
Newton-Raphson Flow for Aggressive Quadrotor Tracking Control

Evanns Morales-Cuadrado, Christian Llanes, Yorai Wardi, and Samuel Coogan

Abstract— We apply the Newton-Raphson flow tracking con-
troller to aggressive quadrotor flight and demonstrate that it
achieves good tracking performance over a suite of benchmark
trajectories, beating the native trajectory tracking controller in
the popular PX4 Autopilot. The Newton-Raphson flow tracking
controller is a recently proposed integrator-type controller that
aims to drive to zero the error between a future predicted
system output and the reference trajectory. This controller
is computationally lightweight, requiring only an imprecise
predictor, and achieves guaranteed asymptotic error bounds
under certain conditions. We show that these theoretical ad-
vantages are realizable on a quadrotor hardware platform. Our
experiments are conducted on a Holybrox x500v2 quadrotor
using a Pixhawk 6x flight controller and a Rasbperry Pi
4 companion computer which receives location information
from an OptiTrack motion capture system and sends input
commands through the ROS2 API for the PX4 software stack.

I. INTRODUCTION

Recent years have seen powerful new quadrotor flight
controllers like the Pixhawk Series [1] reach the market,
enabling fast and off-the-shelf development for researchers
and hobbyists. Substantial research considers LQR control
[2], [3], model predictive control [4], and differential flatness
approaches [5], [6]. Robust control for quadrotors has also
been explored using H1 approaches in [7]–[9]. Moreover,
approaches which do not require linearization of the system
dynamics such as backstepping have been explored in [9],
which also utilizes H1 for disturbance rejection. However,
while powerful, many of the controllers mentioned previ-
ously are computationally complex; require advanced knowl-
edge of the reference input and its derivatives; or require
detailed knowledge of the nonlinear dynamic model and its
parameters. The result is that there emerges a practical state-
of-the-art that is largely tethered to advanced PID control
methodologies such as [10], and is generally divorced from
the true state-of-the-art in the research literature [11].

In this paper, we present an integrator-type controller
for aggressive quadrotor trajectory tracking. The controller
has its roots in the Newton-Raphson method, an iterative
numerical method for finding the zeros of a nonlinear func-
tion. Our control methodology requires a state predictor that
approximates the state of the system at some future horizon
T given the system’s current state and input. Then, a fluid-
flow variant of the Newton-Raphson method updates the

This work was supported in part by the NASA University Leadership
Initiative (ULI) under grant 80NSSC20M0161 and by the National Science
Foundation under grants #1749357 and #1924978.

The authors are with the School of Electrical and Com-
puter Engineering at the Georgia Institute of Technology,
{egm,christian.llanes,ywardi,sam.coogan}@gatech.edu.
S. Coogan is also with the School of Civil and Environmental Engineering.

Fig. 1. Frames from overhead videos of a quadrotor per-
forming lemniscates and circles using the proposed Newton-
Raphson flow controller with the trajectories overlaid.

control input via a tunable integration update speed with
the goal of driving to zero the error between the predicted
future state and the reference trajectory. The result is a
computationally lightweight feedback control scheme that
achieves remarkable asymptotic tracking performance. In
examples, we use a predictor based on linearized quadrotor
dynamics and zero-order-input-hold, which requires only
knowledge of the vehicle mass and gravitational constant and
is comparable to the model information typical in PID-based
control. We show that this simple predictor is remarkably
effective, which emphasizes that the power of the proposed
controller is in the combination of the Newton-Raphson flow
and a reasonable, but not necessarily perfect, predictor.

One challenge of integrator-type control strategies is
avoiding the integrator wind-up phenomenon that can lead
to large transient overshoots in tracking performance or
commanded inputs that exceed real-world actuator limits.
Simple thresholding schemes can mitigate these issues but
often result in abrupt changes to the inputs that degrade
tracking performance. To mitigate these challenges, we incor-
porate an integral control barrier function into our controller
architecture to keep control signals within acceptable limits
based on the theory developed in [12]. The nonlinear barrier
formulation prescribes the minimal alteration to the nominal
Newton-Raphson flow required to achieve an acceptable con-
trol signal and, computationally, is easily applied as a post-
processing step in the Newton-Raphson control update loop.
The result is a controller that retains the desirable asymptotic
tracking behavior of the Newton-Raphson controller while
smoothly attenuating undesirable transients.

