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Abstract— Interval refinement is a technique for reducing
the conservatism of traditional interval based reachability
methods by lifting the system to a higher dimension using
new auxiliary variables and exploiting the introduced struc-
ture through a refinement procedure. We present a novel,
efficiently scaling, automatic refinement strategy based on
a subspace sampling argument and motivated by reducing
the number of interval operations through sparsity. Unlike
previous methods, we guarantee that refined bounds shrink
as additional auxiliary variables are added. This additionally
encourages automation of the lifting phase by allowing
larger groups of auxiliary variables to be considered. We
implement our strategy in JAX, a high-performance com-
putational toolkit for Python and demonstrate its efficacy
on several examples, including regulating a multi-agent
platoon to the origin while avoiding an obstacle.

Index Terms— Safety-Critical Systems, Reachability
Analysis, Interval Arithmetic

I. INTRODUCTION

Engineered systems are subject to a wide variety of un-
certainties, including measurement errors, mechanical failures,
and unmodeled dynamics. These uncertainties may cause the
realized behavior of the system to deviate significantly from
its nominal behavior, which is unacceptable in safety-critical
systems. To combat this problem, many approaches have been
developed to verify the safety of a system in the presence
of such uncertainty. One such strategy is reachable set over-

approximation [1], [2], where safety is guaranteed for an entire
set containing all possible states a system may attain under
admissable uncertainties and disturbances.

The set representation chosen for this over-approximation is
of great importance—typically resulting in a tradeoff between
bound computation time and accuracy. Some commonly used
set representations include zonotopes [3], constrained zono-
topes [4], hybrid zonotopes [5], [6], polytopes [7], Taylor
models [8], ellipsoids [9], and generalized star sets [10].
Intervals [11] are a particularly simple (and therefore fast to
compute) representation of sets, and multiple approaches [12],
[13] have been proposed for efficient interval reachable set
computation. The efficiency of interval methods has allowed
them to, e.g., be incorporated directly to train neural net-
works controllers with certified robustness guarantees [14].
Other reachability approaches have also been proposed, like
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Hamilton-Jacobi reachability [15], level set methods [16], and
contraction-based reachability [17].

The simplicity of interval-based approaches causes them to
suffer from excessive over-conservatism through the wrapping
effect, preventing them from producing useful bounds in
many cases. Recent work [12] has developed methods to
mitigate this conservatism by artificially introducing additional
structure to a system through model redundancies, which was
used in [14] to study invariant polytopes in neural network
controlled systems. In Section II, we recall this process
through the lens of a lifted system, and describe how domain
knowledge can be used to select which lifted structure to
create. The new structure can be exploited to refine bounds for
the lifted system, often giving tighter estimates than standard
interval reachability.

In Section III, we present the main contribution of this
work: a novel, automated refinement strategy based on sam-
pling certain subspaces. Through clever parameterization of
these subspaces, we induce a desirable sparsity pattern, which
heuristically reduces conservatism by cancelling interval oper-
ations performed during refinement. Furthermore, we explic-
itly bound the growth of refinement costs in both the size
of the original system and the amount of added auxilliary
variables with Proposition 2, and show how refined bounds
are monotonically shrinking as additional redundancies are
introduced in Theorem 1. These results together represent a
step towards the automation of interval refinement, allowing
engineers to quickly test many alternative lifting strategies.

Section IV demonstrates our technique on several examples.
First, we present a framework that fully automates the lifting
and refinement for two dimensional systems. Next, we show
how lifted systems can use some domain knowledge with our
automatic refinement procedure to successfully compute useful
reachable set bounds on concentrations of a chemical reaction
and positions of agents in a multi-agent platoon. Finally,
Section V gives a brief conclusion and suggests directions for
future work.

A. Notation

We use ωi to denote the ith standard Euclidean basis vector.
In all other cases, vector subscripts denote indexing: yj is the
jth component of the vector y. Let → be the elementwise
order on Rn so that x → y when xi → yi for every i. Let
[y, y] := {y : y → y → y} be a closed interval subset of Rn

and IRn denote the set of all n-dim intervals. The symbol
m
Pn is the set of permutations of n elements from a list of

size m, and |mPn| is the size of this set.



