For the Adaptive Collision
Avoidance behavior, the mean mission duration was 241.3
seconds, with a median of 223.4 seconds.

A linear mixed-effects model confirmed a statistically sig-
nificant effect of AP behavior on mission duration (p < 0.001).
Post hoc pairwise comparisons indicated that mission dura-
tions for the Waypoint AP behavior were significantly shorter
than those for the Collision Avoidance AP (p < 0.001),
and Collision Avoidance AP durations were significantly
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longer than those for the Adaptive Collision Avoidance AP
(p < 0.001). There was no significant difference in mission
duration between Waypoint and Adaptive Collision Avoidance
(p = 0.730).

Average mission duration was greater under high task
load (mean 326.5 seconds, median 311.2 seconds) than low
task load (mean 232.1 seconds, median 216.0 seconds). This
difference was highly statistically significant according to a
Mann-Whitney U test (W = 853, p < 0.001).

Fig. 6. Distribution of mission duration across all participants for each AP
mode, for high and low task load conditions.

VII. CONCLUSION

Prior studies found that standard CBF controllers im-
prove safety, but worsen mission duration indicating a safety-
efficiency trade-off. Working under the premise that automated
safety mechanisms are necessary but not sufficient for opti-
mizing human-autonomy team performance [3], we propose
a novel formulation of CBFs, Attention-Tunable CBFs, that
use real time information of the human onboard in the safety
constraint. The results of a human-in-the-loop study with
21 externally recruited participants show that the baseline
Waypoint behavior has the fastest mission duration but also
greatest risk of aircraft damage. The CBF-based Collision
Avoidance behavior improves safety but increases average
mission time by 60%. Meanwhile, the AT-CBF-based Adaptive
Collision Avoidance behavior mitigates this time-safety trade-
off, maintaining the safety of the Collision Avoidance behavior
while only increasing the average mission duration by 5% with
respect to the baseline.

In conclusion, AT-CBFs enabled safe and efficient jointly
controlled ISR by a non-pilot operator teamed with an AP
in a specialized aviation mission. This letter shows that it
is possible to assure safety while maintaining efficiency of
operations. These findings have potentially broad implications
for the future of autonomy in and beyond specialized aviation
missions. Future work could focus on replacing the binary
human attention variable with a more complex metric of
attention, using additional physiological measures.
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