The proposed method is computationally comparable to
PID control, requires limited knowledge of the true system
dynamics, and includes few controller parameters, making

it easy to tune. Indeed, the same parameter values have
been shown to work well over a range of particular control
applications. Lastly, we show that the proposed control
strategy outperforms, sometimes dramatically, the standard
PX4 trajectory tracking algorithm, which itself is a state-of-
the-art cascaded PID feedback control architecture that uses
a nonlinear mapping from desired accelerations to desired
thrust and attitude based on geometric control techniques
[13].

There exists a body of work developing the Newton-
Raphson tracking controller technique in various forms and
guaranteeing asymptotic error bounds under certain condi-
tions [14]. This work is the first to successfully apply the
Newton-Raphson flow controller to a real-world underac-
tuated and open-loop unstable nonlinear plant, namely, the
6-DOF quadrotor, and we further demonstrate this novel
application with a suite of hardware experiments1.

The rest of this paper is organized as follows. We introduce
the continuous-time Newton-Raphson flow controller and its
tracking error bounds in Section II. The quadrotor model
and the predictor necessary for Newton-Raphson control
are developed in Section III. Section III-B presents control
barrier functions used to guarantee input safety limits. Hard-
ware experiments are presented and analyzed in Section IV.
Finally, Section V carries our closing remarks.

II. CONTINUOUS-TIME NEWTON-RAPHSON TRACKING
CONTROLLER

The material presented in this section is contained in [14].

A. Newton-Raphson Flow Derivation
The standard Newton-Raphson method for computing

roots of algebraic functions g : Rm ! Rm is derived from
the first-order Taylor expansion as an iterative root-finding
algorithm of the form

un = un�1 �
✓
dg

du
(un�1)

◆�1

g(un�1), (1)

n = 1, 2, . . ., where the function g(·) is assumed to be
continuously differentiable. This simple iterative method
can be reformulated as a Newton-Raphson output-tracking
controller which aims at driving the error between a plant’s
output and a given reference target to zero. To do this, we
restructure the algorithm with a memoryless plant relating
the input u to its corresponding output y by the equation
y = g(u), to be run iteratively according to the formula

un = un�1 +

✓
@g

@u
(un�1)

◆�1 �
r � g(un�1)

�
. (2)

To place this method in a temporal context of continuous
time, consider u(t) and y(t) as t-dependent quantities for all
t � 0. Suppose that the control algorithm (2) executes a step
every �t seconds for a given �t > 0. Define un = u(n�t),
n = 0, 1, . . ., subtract un�1 from both sides of (2), scale
the resulting Right-Hand Side (RHS) of (2) by �t, and take

1Our code and video demonstrations can be found at: https://
github.com/gtfactslab/MoralesCuadrado_ACC2024

�t ! 0. This gives the following differential equation for
the control u(t),

u̇(t) =

✓
@g

@u

�
u(t)

�◆�1 �
r � g(u(t)

�
. (3)

Eq. (3) defines the Newton-Raphson flow of Eq. (2). Under
fairly general assumptions, it provably drives the error r �
y(t) to zero [15]. In the subsequent discussion we expand
this tracking controller in two ways: the target is no longer
a constant but a time-dependent function r(t), and the plant
subsystem is not a memoryless nonlinearity but a dynamical
system modeled by an ordinary differential equation.

