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Abstract— We present a quantile regression method for
predicting future traffic flow at a signalized intersection by
combining both historical and real-time data. The algorithm
exploits nonlinear correlations in historical measurements, and
efficiently solves a quantile loss optimization problem using
the Alternating Direction Method of Multipliers (ADMM). The
resulting parameter vectors allow us to determine a probability
distribution of upcoming traffic flow. We use these predictions
to establish an efficient, delay-minimizing control policy for the
intersection. The approach is demonstrated on a case study
with two years of high resolution flow measurements.

I. INTRODUCTION

Despite the emergence of high-resolution sensing tech-
nologies in transportation systems, many traffic control ap-
proaches used in practice still fail to adequately leverage
real-time and historical measurements [1]. Current demo-
graphic and urbanization trends worldwide likely portend a
global over-congestion of roads in the coming years [2], [3],
raising the need of more optimized signal timing practices.
Although typical signalized intersections are often able to
accommodate moderate deviations from average traffic con-
ditions, they lack the ability to adapt to more significant
and uncommon variations in vehicle flows. Harvested real-
time data, analyzed in tandem with historical information,
provide a practical solution to this problem, as they enable
us to predict the future state of traffic and to modify the
intersection’s behavior accordingly.

Previous work has demonstrated the strong potential of
prediction-based control in a variety of traffic settings. Tools
such as ARMAX models or Kalman filtering have delivered
promising results in the framework of freeway traffic predic-
tions [4], [5]. Another recent contribution exploits low-rank
latent structure in historical traffic data to predict future flows
at intersections [6]. Highly correlated, low-rank components
are computed and used directly as linear regressors for the
prediction target. However, most models rely on pointwise
forecasting techniques and solely estimate a single (e.g. most
likely) future traffic condition. In systems displaying a high
degree of uncertainty, determining only the most probable
outcome is often not adequate for the implementation of an
effective and robust control strategy.

In this paper, we build on [6] and extend its capabilities
with the utilization of probability forecasting tools. We
particularly aim to predict future traffic flow at signaled
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Fig. 1: Aerial picture (top) and diagram (bottom) of the test site in Beaufort, South
Carolina, displaying all four approaches and their associated movements. Car flow
measurements are collected via stopbar, departure lane and advance sensors [8].

intersections and assign a probability of occurrence to several
ranges of possible flow values. Also, we seek to capture the
nonlinear relationships between past and future traffic flows,
and to exploit them in our procedure. As these predictions ul-
timately need to be coordinated with real-time measurements
we design a computationally inexpensive, time-efficient al-
gorithm by means of multiple quantile regression analysis.
Lastly, we present a direct application of our results in a
delay minimizing control policy.

We first present a dimensionality-reduction algorithm that
casts the flow measurements vectors onto a smaller set
of highly correlated components. Inspired by [7], which
seeks a quantile regression algorithm for wind and power
forecasting, we then project the reduced-size data to a non-
linear feature space through the application of radial basis
functions (RBF). Finally, we solve a quantile loss function
minimization problem in order to compute a set of regression
parameters and predict the quantiles of future traffic flow
using an input vector collected in real-time.

Section II presents the problem formulation. Section III
describes the methodology used to predict the quantiles of
future traffic flow from a set of training input and output.
Section IV demonstrates the practical benefits of our quantile
regression algorithm on the test site in Fig.1.



II. PROBLEM FORMULATION

We consider a traffic intersection with 4 different ap-
proaches: North Bound (NB), East Bound (EB), South Bound
(SB) and West Bound (WB). The intersection in Fig.1 used
for our study is a standard intersection located in Beaufort,
South Carolina. Each approach allows 3 distinct movements:
Through (T), Right Turn (RT) and Left Turn (LT). Thus,
there are L = 12 possible movements. As shown in Fig. 2,
traffic flows vary widely around the mean from day to day,
rendering average-based control suboptimal. Our goal is to
exploit historical data along with real-time measurements in
order to predict future vehicle flows. Then, we use these
predictions to adjust the signal timing control and better
accommodate the ensuing traffic conditions.

A probabilistic forecasting problem consists in determin-
ing the probability density function P(Y | X = x), of a
target random variable Y ∈ R, with x ∈ Rm denoting
the prediction’s covariates. In this work, x compiles past
traffic flows up to a given time for all L movements and y
designates flows at a future time for a specified movement.
We seek to characterize P by a set of q predicted quantiles
{ỹ(α1), ỹ(α2), . . . , ỹ(αq)}, where ỹ(αi) ∈ R is the predicted
αi-quantile for some αi ∈ [0, 1]. The number y(α) ∈ R
satisfying p(Y ≤ y(α)) = α is called the α-quantile for Y .