II. POLYTOPE REACHABILITY

In this section, we present an approach for over-
approximating the reachable sets of continuous-time systems.
Our technique is a generalization of the procedure presented
in [12], using interval arithmetic with a refinement step.

A. Lifting and Refinement
Consider the nonlinear system

ẋ = f(x,w), (1)

for x ↑ Rn as the state, w ↑ Rp as a disturbance, and
continuous f : Rn ↓ Rp ↔ Rn locally Lipschitz in x for
fixed w. Let H ↑ Rm→n (with m > n) be full rank and H

+

satisfy H
+
H = In. We define the (H,H

+)-lifted system:

ẏ = Hf(H+
y, w). (2)

Since H is full rank, it must have at least n linearly inde-
pendent rows. Without loss of generality, we assume that the
first n rows of H form an invertible block HV (allowing us
to recover x from y) and call the remaining block HA. HV

acts as a state transformation on the base states x ↑ Rn, HA

is another transformation giving a vector of auxiliary states,
and their concatenation gives the lifted states y ↑ Rm.

By [14, Proposition 11], the linear subspace H = {Hx : x ↑
Rn} is forward invariant for the lifted dynamics (2). Next, we
recall the definition of an interval refinement operator [12],
which will allow us to exploit this information.

Definition 1 (Interval refinement operator [12]). Given S ↗
Rm, we say IS : IRm ↔ IRm is an interval refinement

operator if for every interval [y, y] ↑ IRm we have

S ↘ [y, y] ↗ IS([y, y]) ↗ [y, y]. (3)

In our context, IH tightens known bounds on lifted system
trajectories; if y(t) ↑ [y, y], then also y(t) ↑ IH([y, y]).
IH([y, y]) is often significantly smaller than [y, y] itself, im-
proving bounds. Below, we present two refinement operators
for H, varying in tightness and computational complexity.

The tightest refinement operator for a lifted system is
ILP
H

:= [ILP
H

([y, y]), ILP
H

([y, y])], where

ILP
H

([y, y])j = min
x↑Rn

ωj
↓
Hx s.t. y → Hx → y, (4)

ILP
H

([y, y])j = max
x↑Rn

ωj
↓
Hx s.t. y → Hx → y, (5)

for each j ↑ {1, 2, . . . ,m}, as originally proved in [7]. To
refine an interval in IRm with ILP

H
, 2m linear programs must

be solved. As the number of states in the lifted system (2)
grows, this computation becomes burdensome.

To remedy this issue, we consider another refinement oper-
ator. For any N ↑ N, let A ↑ RN→m such that AH = 0, and
define the sampling strategy refinement operator:

ISS
H,A

([y, y])j = [y
j
, y

j
]

⋂

i↑{1,...,N},

Ai,j ↔=0

≃ 1

Ai,j

∑

k ↔=i

Ai,k[y
k
, y

k
], (6)

for all j ↑ {1, 2, . . . ,m}. By (3), if H↘ [y, y] = ⇐, then (6) is
vacuous and we may choose any output, e.g., the singleton set

ISS
H,A

([y, y]) = [y, y]. This generalizes a refinement operator
proposed in [12] and used in [14, Appendix 3] by allowing A

to be any matrix in the left null space of H rather than just
a basis. Our contribution is a clever parameterization of A,
allowing us to theoretically characterize both the complexity
(Proposition 2) and tightness (Theorem 1) of (6).

Though the bounds provided by ISS
H,A

may not be as tight
as those of ILP

H
, they are computed by simple arithmetic

operations and therefore much faster. In Section III, we discuss
a principled approach for selecting A and show that it exhibits
desirable growth properties.