B. Tracking Controller for Dynamical System with Time-
dependent Reference Target

Consider a dynamical system with the state equation

ẋ(t) = f(x(t), u(t)), t � 0 (4)

and the output equation

y(t) = h(x(t)), (5)

with the state variable x(t) 2 Rn, input u(t) 2 Rm and
output y(t) 2 Rm. Note that both the input u and the
output y must be of the same dimension. The function
f(x, u) is assumed to be continuous in (x, u), continuously
differentiable in x for a given u, and to satisfy standard
sufficient conditions for a unique, continuous, piecewise-
continuously differentiable solution x(t), t 2 [0,1) for
a given initial condition x0 2 Rn and every bounded,
piecewise-continuously differentiable input trajectory u(t)
such as assumed in [14]. Also assume that the function
h(x) is continuously differentiable. The reference trajectory
r(t) 2 Rm is assumed to be bounded, continuous, and
piecewise-continuously differentiable in t 2 [0,1).

Due to the dynamic nature of the system, it is no longer
true that x(t) hence y(t) are functions only of u(t) as in the
aforementioned memoryless case. However, it is true that
for a given T > 0 and t 2 R, x(t + T) hence y(t + T)
are functions of x(t) and {u(⌧) : ⌧ 2 [t, t + T]}. But
the future outputs u(⌧), ⌧ 2 (t, t + T] cannot be assumed
to be known at time t, therefore we predict the output
y(t + T) at time t for the sake of extending the Newton-
Raphson controller from Eq. (3) to the current dynamic
setting. Such an output predictor is by no-means unique,
and it is reasonable to require it to be functionally dependent
on (x(t), u(t)). Formally, the predicted output, denoted by
ŷ(t+ T), has the form

ŷ(t+ T) = ⇢(x(t), u(t)) (6)

for a suitable function ⇢ : Rn ⇥ Rm ! Rm, and we only
require that the function ⇢ be continuously differentiable in
(x(t), u(t)). It need not have an analytic expression but has to
be computable by simulation or numerical means. We label
the function ⇢ the prediction function.

With this prediction function we extend the controller from
(3) to the following equation,

u̇(t) =

↵

✓
@⇢

@u
(x(t), u(t))

◆�1✓
r(t+ T)� ⇢

�
x(t), u(t)

�◆
,

(7)

a word on the role of ↵ will be said shortly. Equations (4)
and (7) define the closed-loop system.

A practical choice of the predictor is to balance precision
with computational efficiency, where the importance of the
latter is in the fact that ⇢(x(t), u(t)) has to be computed
in real time as a part of the feedback law. In the literature
of the Newton-Raphson flow method, both model-based [14]
and neural-network based predictors [16] and [17] have been
used. In this paper we err on the side of computational
efficiency by proposing a predictor that is computable by
an explicit formula and has no need for on-line solution of a
differential equation. The predictor function is based on the
linearized dynamics of our system with a zero-order hold
on the input for the duration of the lookahead period of
⌧ 2 [t, t + T]. To the best of our knowledge, this is the
first time the Newton-Raphson fluid flow tracking controller
has been paired with a closed-form predictor for nonlinear
systems.

The role of large ↵ in Eq. (7), called the controller’s
speedup, is twofold: possibly stabilizing the closed-loop
system if need be, and reducing the asymptotic tracking error.
To explain the latter point, define the asymptotic prediction
error by ⌫1 := lim supt!1 ||ŷ(t) � y(t)||, define ⌫2 :=
lim supt!1 ||ṙ(t)||, and denote the asymptotic tracking error
by lim supt!1 ||r(t) � y(t)||. According to [14], under
certain stability conditions,

lim sup
t!1

||r(t)� y(t)|| ⌫1 +
⌫2

↵
. (8)

Moreover, [14] shows that other errors and system distur-
bances can be lumped with ⌫2 in (8) thereby reducing their
corresponding upper bound on the asymptotic tracking error
by a factor of ↵

�1. Despite Eq. (8) demonstrating that
asymptotic prediction error does not display such a behav-
ior, we choose a predictor that emphasizes computational
efficiency perhaps at the expense of prediction error and still
obtain competitive results with commonly used, established
predictors.

