
immrax: A Parallelizable and Di↵erentiable
Toolbox for Interval Analysis and Mixed

Monotone Reachability in JAX ?

Akash Harapanahalli
⇤
Saber Jafarpour

⇤⇤
Samuel Coogan

⇤

⇤ School of Electrical and Computer Engineering, Georgia Institute of
Technology, GA, USA 30318, { aharapan,sam. coogan}@ gatech. edu

⇤⇤ Department of Electrical, Computer, and Energy Engineering,
University of Colorado, Boulder, CO, USA 80309,

saber. jafarpour@ colorado. edu .

Abstract: We present an implementation of interval analysis and mixed monotone interval
reachability analysis as function transforms in Python, fully composable with the computational
framework JAX. The resulting toolbox inherits several key features from JAX, including compu-
tational e�ciency through Just-In-Time Compilation, GPU acceleration for quick parallelized
computations, and Automatic Di↵erentiability. We demonstrate the toolbox’s performance on
several case studies, including a reachability problem on a vehicle model controlled by a neural
network, and a robust closed-loop optimal control problem for a swinging pendulum.

Keywords: Interval analysis, Reachability analysis, Automatic di↵erentiation, Parallel
computation, Computational tools, Optimal control, Robust control

1. INTRODUCTION

Interval analysis is a classical field concerned with bound-
ing the output of mappings across uncertain inputs (Jaulin
et al., 2001). For dynamical systems, interval analysis
provides a computationally cheap, scalable, and sound
approach for studying the e↵ects of uncertainty, through
di↵erential inequalities (Shen and Scott, 2017) and mixed
monotone embeddings (Jafarpour et al., 2023). While
these methods have been studied extensively in the lit-
erature, most implementations either fail to (i) utilize
the key computational breakthroughs in the last decade
in parallel processing on GPUs and TPUs; and/or (ii)
address the challenges of the modern learning-enabled
control system, such as e�cient gradient computation.
JAX (Bradbury et al., 2018) is an evolving numerical com-
putation framework for Python developed by researchers
at Google Deepmind. At its core, JAX is a framework
for composable function transformations, i.e., transforms
that take functions as input and return new functions
with some desired property. For instance, jit uses XLA
to transform a function into a compiled program executed
on CPU/GPU/TPU, grad/jacfwd/jacrev return a new
function evaluating the input function’s derivative using
either reverse- or forward-mode autodi↵erentiation from
Autograd (autodi↵), and vmap transforms a function into
a new version that parallelizes its execution over several
di↵erent inputs (vectorization). These transformations can
be composed an arbitrary number of times. In this paper,
we use these features to create an e�cient, di↵erentiable
framework for interval analysis and interval reachability.

?
This work was supported in part by the Air Force O�ce of

Scientific Research under award FA9550-23-1-0303 and the National

Science Foundation under award #2219755.

Literature Review There are several existing tools for
interval analysis and interval reachability analysis. To
our knowledge, most of these tools do not support GPU
parallelization and/or computation of gradients. CORA
is a MATLAB toolbox with interval and polytopic arith-
metic capabilities (Altho↵, 2015), JuliaReach is a Julia
toolbox supporting interval analysis and taylor model ab-
stractions (Bogomolov et al., 2019). In previous work,
we developed an interval analysis extension for numpy
called npinterval (Harapanahalli et al., 2023), and a
mixed monotone interval reachability (Coogan and Ar-
cak, 2015) tool called called ReachMM (Jafarpour et al.,
2023). However, these lack support beyond basic CPU
capabilitites. For pararallization, there have been some re-
cent developments in the reachability literature including
ReachNN* (Fan et al., 2020) which is GPU accelerated
and POLAR-Express (Wang et al., 2023) which supports
CPU threading, but not GPU processing. DRIP (Everett
et al., 2023) uses jax_verify for backward reachability of
discrete-time linear systems controlled by neural networks.

jax_verify is a Python library that can compute the
natural inclusion function from Proposition 4—however,
it is restricted to the class of functions used for neural
networks. The user interface is not compositional, and
the usage with existing JAX transformations such as
jit and vmap requires the user to manually convert the
IntervalBound into a JittableInputBound at the input
and output of any function to be transformed.

Contributions In this paper, we present a toolbox called
immrax 1 , introducing several new function transforma-

1
The most recent code for immrax can be found at https://github.

com/gtfactslab/immrax, and the documentation can be found at

https://immrax.readthedocs.io.