B. Embedding Systems
As in the previous section, let ẏ = g(y, w) := Hf(H+

y, w)
be an (H,H

+)-lifted system, and let IH be a refinement
operator on H ↗ Rm. An inclusion function G for g is
a mapping G = [G,G] : IRn ↓ IRm ↔ IRn satisfying
g(x,w) ↑ G([x, x], [w,w]) for all x ↑ [x, x], w ↑ [w,w],
or

G([y, y], [w,w]) → g(y, w) → G([y, y], [w,w]).

Inclusion functions are easily constructed through composition
of intermediate operations [11]. For instance, immrax [18]
is an efficient toolbox for JAX that automatically constructs
inclusion functions for general dynamics. Throughout, we use
a natural inclusion function G [11] which immrax obtains
by algorithmically replacing nodes in a computation tree with
their interval extensions [18].

Using G, we define a lifted embedding system by composing
the interval refinement operator with the inclusion function
evaluated on each lower ([y, y

i:y]) and upper ([y
i:y
, y]) face of

the hyperrectangle [y, y]1, for every i ↑ {1, . . . ,m},

ẏ
i
= G

i
(IH([y, y

i:y]), [w,w]), (7a)

ẏ
i
= Gi(IH([y

i:y
, y]), [w,w]). (7b)

Under some mild regularity assumptions, it follows from [19,
Thm. 2] that for any x0 ↑ {x ↑ Rn : y

0
→ Hx → y0}, and

t ⇒↔ w(t) ↑ [w(t),w(t)], we have

x(t) ↑ {x ↑ Rn : y(t) → Hx → y(t)},

where t ⇒↔ x(t) is the trajectory of (1) with initial condition x0

and input map w, and t ⇒↔ [y(t), y(t)] is the trajectory of any
(H,H

+)-lifted embedding system (7) from initial condition
[y

0
, y0] under input map [w,w].

Remark 1. In [12], the authors tighten bounds by re-expressing
dynamics in terms of the lifted variables, which is represented
in our lifted system framework through different left inverses
H

+ [14, Remark 15]. If H =
[
1 0
0 1
1 1

]
, the choice H

+ = [ 1 0 0
0 1 0 ]

keeps the first 2 components of the lifted dynamics the same,
while H

+ =
[

1 0 0
↗1 0 1

]
replaces x2 with ≃x1 + y3. However,

we note that the choice of H+ does not directly result in the
term cancellations also proposed in [12]. For the rest of this
paper, we use H

+ =
[
H

↗1
V

0n,m↗n

]
.

1For x, y → Rn, xi:y → Rn is the vector replacing the ith component of
x with that of y: (xi:y)j = xj for every j ↑= i and (xi:y)i = yi.



III. REFINEMENT STRATEGY

In the previous section, we defined the sampling strategy
refinement operator ISS

H,A
but left the parameters N ↑ N and

A ↑ RN→m in (6) undetermined. There are many suitable
A matrices, and importantly each may yield different refined
bounds. We therefore wish to characterize choices of these
parameters that produce good refinements efficiently.

First, we show that when auxiliary variables are considered
individually, the optimal refinement can be parameterized by a
single a ↑ Rm↗n. Combining these vectors for each auxiliary
variable gives a basis for the left null space of H with desirable
properties that are made clear in Example 1.

Example 1 (Basis computation). Given a matrix H , the MAT-
LAB code null(H.’).’ uses SVD to compute LM(H) with
rows forming a basis for the left null space of H . Applying
LM to two very similar matrices, we see

LM

([
1 0
0 1
1 1

])
= [↗0.5774 ↗0.5774 0.5774 ],

LM

([
1 0
0 1
1 1
1 0.5

])
=

[
↗0.9957 ↗0.7071 0.4184 0.5773
0.0917 ↗0.4082 0.9082 ↗1.0000

]
.

By contrast, the bases computed in Algorithm 1, Line 2 are

L

([
1 0
0 1
1 1

])
= [↗1 ↗1 1 ], L

([
1 0
0 1
1 1
1 0.5

])
=

[
↗1 ↗1 1 0
↗1 ↗0.5 0 1

]
.