Suppose that at time 10:00, we wish to predict the total
traffic flow for movement NB-T over the next hour, 10:00–
11:00. Then, x contains traffic flows from 0:00 to 10:00 for
all movements, y designates the total flow for movement NB-
T between 10:00 and 11:00, and the set {ỹ(αi)}qi=1 contains
q predicted quantiles for y.

First, we establish an appropriate metric to gauge the
quality of a quantile-based regression. Let ρa(z) be the tilted
absolute loss function, defined as ρa(z) = max{az, (a −
1)z}. Assume the set S = {y1, y2, . . . , yn} to be a collection
of random outcomes for y. The quantity

q∑
i=1

n∑
j=1

ραi(ỹ
(αi) − yj) (1)

is minimized by setting ỹ(αi) as the true αi-quantile of S [9].
Due to this property, the tilted absolute loss function is the
metric of quality used in this paper for quantile regressions.

In Section III, using a set of n training input vectors
{xi}ni=1, with xi ∈ Rm, along with a set of training output
scalars {yi}ni=1, yi ∈ R, we develop an efficient algorithm
for predicting the αi-quantiles ỹ(αi), i = 1, 2, . . . , q, as a
function of an input vector x̂ ∈ Rm to minimize (1).

III. QUANTILE REGRESSION

We aim to exploit the fact that predictors and predictands
correlate in a nonlinear fashion. To that end, we first seek
a nonlinear transformation T : Rm → Rk from input
vector x ∈ Rm to a nonlinear feature vector T (x) ∈ Rk.
Then, our objective is to find a collection of estimation
parameters {θi}qi=1, with each θi ∈ Rk and such that
ỹ(αi) = θTi T (x). We further choose T as a composition
φ ◦H , where H : Rm → Rm′ is a dimensionality reduction

Fig. 2: Examples of flow measurements for two movements. The red line indicates
the average flow over the course of one day, the grey envelope shows the range of
historical flow measurements. We observe considerable variation around the mean.

operator and φ : Rm′ → Rk nonlinearly transforms the
lower-dimensionality predictors to the feature space. Below,
we will construct H as a Projection to Latent Structure
(PLS) mapping, also known as Partial Least Squares, and φ
using radial basis functions. Afterwards, we will show how
the Alternating Direction Method of Multipliers (ADMM) is
used for efficiently computing the set {θi}qi=1.

A. PLS Dimensionality Reduction

In the context of traffic predictions, a substantial number
of predictors must be considered. For instance, a 15-minute
sample interval of vehicle flows results in daily measurement
vectors with length 4× 24× L.

As nonlinear feature generation is a dimensionality-
sensitive task, we propose first to reduce the data size using
the Projection to Latent Structure method [10]. A PLS-based
approach seeks to project the data onto a smaller set of
orthogonal vectors in directions of high covariance between
X and Y . We denote by m′ the number of PLS components
to be computed, a user-specified tuning parameter.

Consider the set of training input vectors {xi}ni=1 and
outputs {yi}ni=1 consisting of historical traffic flow measure-
ments. Let us introduce the mean-centered matrices X̃ ∈
Rn×m and Ỹ ∈ Rn as

X̃ = [x̃T1 , · · · , x̃Tn ]T , Ỹ = [ỹ1, · · · , ỹn]T (2)

where

x̃i = xi − x̄ with x̄j =
1

n

n∑
i=1

(xi)j , (3)

ỹi = yi − ȳ with ȳ =
1

n

n∑
i=1

yi , (4)



(xi)j and x̄j denote the jth entry of xi and x̄ respectively.
PLS analysis is carried out iteratively: a pair (pi, si) of

principal component pi and score vector si is determined at
each iteration of the process, with pi ∈ Rm and si ∈ Rn. We
remove the contributions of newly computed components by
subtracting them from the data matrices between successive
iterations. The algorithm terminates once m′ component-
score pairs have been calculated.