https://github.com/gtfactslab/immrax
https://github.com/gtfactslab/immrax
https://immrax.readthedocs.io

tions to facilitate interval analysis and mixed monotone
reachability analysis. These transforms are fully compos-
able with existing JAX transformations, allowing the tool-
box to support (i) Just-In-Time (JIT) Compilation for sig-
nificant improvements in runtime versus the baseline, (ii)
GPU parallelizability for rapid, accurate online reachable
set estimation; (iii) Automatic Di↵erentiation for learning
relationships between reachable set outputs and input
parameters. In Section 2, we discuss the theory behind
interval analysis and inclusion functions. In particular,
in Proposition 7 Part (i), we provide a novel an ana-
lytical Jacobian-based bound for functions which is vital
for capturing stabilizing interactions in closed-loop system
analysis. In Section 3, we discuss the theory behind us-
ing inclusion functions to build embedding systems which
e�ciently and scalably bound the output of a dynamical
system under uncertainty. In each Section, we present their
corresponding implementations in immrax as composable
function transforms, keeping consistent with the rest of
the JAX ecosystem. Finally, in Section 4, we demonstrate
the usage of immrax on several case studies including
e�cient reachable set estimation of a nonlinear system
controlled by a neural network using GPU parallelization
for partitioning, and finding locally optimal solutions to a
robust closed-loop optimal control problem on a damped
inverted pendulum using Automatic Di↵erentiation.

Notation For x, x 2 Rn, define the partial ordering
x x () xi xi for every i = 1, . . . , n. Let [x, x] :=
{x : x x x} denote a closed and bounded interval, and
let IRn be the set of all such intervals. The partial order
 on Rn induces the southeast order SE on R2n, where
[xx̂] SE

⇥ y
ŷ

⇤
() x y and ŷ x̂. Define the upper

triangle T 2n
�0 := {

⇥ x
x

⇤
2 R2n : x x}, and note IRn '

T 2n
�0 . We denote this equivalence with

⇥⇥ x
x

⇤⇤
:= [x, x]. For

[a, a], [b, b] 2 IR and [A,A] 2 IRm⇥p, [B,B] 2 IRp⇥n,

(1) [a, a]+[b, b] := [a+b, a+b] (also on IRn element-wise);
(2) [a, a]·[b, b] := [min{ab, ab, ab, ab},max{ab, ab, ab, ab}];
(3) ([A,A][B,B])i,j :=

Pp
k=1[Ai,k, Ai,k] · [Bk,j , Bk,j].

For x1 2 Rn1 , x2 2 Rn2 , . . . , xm 2 Rnm , let
(x1, x2, . . . , xm) 2 Rn1+n2+···+nm denote their concatena-
tion. For f : Rn ! Rm, let df : Rn ! Rm⇥n be its
Jacobian, i.e., for x0 2 Rn, dfx0 = @f

@x

��
x=x0 .

2. INCLUSION MODULE: INCLUSION FUNCTION
TRANSFORMS IN JAX

The inclusion module provides a streamlined interface
to work with interval objects and inclusion functions. 2

2.1 Inclusion Functions

Interval analysis provides a scalable, compositional ap-
proach to bound the output of a function along an interval
input, and the key building block is the inclusion function.

Definition 1. (Inclusion Function). Given a function f :

Rn ! Rm, the function F =
h
F

F

i
: T 2n

�0 ! T 2m
�0 is an

inclusion function for f if for every x 2 [x, x],

F(x, x) f(x) F(x, x).
2

At this time, immrax does not bound floating point rounding errors.

An inclusion function is monotone if [x, x] ✓ [y, y] implies

F(y, y) F(x, x) f(x) F(x, x) F(y, y).

An inclusion function is thin if for every x 2 Rn,

F(x, x) = f(x) = F(x, x).

Remark 2. Notationally, we use the upper triangular inter-
pretation T 2n

�0 for convenience in Section 3. Most references
instead think of inclusion functions as mappings on IRn.
Given the equivalence between T 2n

�0 and IRn, we use the
notation [F] : IRn ! IRm to denote the equivalent interval
input to output mapping.

There are several methods for constructing inclusion func-
tions. For some functions, it is possible to compute the
minimal inclusion function, which returns the tightest
possible output for a given interval input bound (Hara-
panahalli et al., 2023, Theorem 2.2).

Proposition 3. (Minimal inclusion function). Given a func-
tion f : Rn ! Rm, the unique, monotone and thin
inclusion function returning the tightest bounds the image

of f on [x, x] is F =
h
F

F

i
, where for every i 2 {1, . . . , n},

Fi(x, x) = inf
x2[x,x]

fi(x), Fi(x, x) = sup
x2[x,x]

fi(x),

Denote this as the minimal inclusion function of f .

Computing the minimal inclusion function is not gener-
ally viable. Instead, we provide several computationally
e�cient approaches to construct inclusion functions us-
ing known inclusion functions as building blocks. First,
we present the natural inclusion function, which is the
simplest technique (Jaulin et al., 2001), Proof in (Hara-
panahalli et al., 2023, Theorem 2.3).

Proposition 4. (Natural inclusion function). Given a func-
tion f : Rn ! Rm, such that f = f1 � f2 � · · · � f`
is the composition of functions/operators {fi}`i=1 with
(monotone/thin) inclusion functions {Fi}`i=1, the following
is a (monotone/thin) inclusion function of f

F(x, x) = (F1 � F2 � · · · � F`)(x, x).