Note that with Algorithm 1, the first basis appears as a
sub-block of the second (but not with LM). This is the
key property that ensures adding auxiliary variables does not
worsen refinement (Theorem 1). Furthermore, the right block
of our bases is an identity matrix, forcing sparsity (especially
when m≃n is large). This causes many terms in (6) to cancel
entirely, reducing the number of interval operations, each of
which contribute to the conservatism of the refinement.

Finally, we generate additional rows for A by combining
each pair of optimal refinement vectors in L. This gives an
N (and induced complexity of (6)) much lower than naive,
uniform sampling the left null space of H (Proposition 2).

A. Algorithm 1: Subspace Sampling
First, we parameterize the sample space of A, applying the

assumption in (6) that AH = 0.

Proposition 1. Let H ↑ Rm→n be full rank and L
↓ ↑

Rm→(m↗n) be a basis for the left null space N (H↓). If N ↑ N
and A ↑ RN→m with AH = 0, there exists a ! ↑ RN→(m↗n)

with A = !L.

Proof. Since AH = 0, every row Ai, i ↑ {1, 2, . . . , N} must
lie in the left null space of H . By assumption, there exist
scalars !i,1, . . .!i,m↗n with Ai =

∑
m↗n

j=1 !i,jLj . Defining
!i =

[
!i,1 · · · !i,m↗n

]
, we have Ai = !iL. Repeating

the above argument for all i and letting ! =
[
!1 · · · !N

]↓

gives the desired result.

Note that Proposition 1 reduces the problem of sampling a
subspace of Rm to unconstrained sampling of Rm↗n. Com-
pared to prior work [12], which chose a preconditioning vector

from Rm to generate A (without leveraging the subspace H),

Algorithm 1 Subspace-based construction of A
Input: Full rank H ↑ Rm→n, subspace sample size s ↑ N

1:

[
HV

HA

]
⇑ H ε HV ↑ Rn→n

, HA ↑ R(m↗n)→n

ε Construct basis for left null space

2: L = [≃HAH
↗1
V

Im↗n] ε LH = 0
ε Sample pairwise subspaces

3: Allocate A2 ↑ Rs·|
m→n

P 2|→m

4: W i ⇑
[
cos( iω

s+1 ) sin( iω

s+1 ) 0 · · · 0
]

for i ↑
{1, 2, . . . , s} ε W ↑ Rs→m↗n

5: for p ↑ m↗n
P 2 do

6: ”p ⇑ Apply permutation p to columns of W
7: Append ”pL to A2

8: return
[

L

A2

]

this simplification reduces the dimension of the search space.
For systems with a large base dimension n, this result is
especially important, since only the dimensions corresponding
to the auxiliary variables need to be sampled.

Next, we observe that (6) is invariant under scalings of A.

Lemma 1. Let H ↑ Rm→n be full rank, and AH = 0. Then,
for any interval [y, y] and ϑ ↑ R \ {0}, we have

ISS
H,A

([y, y]) = ISS
H,εA

([y, y]) (8)

This can be quickly seen by examining the form of (6); the
multiplication of every Ai,k term within the sum is exactly
offset by the overall division by Ai,j .

Lemma 1 further reduces the sample space to just the
positive half of a hypersphere in Rm↗n. We note that if
m ≃ n = 1, then Lemma 1 guarantees the existence of
a canonical refinement ISS

H,A
since there is only one vector

in the left null space, up to scalings. Thus, by considering
every auxiliary variable individually, we may construct a basis
consisting of these canonical refinement vectors for each. This
is the core idea of Algorithm 1.

Sampling the full domain of Lemma 1 uniformly requires
exponentially many samples [20, Corollary 4.2.11]. However,
submanifolds of this hypersphere can be covered with only
polynomially many, since the term |m↗n

P k| grows polynomi-
ally with degree k (Figure 1). Algorithm 1 implements this
method up to degree two. Though this could be iterated to
higher dimensions, we note that in practice pairwise sampling
or even just using the basis points is often sufficient.