III. QUADROTOR MODEL AND PREDICTOR

The Newton-Raphson flow controller requires a predictor
for the system. In this section, we propose a simple predictor
constructed from a small-angle approximation of the quadro-
tor dynamics. The motivation for choosing this predictor
is that this simplified modeling assumption is common
for tuning PID controllers and for developing controllers
appropriate for nonaggressive tracking [11]. As we will see
below, even with this imperfect predictor, we achieve notable
tracking results. A full comparison of possible predictor

methods, including those using high fidelity nonlinear or
neural network models, is the subject of ongoing work.

We take as the system state

x =
⇥
px py pz Vx Vy Vz � ✓

⇤T 2 R9 (9)

where (px, py, pz) is the quadrotor’s 3D position in a fixed
world frame, (Vx, Vy, Vz) is the quadrotor velocity in this
frame, and (�, ✓,) are the quadrotor roll, pitch, and yaw
angles.

The system input is u =
⇥
u⌧ up uq ur

⇤T 2 R4, con-
sisting of three angular velocities (up, uq, ur) and net thrust
u⌧ through the center of mass in the direction perpendicular
to the plane of the rotors. The PX4 control architecture
includes an off-board control mode that converts these inputs
directly to commanded rotor velocities for the four rotor
motors.

We take as the system output

y = Cx =
⇥
px py pz

⇤T 2 R4 (10)

for appropriately defined binary matrix C 2 R4⇥9.

A. Simplified Predictor Dynamics

Even though we wish to control the quadrotor in aggres-
sive regimes, to build a computationally simple predictor,
we approximate the dynamics with a classical small-angle
approximation and linearize at hover. The resulting dynamics
used for the predictor are

(ṗx, ṗy, ṗz) = (Vx, Vy, Vz) (11)

(�̇, ✓̇, ̇) = (up, uq, ur) (12)

(V̇x, V̇y, V̇z) =
⇣
�g�, g✓, u⌧

m
� g

⌘
(13)

where m is the quadrotor mass and g is the acceleration due
to gravity. The simplified dynamics for prediction are linear
and of the form ẋ = Ax + Bu for appropriate matrices A

and B.
Given state x(t) and input u(t) at time t, we take as the

predicted state at time t + T the solution to the simplified
dynamics

x(t+ T) = e
AT

x(t) +

Z T

0
e
A(T�⌧)

Bu(t)d⌧ (14)

= Ãx(t) + B̃u(t) (15)

for appropriate Ã and B̃ that depend only on T and are
computable offline in closed-form. Note that, in constructing
a predictor, we do not know the value of u(⌧) during the
duration of the lookahead period ⌧ 2 [t, t+ T], and instead
only know its value at the beginning of the period ⌧ = t.
Therefore, we adopt a zero-order hold on the input, assuming
it remains constant over the prediction horizon. We therefore
obtain the final form for the predictor as

ŷ(t+ T) = ⇢(x(t), u(t)) = CÃx(t) + CB̃u(t) (16)

where Ã, B̃, and C are fixed throughout and computed as
described above.

B. Control Constraints via Integral Control Barrier Func-
tions

In this section, we summarize and build on recent work
proposing instead to use integral control barrier functions
(I-CBFs), a variant of the popular control barrier function
method enforcing forward invariance. As originally devel-
oped in [18], control barrier functions provide a method to
guide control inputs from leading to potentially unsafe states
towards the most similar safe input. Integral CBFs, proposed
in [12], extend classical CBFs to the case of dynamically
defined control laws, that is, control laws that update the
rate of change of the input u̇ rather than the input u directly.

In our setting, we apply an I-CBF to mitigate integrator
wind-up and transient overshoot as follows.

We first rewrite (7) as u̇(t) = (x(t), u(t), t) for appro-
priately defined . We then proceed by instead considering
the modified dynamically defined control law

u̇(t) = (x(t), u(t), t) + ⌘(t) (17)

where ⌘(t) is the minimal intervention term designed below
to achieve desired performance. We consider a given scalar-
valued barrier function b(x, u) of state x and input u defining
allowed state-input pairs: b(x, u) � 0 indicates that input u
is allowed at state x, while b(x, u) < 0 implies input u is
not allowed at state x.