We briefly describe a classic algorithm for PLS [10].
In order to determine the pair (p1, s1), we first find two
solutions v∗ ∈ Rn and w∗ ∈ Rm solving the following
optimization problem:

(v∗, w∗) = argmax
‖v‖2=1 ; ‖w‖2=1

(X̃v)T (Ỹ w) (5)

Observe that v∗ and w∗ are, respectively, the left and right
singular vectors of the product X̃T Ỹ . Then, we obtain a
score vector s1 by projecting X̃ onto the direction of high
covariance v∗ found in (5) and according to

s1 =
X̃v∗

‖X̃v∗‖2
. (6)

We note that only v∗ is involved in the computation of the
score vector. This necessary asymmetry is introduced to later
use the score vectors for regression.

Corresponding components p1 and q1 result from the
projection of the data matrices onto s1 and are given by

p1 = X̃s1 , q1 = Ỹ s1 . (7)

Lastly, we update X̃ and Ỹ to generate X̃2 and Ỹ2 applying

X̃2 = X̃ − s1pT1 , Ỹ2 = Ỹ − s1qT1 . (8)

We repeat this process with the updated data matrices X̃2,
Ỹ2 and find an additional pair (p2, s2), etc. This algorithm
is iterated to obtain m′ pairs.

Once a collection {(pi, si)}m
′

i=1 of component-score pairs
has been computed, we build the reduced-size matrix of
predictors S along with the loading matrix P and write

S = [s1, s2, . . . , sm′ ] , P = [p1, p2, . . . , pm′ ] . (9)

We denote by Si the ith row of the PLS score matrix S. We
see that PLS effectively fulfills its purpose of dimensionality
reduction by representing X ∈ Rn×m, which contains traffic
flow data, as a score matrix Sn×m

′
, m′ � m, so that each

training input xi ∈ Rm is instead represented by a score
vector Si ∈ Rm.

Now, assume an input x̂ is to be used for predictions. Its
PLS projection score vector Ŝ ∈ Rm′ must be calculated
with respect to the components of P . We find Ŝ applying

H
(
x̂
)

:= Ŝ = ((x̂− x̄)T (PT )†)T ∈ Rm
′
. (10)

(PT )† stands for the Moore-Penrose pseudoinverse of PT .

B. Nonlinear Features Generation
Now that we have characterized H to reduce the data

dimensionality, we define a nonlinear features transformation
φ. Among the most popular kernels employed in machine
learning for nonlinear features extraction is the RBF Gaus-
sian kernel [11]. Given a user-specified number of desired
nonlinear features, our method finds a set of data centers and
bandwidths used in the computation of the RBFs.

We initially use a k-means clustering algorithm on S to
generate a set of k data centers µi ∈ Rm′ along with their
associated bandwidth σi ∈ R, such that σi = median

l 6=i
‖µi −

µl‖2; i = 1, 2, . . . , k. We resort to a k-means++ multiple
seeding procedure [12]. We define the RBF vector φ(U) =
[φ1(U), φ2(U), . . . , φk(U)] ∈ Rk, with

φj(U) := e
‖U−µj‖2

2σj ; j = 1, 2, . . . , k (11)

being the RBF functions with center µj and bandwidth σj .
The stacked matrix Φ of feature vectors φ(Si) ∈ Rk is
constructed by evaluating the RBF vector for all Si and
concatenating them to obtain

Φ = [φ(S1) , φ(S2) , · · · , φ(Sn)]T ∈ Rn×k. (12)

Each row φ(Si) of Φ is equivalent to the nonlinear trans-
formation T applied to xi, and we thus define T (xi) :=
φ(H(xi)) = φ(Si), i = 1, 2, . . . , n.

C. Alternating Direction Method of Multipliers Algorithm
Recall the set of parameters {θi}qi=1 that we aim to

compute such that the αi-th quantile ỹ(αi) satisfies ỹ(αi) =
θTi T (x̂). Minimizing the absolute tilted loss function in order
to find {θi}qi=1 is a convex optimization problem [13]. We
reformulate (1) so as to include a l2-regularization parameter
λ and highlight the dependence of the predicted quantiles
ỹ(αi) = θTi T (xj) on the training inputs xj :

argmin
θi

q∑
i=1

n∑
j=1

ρi(θ
T
i T (xj)− yj) + λ

q∑
i=1

‖θi‖22
2

. (13)

We remark that this expression decouples along θi and
thus is q independent optimization problems. The main
advantage of the ADMM procedure is to provide an efficient
solution to (13) through a simultaneous computation of all
the estimators, as suggested in [7] and [14]. This procedure
is shown in the pseudo-code in Algorithm 1.