Proposition 2. For A ↑ RN→m generated by Algorithm 1, the
number of rows N is worst-case upper bounded by O(s(m≃
n)2), and hence the complexity of the refinement operator (6)
is O(sm2(m≃ n)2).

Proof. Algorithm 1 constructs A in two phases. First, it
generates a basis L (Line 2) to parameterize the left null space
of H as in Proposition 1. By Lemma 1, it suffices consider
only constant magnitude linear combinations of these basis
vectors. Algorithm 1 considers s·|m↗n

P 2| such vectors, where
s ↑ N is fixed (Line 5). By definition, |m↗n

P 2| = (m↗n)!
(m↗n↗2)! ,

so the size of this second block grows quadratically in m≃n.
Thus, the size N of the overall matrix A grows with the sum



of the sizes of its two blocks: O(m≃ n) +O(s(m≃ n)2) =
O(s(m≃ n)2).

Finally, note that (6) requires computing N bounds for
m interval components, each using m multiplications and
additions and one division. Therefore, the final complexity is
O(m2

N) = O(sm2(m≃ n)2), as claimed.

Adding base states increases m but keeps m≃ n constant.
This causes the complexity of (6) to increase quadratically,
allowing our technique to scale to systems with many base
states. When adding auxiliary variables, m increases and n

is constant, inducing quartic runtime growth. Both cases are
significant improvements over the exponential complexity of
a dense sampling of the hemisphere in Rm↗n (Figure 1).

B. Monotonicity With Respect to Extra Rows in H

The specific basis L in Algorithm 1 is also important. The
j-th row Lj corresponds exactly to the canonical vector in
the left null space of the matrix

[
HV

(HA)j

]
, since LjH =

≃ω
T

j
HAH

↗1
V

HV + (HA)j = 0. By isolating each auxiliary
variable in its own row, it ensures the corresponding A retains
the same rows when new auxiliary variables are added. This
property is not shared by other methods for generating such a
basis, e.g. SVD, which prioritize orthonormality.

Theorem 1. Let H
0 ↑ Rm0→n be full rank, and [y0, y0] ↑

IRm0 . For any h ↑ R1→n and ϖ, ϖ ↑ R with ϖ < ϖ, define

H
1 =

[
H

0

h

]
, [y1, y1] =

[[
(y0)↓ ϖ

]↓
,
[
(y0)↓ ϖ

]↓]
.

Let A0 ↑ RN0→m0 , A1 ↑ RN1→m0+1 be given by Algorithm 1
for H0 and H

1, respectively. For j ↑ {1, 2, . . . ,m0},

ISS
H1,A1([y1, y1])j ↗ ISS

H0,A0([y0, y0])j . (9)

Proof. We prove monotonicity of the lower bound; the upper
case is identical. By (6), ISS

H1,A1([y1, y1])j ⇓ y
0
j

always. Thus,
if ISS

H0,A0([y0, y0])j = y
0, then the proof is trivial.

Else, again by (6), there exists an i
↘ ↑ {1, 2, . . . , N0} with

ISS
H0,A0([y0, y0])j = ≃ 1

A
0
i↑,j

∑

k ↔=i↑

min
{
A

0
i↑,kyk

, A
0
i↑,kyk

}
,

by definition of interval multiplication [11]. Note that the m0≃
n rows of L0 on Line 2 in Algorithm 1 are linearly independent
by construction, and therefore form a basis for the left null
space of H0. Thus, there exist coefficients ϱ1, . . . , ϱm0↗n with
A

0
i↑ =

∑
m0↗n

i=1 ϱiL
0
i
. Since A

0
i↑ is a row of A

0, these ϱis are
a permuted row of ”p, as in Line 6.

Consider the linear combination A
≃

i↑ :=
∑

m0↗n

i=1 ϱiL
1
i
.

Since m0↗n
P 2 ⇔ m0↗n+1

P 2, A≃

i↑ is a row of A
1, say A

1
ϑ

.
By construction, A

1
ϑ,q

= A
0
i↑,q for all q ↑ {1, 2, . . . ,m0}

and (since L
1
i,m0+1 = 0 for all i → m0 ≃ n) A

1
ϑ,m0+1 = 0.