Then, following the methodology of [12], we insist that
⌘(t) be chosen so that

ḃ(x(t), u(t), ⌘(t)) + �(b(x(t), u(t)) � 0 (18)

for some fixed increasing and Lipschitz function � satisfying
�(0) = 0, where

ḃ(x, u, ⌘) =
@b

@x
(x, u)T f(x, u) +

@b

@u
(x, u)T ((x, u, t) + ⌘).

(19)

As was developed in [12], we can take in particular

⌘(t) =

(
�(t)

||⇠(t)||2 ⇠(t), if �(t) > 0

0, if �(t) 0
(20)

where

⇠(t) =

✓
@b

@u
(x(t), u(t))

◆T

(21)

�(t) = �

@b

@x
(x(t), u(t))f(x(t), u(t)) (22)

+
@b

@u
(x(t), u(t)) (x(t), u(t), t) + �(b(x(t), u(t)))

!
.

(23)

IV. HARDWARE EXPERIMENTS

We test the proposed Newton-Raphson flow tracking con-
troller with a Holybro x500v2 quadrotor UAV with a Holybro
Pixhawk 6X flight controller on a mini-base port. Onboard
the quadrotor, we installed a Raspberry Pi 4 Model B which
is responsible for running the algorithm and publishing

Algorithm 1 Newton-Raphson Flow and I-CBFs for Rate
Control
Input: x(t) = current system state, u(t) =current input,
r(t + T) = reference input T -units in the future, �t =
controller update period.
Initialize:
RateMin=�0.8, RateMax=0.8, . angular rate limits
� = 1.0, . CBF parameter
↵ = 30, T = 0.8, . Newton-Raphson control parameters
Output: u(t+�t), . input to be applied at next controller
update step

(u⌧ , up, uq, ur) u(t) . Current input components

(˜̇u⌧ ,
˜̇up,

˜̇uq,
˜̇ur)

✓
@⇢

@u
(x(t), u(t))

◆�1✓
r(t+ T)�

⇢
�
x(t), u(t)

�◆

. ⇢ from (16)

for s 2 {p, q, r} do
if us � 0 then

⌘ min{� · (rateMax� us)� ˜̇us, 0}
else

⌘ max{�� · (�rateMin� us)� ˜̇us, 0}
end if
u̇s ˜̇us + ⌘ . Apply integral control barrier to each

commanded rate
end for
u̇

⇥
u̇⌧ u̇p u̇q u̇r

⇤T

u(t+�t) = u(t) + ↵ · u̇ ·�t

commands to the flight controller through serial connection.
SSH protocol is used to interact with this onboard computer.
Note that we first test this controller in the Gazebo simulator
with advanced DART physics engine [19].

Command messages are published through the ROS2 API
native to the PX4 flight stack. We use the latest (currently
beta) version of the PX4 flight stack which utilizes the
µXRCE-DDS middleware as the bridge between uORB and
ROS2 topics. The Raspberry Pi receives position messages
from an OptiTrack motion-capture system which are re-
layed as /fmu/out/vehicle odometry messages to the flight
controller.

In addition, we use an FrSky R9MX radio receiver
connected to the Pixhawk board through SBus alongside
an FrSky Taranis radio control transmitter to switch the
quadrotor in and out of offboard control mode and for flight
safety switches.

The ROS2 control algorithm node publishes the computed
input, i.e., rate and thrust commands, at 100Hz. On average,
over all experiments, the average computation time for the
Newton-Raphson flow controller with I-CBF contraints is
7.138⇥10�5±2.971⇥10�5 seconds, well within the control
update period.