ADMM is an iterative process characterized by its step
size δ. We choose not to implement any stopping conditions
and introduce a fixed number of iterations T as an additional
tunable hyperparameter. Upon completion, the program re-
turns a matrix Θ ∈ Rk×q containing the desired estimators

Θ =

 | | |
θ1 θ2 . . . θq
| | |

 . (14)

Independent quantile regressions may be the source of math-
ematical aberrations, such as estimating two quantiles ỹ(αa)

and ỹ(αb), with ỹ(αa) < ỹ(αb) when αa > αb. Thus, we sort
the set of computed quantiles, as is done in [7].



Algorithm 1: Quantile Parameters Regression
Input : Set of training input traffic flows {xi}ni=1,

xi ∈ Rm, collected from 0:00 to TS on day
i, set of quantiles {α1, α2, . . . , αq} to be
computed with αi ∈ [0, 1], set of training
output traffic flows y ∈ Rn with yi collected
at time TP on day i (TP > TS), number of
PLS components m′, number of k-means
centers k, regularization parameter λ ∈ R,
ADMM step size δ ∈ R, number of
iterations T ∈ N

Output : Set of quantile estimators Θ ∈ Rk×q ,
k-means centers and bandwidths
{(µi, σi)}ki=1, matrix of PLS components P ,
mean-flow vector x̄

Initialize: A1 = 0n,q, Z1 = 0n,q, Θ1 = 0k,q
z1i denotes the ith column of Z1

Compute mean-centered, aggregated data matrices
X̂ and Ŷ , and mean flow vector x̄ from (2)-(4);
Compute score matrix S and component matrix P
using (5) to (9);
{(µi, σi)}ki=1 = k-means++(S, k);
Compute the stacked matrix of feature vectors Φ(S, k)
according to (11) and (12);
Find the Cholesky decomposition UUT of (ΦTΦ + λ

δ I);
for j = 1, 2, . . . , T do

Θj+1 = U−TU−1ΦT (y1q + Zj −Aj);
Z̃ = (ΦΘj+1 − y1q +Aj);
for each column z̃l of Z̃, l = 1, 2, . . . , q do

zj+1
l = max{0, z̃l− 1

δ
αl}+ min{0, z̃l− 1

δ
(αl−1)};

(this is a component-wise operation)
end
Aj+1 = Aj + ΦΘj+1 − y1q − Zj+1 ;

end
return Θ, {(µi, σi)}ki=1, P, x̄

IV. CASE STUDY

A. Traffic Flow Prediction

We now demonstrate the algorithm presented in Section
III using data collected at the test site in Fig.1 on weekdays
from March 2014 to September 2016. This is n = 591
days worth of traffic flow measurements for each movement.
Vehicle counts for all movements were sampled on 15-
minute intervals. To generate our training data, we aggregate
the measurements by calendar days into the set {xi}ni=1,
where xi ∈ R(12×4×TS) is a row-vector containing all flows
for all movements from 00:00 to TS in 15-minute intervals
on day i. Our objective is to forecast a set of flow percentiles
{ỹ(0.01), ỹ(0.02), . . . , ỹ(0.99)} for a specified movement, at
time TP , on a given day, TP > TS . The training set of
outputs {yi}ni=1 thus contains flow measurements for that
particular movement at time TP for all days in the data set.

For this case study, our goal is to make hourly predictions
for all movements based on historical flows, and we therefore
let TS vary from 10:00 to 23:00 in one-hour increments
on different days. At each time step, the target quantity
for prediction is the hourly flow for all movements in the

Algorithm 2: Quantile Predictions; Score Computation
Input : Test input flow x̂ ∈ Rm collected from 0:00 to

TS , test output flow ŷ ∈ R measured at time
TP (TP > TS), set of quantile estimators
Θ = [θ1 . . . θq] ∈ Rk×q , set of RBF centers
and bandwidths {(µi, σi)}ki=1, matrix of PLS
components P, mean-flow vector x̄

Output: Set of predicted quantiles {ỹ(α1), . . . , ỹ(αq)},
prediction score ε

Ŝ = H(x̂) = ((x̂− x̄)T (PT )†)T ;
T (x̂) = φ(Ŝ) according to (11);
for i = 1, 2, . . . , q do

ỹ(αi) = θTi T (x̂);
end
Sort {ỹ(α1), ỹ(α2), . . . , ỹ(αq)} in ascending order;
ε =

∑q
i=1 ραi(ỹ

(αi) − ŷ);
return {ỹ(αi)}qi=1, ε

time range [TS ; TS + 1 hour]. Algorithm 2 depicts the
procedure used to make predictions for a given TS . PLS
and ADMM hyperparameters were tuned empirically and
the following combination was found to yield consistent,
high-quality predictions: m′ = 7, λ = 0.00022, k = 250,
T = 150, δ = 0.5. Subtracting the mean flow from the
training and test outputs allows for a uniform selection of
parameters across the whole data set.