Applying (6) once more,

ISS
H1,A1([y1, y1])j ⇓ ≃ 1

A
1
ϑ,j

∑

k ↔=ϑ

min
{
A

1
ϑ,k

y
k
, A

1
ϑ,k

y
k

}
=

≃ 1

A
0
i↑,j

∑

k ↔=i↑

min
{
A

0
i↑,kyk

, A
0
i↑,kyk

}
= ISS

H0,A0([y0, y0])j ,

Fig. 1. Points sampled on the surface of a hemisphere. Basis samples
(corresponding to rows of L in Algorithm 1) are shown in green, those along
angular subspaces are in black (corresponding to rows of A2 in Algorithm 1),
and ones distributed over the entire surface in red. The number of samples
needed to densely cover the surface is exponential in dimension.

as desired.

These results enable us to apply Algorithm 1 to a wide
variety of systems. Since each additional variable incurs a
reasonable computation cost (Proposition 2) and can only
improve bounds (Theorem 1), good bounds can be achieved
by simply constructing a lifted system with lots of auxiliary
variables, rather than carefully selecting them from domain
knowledge (as in previous work [12]).

IV. EXAMPLES

We now demonstrate the efficacy of our approach with
several examples2. We include a classic nonlinear system, a
chemical reaction, and a multi-agent platoon. Additionally, we
address uncertainty of many types, including unknown initial
conditions, parameter values, or persistent disturbances. Our
contribution reduces the need to manually tune parameters
for each of these domains, successfully applying the same
calculations in each. Each of the simulations in this sec-
tion is implemented in immrax [18], an interval arithmetic
and reachability analysis module for the Python framework
JAX [21] supporting GPU parallelization, Just-in-Time Compi-
lation, and Automatic Differentiation. They were performed on
an Arch Linux system with an Intel i5-12600K CPU, NVIDIA
RTX 3050 GPU, and 64GB of RAM.

A. Refinement Procedure Comparison
Consider the Van der Pol oscillator:

ẋ1 = µ

x1 ≃ 1

3x
3
1 ≃ x2


, ẋ2 = 1

µ
x1, (10)

for some µ > 0. Fix a number ς ↑ N of auxiliary variables to
introduce, and define the matrix K ↑ Rϖ→2 whose ith row
is

[
cos( i↘ω

ϖ+1 ) sin( i↘ω

ϖ+1 )
]

for i ↑ {1, 2, . . . , ς}. Since only
the ratios of the coefficients of each row of A affect the
refinement (6), there is only one degree of freedom to choose
these coefficients for two dimensional systems. The matrix K

produces rows at even intervals in this space. Let

H =
[
I2
K

]
, H

+ =
[
I2 02→ϖ,

]

and consider the (H,H
+)-lifted system of (10). Note that this

lifting can be applied automatically to any 2D system.

2The source code for these examples is available at
https://github.com/gtfactslab/Gould LCSS2025.



Using Refinement ILP
H

ω Time (sec) Final Bound Size
2 5.78± 1.02e↓1 29.41
4 14.38± 0.269 3.991
6 23.55± 2.63e↓1 1.322

Using Refinement ISS
H,A

ω Time (sec) Final Bound Size
2 2.62e↓2± 2.98e↓3 29.41
4 2.13e↓2± 2.48e↓3 4.780
6 2.71e↓2± 7.81e↓3 1.659

TABLE I. Comparison of refinements ILP
H

and ISS
H,A as used in Example 2.

Sample size of 10 runs, each numerically integrated from t = 0 to t = 2ε
with a timestep of 0.01 using the tsit5 solver.

Example 2. We generate the lifted embedding system (7)
for (10) to over-approximate the reachable set from initial
conditions x0 ↑

[[
0.9 ≃0.1

]↓
,
[
1.1, 0.1

]↓] for time t ↑
[0, 2φ]. We compare the refinements ILP

H
given in (4)-(5) and

ISS
H,A

based on Algorithm 1 (with s = 10).