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-1
-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5
5

-0
.4
5

-0
.3
5

-0
.2
5

-0
.1
5

-0
.0
5

0
.0
5

0
.1
5

0
.2
5

0
.3
5

0
.4
5

0
.5
5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-1
-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Fig. 2. Comparison of five flight trajectories (red) with the reference trajectories (blue). Top row shows results using the
Newton-Raphson flow control and the bottom row shows results using the baseline PX4 controller. Axes units are meters.
The periods of circular and lemniscate trajectories are 3.14 and 6.28 seconds, respectively. In all cases, the Newton-Raphson
flow controller outperforms the baseline controller, evaluated with the root-mean-square error, as reported in Table I.

Fig. 3. The Holybro x500v2 quadrotor used for hardware
experiments. It is fitted with tracking markers, a radio re-
ceiver, and an on-board Raspberry Pi with ROS2 for control
computations. The quadotor weighs 1.69 kg and is 0.5m
diagonally.

A. Newton-Raphson Flow Controller Performance and Com-
parison

In this section we compare the performance of our
Newton-Raphson flow controller with a well-tuned PID-
based baseline controller native to the PX4 flight stack [13].

We test both controllers with five reference trajectories:
vertical circle, horizontal circle, horizontal lemniscate, verti-
cal tall lemniscate, and vertical short lemniscate. The circular
trajectories have periods of 3.14 seconds while the lemnis-
cates have periods of 6.28 seconds. The results are shown
in Figure 2. The root-mean-squared error (RMSE) of the
tracking trajectory is reported in Table I. We neglect the
initial transient portion of flight for Figure 2 and Table I to
focus our attention solely on the trajectory tracking portion
of flight. In all cases, the Newton-Raphson flow controller
outperforms the baseline controller. Some of the high-error

trajectories for the baseline are due to the position of the
quadrotor lagging behind the reference, which causes high
error not necessarily evident in the plots of Figure 2. Finally,
Figure 4 shows an example of the effects of the I-CBF
constraints. In particular, it is seen that the roll rate and pitch
rates for the tracking of the horizontal circle are maintained
within the ±0.8 rad/s range of allowable values.

TABLE I: Newton-Raphson vs Baseline RMSE

Trajectory Newton-Raphson Baseline
Vertical Circle 0.051 0.26644

Horizontal Circle 0.16834 0.61125
Horizontal Lemniscate 0.15453 0.18775

Vertical Short Lemniscate 0.045291 0.14833
Vertical Tall Lemniscate 0.096611 0.22519

The efficacy of the Newton-Raphson controller is further
exemplified when we speed up the lemniscate trajectories to
be twice as fast with a period of 3.14 seconds, as shown in
Figure 5. At this period, the tracking performance degrades
for both the Newton-Raphson controller and the baseline
controller, but the degradation of the baseline controller
is severe while the Newton-Raphson controller is able to
maintain the basic lemniscate shape. Table II displays the
root-mean square errors for the applications of the two
techniques to the two sped-up trajectories.

TABLE II: RMSE on Fast Trajectories

Trajectory Newton-Raphson Baseline
Vertical Tall Lemniscate 0.10508 0.27228

Vertical Short Lemniscate 0.12724 0.28747

0 200 400 600 800

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Roll and Pitch Rates Subject to Safety Constraints via
Integral CBFs. The rates can be seen to be smoothly limited
to a maximum absolute value of 0.8 rad/s.

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5
5

-0
.4
5

-0
.3
5

-0
.2
5

-0
.1
5

-0
.0
5

0
.0
5

0
.1
5

0
.2
5

0
.3
5

0
.4
5

0
.5
5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Fig. 5. Comparison of Newton-Raphson controlller (top row)
and Baseline controller (bottom row) on fast vertical lem-
niscate trajectories with period 3.14 seconds. The Newton-
Raphson controller approximately maintains the lemniscate
shape, while the baseline controller tracks poorly.

V. CONCLUSION

This paper investigates the application of a tracking con-
troller, recently defined and proposed by an author of this
paper, to a quadrotor having to follow a prescribed flight
trajectory. The tracking control in question is founded on
the Newton-Raphson method for solving algebraic functions,
output prediction, and a controller’s speedup [14]. Thus far,
the controller has been investigated by means of theory and
simulation, and this paper describes its first application to a
real system in a laboratory setting. We compare our proposed
Newton-Raphson flow controller to the native, highly-tuned
PID control of the PX4 autopilot stack. The Newton-Raphson
controller outperforms this controller in terms of lower root-
mean-squared tracking errors on all of the tested trajectories.