We further enhance the performance of the regression
algorithm by taking additional predictors into consideration.
Weather data such as temperature and precipitations are good
candidates. We used data extracted from an Automated Sur-
face Observation System (ASOS) located in Beaufort. Hourly
precipitation and hourly average temperature obtained from
0:00 to time TS are appended to the inputs {xi}ni=1 of traffic
flow measurements before each prediction. We found that
including weather conditions had a positive, although slight,
impact on the prediction quality.

Fig. 3 displays the 10th to 90th percentile range predicted
by the algorithm for the NB-RT movement on 3 distinct
test days. Both the 30th to 70th and 40th to 60th percentile
ranges are delineated with darker blue tones. The observed
flow, as well as the average flow across the entire data set,
are superimposed on the plots as a cyan solid line and a red
dotted line respectively. July 2nd 2015 fell right before a
long weekend holiday and experienced higher-than-average
traffic; February 24th 2015 was a day with lower-than-
average traffic due to winter weather; January 1st 2015 was
a nationwide US holiday, causing unusual traffic. We see in
the figure that the algorithm detects variations from average
conditions and accurately predicts impending traffic flow.
The results are also coherent in a statistical sense. Indeed, a
proper fraction of observed values — which should amount
to about 20% — fall outside of the 10 to 90 percentile range.

Two examples of Cumulative Distribution Functions
(CDF), extrapolated from the sets of predicted quantiles and
produced at peak traffic times, are presented in Fig. 4. The
algorithm displays greater certainty for below-average traffic
predictions, as their CDFs allocate more probability mass to



Fig. 3: Example of predictions for the NB-RT movements on three days with different
traffic profiles. Lightest blue indicates the predicted 10 to 90 percentile range, with
darker tones corresponding to the 30 to 70 and 40 to 60 ranges. The algorithm
successfully predicts traffic flows for all three days with different profiles.

specific ranges. For above-average traffic, the predictions are
conservative and predict more uniform traffic distributions.

To quantify the precision of our forecasts, we use the
tilted loss function in (1) to assign a prediction score
to each day using leave-one-out cross validation. The set
{ỹ(0.10), ỹ(0.30), ỹ(0.50), ỹ(0.70), ỹ(0.90)} of predicted quan-
tiles is used to compute these scores. On the same days
previously studied, we evaluate the sum of the prediction
scores for all movements from 10:00 to 23:00. As shown
in Table I, our quantiles outperform those extracted from
a percentile computation over the historical data set. The
average score for the data set decreases from 60× 102 with
historical quantiles to 38× 102 when using our predictions.

B. Delay-Optimizing Control using Predictions

To evaluate the practical benefits of our traffic prediction
algorithm, we consider using predictions to adjust control
actions at the intersection. Typically, a traffic intersection
controller supposes fixed arriving flow for each movement

Fig. 4: Plots of predicted cumulative distribution functions for two separate times expe-
riencing unalike traffic volumes. Steeper slopes indicate higher expected probabilities
of occurrence. Observed flows were accurately predicted by the algorithm.

Tilted loss score (×102)

Historical Predicted Improvement

February 24, 2015 253 51 202

July 2, 2015 230 45 185

January 1, 2015 444 35 409

Data Set Mean 60 38 22

TABLE I: Comparison of loss scores. The historical loss score is computed using the
quantiles of the historical data set. The data set mean is obtained via leave-one-out
cross validation for the entire data set. Hourly flows from 10:00 onward were chosen
as targets for prediction. We compute the total scores by summing the daily scores for
each movement. The predictions’ performance surpasses that of the historical quantiles.

and optimizes green splits, that is, the fractions of time each
movement is given a green signal to allow traffic flow [15].

The Synchro software is a software package used ex-
tensively by traffic engineers to compute optimal control
parameters at intersections. It employs a quantile-based ap-
proach for estimating delay for signalized intersections [16].
It assumes five different traffic arrival scenarios, generates the
optimal green times and cycle time for each one of them, and
averages the five delays computed with a simple equation.
However, these scenarios — namely the 90, 70, 50, 30 and 10
flow percentiles — are approximated presuming a Poisson-
distributed arrival of vehicles with a nominal average arrival
rate and do not reflect the actual behavior of the intersection.