Table I compares the average runtime and final bound size
of both refinements for multiple values of ς. Note that the
bound generated by ILP

H
is always smaller than that of ISS

H,A

for the same ς. However, ISS
H,A

scales better and may generate
tighter bounds than ILP

H
in a shorter time with a larger ς.

The scaling of ISS
H,A

is further supported by the computa-
tional capabilities of JAX. Computing (6) requires repeated
evaluations of the same formula. The JAX function transfor-
mation vmap can vectorize this, computing many such results
in one arithmetic operation. Furthermore, the transformation
jit compiles Python functions into XLA which is executed
on a GPU for parallelism.

B. Enzymatic Reaction
Consider the dynamics of an enzymatic reaction from [12]:

ẋA = ≃k1xAxF + k2xF:A + k6xR:A↓ , (11a)
ẋF = ≃k1xAxF + k2xF:A + k3xF:A, (11b)

ẋF:A = k1xAxF ≃ k2xF:A ≃ k3xF:A, (11c)
ẋA↓ = k3xF:A ≃ k4xA↓xR + k5xR:A↓ , (11d)
ẋR = ≃k4xA↓xR + k5xR:A↓ + k6xR:A↓ , (11e)

ẋR:A↓ = k4xA↓xR ≃ k5xR:A↓ ≃ k6xR:A↓ . (11f)

We assume the initial concentration of each reagent is given:
x0 =

[
34 20 0 0 16 0

]↓, and that the parameter k

is known within an order of magnitude: k ↑ [k̂, 10k̂], where
k̂ =

[
0.1 0.033 16 5 0.5 0.3

]↓.

Example 3 ([12, Example 3]). Using the lifting matrix

K =
[
↗0.48 ↗0.14 ↗0.62 ↗0.48 0.24 ↗0.24
↗0.31 0.75 0.43 ↗0.31 0.15 ↗0.15

0 0 0 0 0.70 0.70

]
, H =

[
I6
K

]
,

from [12] with the system (11), we compute A as in Algo-
rithm 1 with s = 10 and use ISS

H,A
to compute reachable set

approximations on the time interval t ↑ [0, 0.04]. This K is
motivated by chemical properties of the system guaranteeing
that each auxiliary variable it introduces is invariant. There-
fore, we explicitly have ẏj = 0 in (2) for j ↑ {7, 8, 9}.

Fig. 2. State bounds for xA↓ (left) and xRA↓ (right) from Example 3. Gray
lines are Monte-Carlo sampled real solutions. The bounds and each sample
trajectory were integrated with the tsit5 solver and a timestep of 10→3.

The bounds on two of the state variables produced by
Example 3 are visualized in Figure 2. We recover similar
bounds to [12, Figure 5]. Our bounds rely on Algorithm 1
and expressing invariance in the lifted system, rather than
the radius based preconditioning and symbolic simplifications
performed in that work.

C. Multi-Agent Platoon
Consider the problem of stabilizing a double integrator

ṗ
1
x
= v

1
x
, ṗ

1
y
= v

1
y
,

v̇
1
x
= ux + w

1
x
, v̇

1
y
= uy + w

1
y
,

(12)

subject to an additive input disturbance w1
x
, w

1
y
↑ [≃0.01, 0.01]

while avoiding an obstacle. For initial state p
1
x
= 8, p1

y
= 7,

v
1
x
= ≃

↖
3, and v

1
y
= ≃1, we solve this problem by using the

Python library casadi to generate feedforward inputs uff :=

{
[
ux(t) uy(t)

]↓}t↑[t0,tf ] that minimize a quadratic form of
position and control. Obstacle avoidance is a hard constraint
in this minimization, with an additional 30% padding added
to the size of the obstacle.