REFERENCES

[1] Pixhawk, “pixhawk series.” https://pixhawk.org/
products/, 2023. [Online; accessed 2023-09-22].

[2] L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar,
“Pid, lqr and lqr-pid on a quadcopter platform,” in 2013 International
Conference on Informatics, Electronics and Vision (ICIEV), pp. 1–6,
2013.

[3] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and
J. Guichard, “Lqr control for a quadrotor using unit quaternions: Mod-
eling and simulation,” in CONIELECOMP 2013, 23rd International
Conference on Electronics, Communications and Computing, pp. 172–
178, 2013.

[4] M. Bangura and R. Mahony, “Real-time model predictive control for
quadrotors,” in The International Federation of Automatic Control,
vol. 19, 2014.

[5] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, pp. 2520–2525, 2011.

[6] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor
trajectories using incremental nonlinear dynamic inversion and differ-
ential flatness,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 1203–1218, 2021.

[7] A. Mokhtari, A. Benallegue, and B. Daachi, “Robust feedback lin-
earization and gh1 controller for a quadrotor unmanned aerial vehi-
cle,” vol. 57, pp. 1198 – 1203, 09 2005.

[8] J. P. Ortiz, L. I. Minchala, and M. J. Reinoso, “Nonlinear robust h-
infinity pid controller for the multivariable system quadrotor,” IEEE
Latin America Transactions, vol. 14, no. 3, pp. 1176–1183, 2016.

[9] A. T. Azar, F. E. Serrano, A. Koubaa, and N. A. Kamal, “Backstepping
h-infinity control of unmanned aerial vehicles with time varying
disturbances,” in 2020 First International Conference of Smart Systems
and Emerging Technologies (SMARTTECH), pp. 243–248, 2020.

[10] Y. Kartal, P. Kolaric, V. Lopez, and F. Lewis, “Backstepping approach
for design of pid controller with guaranteed performance for micro-air
uav,” Control Theory and Technology International Journal, vol. 18,
no. 1, pp. 19–33, 2019.

[11] I. Lopez-Sanchez and J. Moreno-Valenzuela, “Pid control of quadrotor
uavs: A survey,” Annual Reviews in Control, vol. 56, p. 100900, 01
2023.

[12] A. D. Ames, G. Notomista, Y. Wardi, and M. Egerstedt, “Integral
control barrier functions for dynamically defined control laws,” IEEE
Control Systems Letters, vol. 5, no. 3, pp. 887–892, 2021.

[13] PX4, “Controller diagrams.” https://docs.px4.io/main/en/
flight_stack/controller_diagrams.html, 2023. [On-
line; accessed 2023-09-21].

[14] Y. Wardi, C. Seatzu, J. Cortes, M. Egerstedt, S. Shivam, and I. Buckley,
“Tracking control by the newton-raphson method with output pre-
diction and controller speedup,” International Journal of Robust and
Nonlinear Control, http://doi.org/10.1002/rnc.6976, 2023.

[15] Y. Wardi, C. Seatzu, M. Egerstedt, and I. Buckley, “Performance
regulation and tracking via lookahead simulation: Preliminary results
and validation,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 6462–6468, 2017.

[16] K. Niu, Y. Wardi, C. T. Abdallah, and M. Hayajneh, “A model-
free tracking controller based on the newton-raphson method and
feedforward neural networks,” in 2022 American Control Conference
(ACC), pp. 3254–3259, 2022.

[17] A. Kanellopoulos, K. G. Vamvoudakis, and Y. Wardi, “Predictive
learning via lookahead simulation,”

[18] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control, pp. 6271–6278,
2014.

[19] O. Robotics, “Gazebo physics.” https://gazebosim.org/
libs/physics, 2023. [Online; accessed 2023-09-28].