Inspired by this Synchro percentile method, we first pre-
dict the quantiles {ỹ(0.10)i , ỹ

(0.30)
i , ỹ

(0.50)
i , ỹ

(0.70)
i , ỹ

(0.90)
i } of

future flows for all 12 movements each hour, with ỹ
(αj)
i

denoting the αj-quantile for movement i. Then, we aim to
minimize delay given by Webster’s delay formula

di =
0.5C(1− gi

C )2

1− [Xi
gi
C ]

+900

[
(Xi−1)+

√
(Xi − 1)2 +

4Xi

si

]
(15)

as defined in the Highway-Capacity Manual [17] and used
in Synchro, where di is the delay per vehicle (s/veh) for
movement i; gi is the effective green time per cycle (s)
for movement i; C is the optimal cycle length (s) for the
intersection; si is the saturation flow (veh/s) for movement
i and depends on the lanes’ capacity; and Xi = C

gi
× qi
si

with



Feb. 24, 2015 Jul. 2, 2015 Data Set Mean

Delay using
Historical Quantiles (h)

99.5 275.7 181.2

Delay using
Predicted Quantiles (h)

93.6 271.4 176.6

Delay lower bound (h) 91.8 269.3 173.5

Predicted vs. Historical
improvement (h)

5.9 4.3 4.6

TABLE II: Illustrative total delays estimated for two test days between 10:00 and
24:00. We additionally display the average total delay across the data set. The delays
are computed using both predicted and empirical historical quantiles; a lower bound
on the total nominal delays was also calculated. Adjusting the green cycles according
to our predictions improves total delay by 4.6 hours per day.

qi (veh/s) the arrival-rate indicates the movement’s degree
of saturation. The total delay D at the intersection is the
sum D =

∑12
i=1 di. Now, let Dαj be the delay assuming the

arrival-rates qi for each movement are equal to their predicted
αj-quantile ỹ(αj)i , i = 1, 2, . . . , 12. We aim to compute(

{gopti }
12
i=1, C

opt
)

= argmin
{gi}12i=1, C

q∑
j=1

Dαj , (16)

where {αj}qj=1 = {0.10, 0.30, 0.50, 0.70, 0.90}. This is a
convex optimization problem and can be readily solved [15].
Once {gopti }12i=1 and Copt have been found, the realized total
delay D caused by this combination of green splits and cycle
length are calculated by setting gi = gopti and C = Copt in
(15) and letting the qi’s be equal to the actual flows.

For comparison, we consider green splits computed using
empirical historical quantiles calculated over the entire data
set. Table II records the delay engendered when adjusting the
control policy according to the predicted quantiles compared
to the data set quantiles. At the beginning of each hour,
new green splits and cycle length are implemented following
the procedure described above, using total flow quantiles
over the next hour. More specifically, the table shows the
estimated total delay for February 24th 2015 and July 2nd
2015 between 10:00 and 24:00, as well as the mean total
delay for this time range across the entire data set using
leave-one-out cross validation. We additionally compute a
theoretical lower bound on the delay time by supposing
the actual flow is known in advance and optimizing for the
actual flow. As expected, the predicted quantiles lead to lower
delays in comparison to the historical quantiles. On February
24, 2015 and July 2, 2015, total delay has been reduced by
5.9 hours and 4.3 hours respectively. Over the whole data set,
total delay is decreased by 4.6 hours per day on average.

V. CONCLUSIONS
We discussed a powerful method for estimating quantiles

of future traffic flow at an intersection using diverse real-time
measurements. Furthermore, we demonstrated the efficiency
of the regression algorithm through a case study conducted
using data on a test site in South Carolina. Our predictions
accurately described the observed traffic flows for several
volume scenarios, using only computationally non-intensive
operations. We were able to achieve an average delay reduc-
tion of 4.6 hours per day at the intersection switching from a
historical quantile-based control policy to a prediction-based

policy. We accomplished better green split management and
reduced traffic delays while making no additional adjust-
ments to the existing infrastructure encountered on the roads.
An interesting extension would be to examine the potential of
quantile regression in the case of networked intersections. In
this setting, can PLS capture the existing spatial correlations
between contingent movements?

Moreover, since quantile predictions reflect historical, day-
to-day variation in traffic flow, we could investigate their
ability to detect anomalous deviations from usual traffic
conditions due to car accidents or lane closures.
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