This system can be easily extended to a platoon of arbitrary
length P ↑ N by appending states with dynamics

ṗ
i

x
= v

i

x
, ṗ

i

y
= v

i

y
,

v̇
i

d
= kp


p
i↗1
d

≃ p
i

d
≃ r

v
i↗1
d

↙vi↗1↙


+ kv(v

i↗1
d

≃ v
i

d
) + w

i

d
,

(13)
for all i ↑ {2, . . . , P} and d ↑ {x, y}. Here, each additional
agent is implementing PD control to track the proceeding one
with parameters kp = kv = 5. To avoid collisions, followers
do not track the exact position of the proceeding agent, but
aim to follow at a distance of r = 0.5. The follower agents
start with the same velocity as the leader and offset position
p
i

x
= p

1
x
+ 0.2

↖
3(i ≃ 1), pi

y
= p

1
y
+ 0.2(i ≃ 1). Finally, the

control error of the follower agents is assumed to be similarly
bounded: wi

x
, w

i

y
↑ [≃0.01, 0.01].

Example 4. We introduce the lifting matrix

L =
[
ϱ4(i→1)+1

↔+ϱ4(i→1)+3
↔

ϱ4(i→1)+2
↔+ϱ4(i→1)+4

↔

]
, H =




I4P
L1

...
LP



,

to give the (H,H
+) lifted system for (12)-(13). Leveraging

the insight from [14, Example 2], it can be advantageous to



Fig. 3. Interval bounds on the position of the final agent in the platoon of
Example 4 (P = 6). Bounds produced without a refinement operator are
shown on the left, and cannot be verified as safe, since they intersect the
obstacle. Bounds produced using the refinement operator (6) with Algorithm 1
(shown on the right) are tightened, no longer intersect the obstacle, and verify
the safety of the platooned system.

P Unrefined Refinement ISS
H,A CORA

3 1.30e↓2± 2.1e↓3 2.92e↓2± 2.3e↓3 3.11
6 1.46e↓2± 1.2e↓3 1.97± 3.1e↓2 5.56
9 2.48e↓2± 3.0e↓3 10.3± 0.17 10.57
12 2.85e↓2± 2.0e↓3 35.0± 0.16 12.85

TABLE II. Scaling of refinement runtime with platoon size. Unrefined
interval bounds are compared to the subspace sampling refinement strategy
of Algorithm 1 and a zonotope-based method. The refined interval bounds
and CORA verify platoon safety; unrefined bounds do not. Sample size of
10 runs, each numerically integrated from t = 0 to t = 3 with a timestep of
0.01 using Euler integration. The reported times for CORA were recorded by
MATLAB’s timeit command.

introduce halfspaces correlating position and velocity terms.
Constructing A as in Algorithm 1 with s = 10, we use the
lifted embedding system (7) with refinement ISS

H,A
to bound

the platoon’s reachable sets on the time interval t ↑ [0, 3].

The reachable set bounds computed in Example 4 are
visualized in Figure 3 for P = 6. Interval refinement tightens
these bounds and allows us to verify that every agent in the
platoon will avoid the obstacle.

This example demonstrates the scalability of our method.
The platooned system contains 4P base states, and 2P aux-
iliary states are added for a total of 6P lifted states. Despite
the inherent high-dimensionality of multi-agent systems, our
method is able to efficiently produce useful bounds on reach-
able sets. Table II lists the time taken to compute embedding
trajectories for both the base and lifted systems across several
values of P , characterizing runtime growth in platoon size.
We additionally compare to zonotopic bounds produced by the
CORA toolbox [3]. Initially, our method verifies safety faster.
Due to the many auxiliary variables being used, our runtime
eventually grows too quickly, and becomes slower than the
zonotopic method.

V. CONCLUSION

We have presented a novel strategy for parameter condition-
ing in interval refinement reachability analysis. Our method
exhibits efficient runtime growth and monotonic bound sizes in
the number of auxiliary variables used, enabling its application
to a wide variety of systems without the use of domain
knowledge. Interesting areas for future work include further

automation of the selection of H . In particular, a promising
approach is to apply the automatic differentiability inherent
to JAX with the interval refinement toolbox [18] to learn an
optimal H through gradient descent.
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