Denote this as the {Fi}`i=1-natural inclusion function of f .

While the natural inclusion function provides a general
approach, it is often overly conservative. Instead, if the
function is di↵erentiable, one can use a bound on the first
order Taylor expansion of the function, which may provide
better results in practice (Jaulin et al., 2001).

Proposition 5. (Jacobian-based inclusion function).
Consider a di↵erentiable function f : Rn ! Rm, with
an inclusion function J for the Jacobian matrix df , i.e.,
dfx 2 [J(x, x)] for every x 2 [x, x]. Then, any center
x̊ 2 [x, x] induces a valid inclusion function as follows

[F(x, x)] = [J(x, x)]([x, x] � x̊) + f (̊x).

Denote this as the (J, x̊)-Jacobian-based inclusion function
of f .

By bounding each component of the vector input x as sepa-
rate variables, we can further reduce the overconservatism
of the Jacobian-based approach. The following definition
helps build the mixed Jacobian-based inclusion function.

Definition 6. (Permutation). Given a dimension n, a n-
permutation � is a bijection of {1, . . . , n} onto itself,
characterized by a tuple of n unique integers 1 �(i)

n. For an n-permutation � = (�(1), . . . ,�(n)), the j-
th subpermutation is �j = (�(1), . . . ,�(j)). Define the
replacement x�j :y 2 Rn such that

(x�j :y)i :=

⇢
yi i 2 �j

xi i /2 �j
.

Proposition 7. (Mixed Jacobian-based inclusion function).
Consider a di↵erentiable function f : Rn ! Rm, with an
inclusion function J for the Jacobian matrix df . Given a
center x̊ 2 [x, x] and an n-permutation �, let Mx̊

� : T 2n
�0 !

T 2(m⇥n)
�0 be defined such that for every i = 1, . . . , n, the

�(i)-th column [Mx̊
�(x, x)]�(i) := [J(̊x�i:x, x̊�i:x)]�(i). Then,

the following statements hold:

(i) For every x 2 [x, x],

f(x) 2 [Mx̊
�(x, x)](x � x̊) + f (̊x);

(ii) The function F : T 2n
�0 ! T 2m

�0 , defined by

[F(x, x)] = [Mx̊
�(x, x)]([x, x] � x̊) + f (̊x),

is an inclusion function for f , denoted as the (J, x̊,�)-
mixed Jacobian-based inclusion function of f .

2.2 immrax.inclusion Module Implementation

In this subsection, we discuss the implementation of the
interval analysis theory from the previous section in the
submodule immrax.inclusion. In particular, the various
inclusion functions are implemented as function trans-
forms composable with any existing JAX transformations.

Interval Class In immrax, intervals are implemented
in the Interval class, which is made up of two main at-
tributes: lower and upper, which are jax.numpy.ndarray
objects of the same shape and dtype representing the
lower and upper bound of the interval. Interval is reg-
istered as a Pytree node, so JAX can internally han-
dle any Interval object as if it were a standard JAX
type. This implementation di↵ers from the IntervalBound
class from jax_verify, which instead requires the user
to manually swap between IntervalBound objects and
JittableInputBound objects as needed.

immrax provides several helper functions with input valida-
tion to safely construct and manipulate Interval objects.
For example, interval creates an Interval from a lower
and upper bound; icentpert creates an Interval from a
center x0 and a vector ✏ from the center as [x0 � ✏, x0 + ✏];
ut2i converts a jax.Array element of the upper triangle
T 2n
�0 to its representation in IRn; and i2lu, i2centpert,

i2ut perform the inverse operations respectively.

Inclusion Functions We provide minimal inclusion func-
tions for basic jax.lax primitives (and applicable class
operations), such as add (+), sub (-), mul (*), div (/), pow
(**), sin, cos, sqrt, dot_general. A full list of supported
minimal inclusion functions can be found at the immrax
documentation, and this list will continue to grow.

The most versatile transform that immrax provides is
natif, which implements the natural inclusion function
from Proposition 4. Given a function f acting on usual
jax.Array inputs, defined as a composition of primitives
with defined inclusion functions, natif(f) creates a new

function replacing each primitive, or each functional build-
ing block, with their corresponding minimal inclusion func-
tion counterparts. Internally, immrax builds these inclusion
functions by tracing the original f into a ClosedJaxpr, the
JAX internal representation of the pure functional inputs,
outputs, and intermediate operations. Then, the inclusion
function F is built by traversing the ClosedJaxpr, re-
placing jax.Array inputs with Intervals and replacing
primitives with their inclusion function.

In addition to natif, immrax provides transforms for the
Jacobian-based inclusion function from Proposition 5 as
jacif and the mixed Jacobian-based inclusion function as
mjacif. Internally, immrax builds these inclusion functions
by composing natif with jacfwd, which creates an inclu-
sion function for the Jacobian matrix of f. For example,
a simple implementation of jacif for single vector input
functions of the form f(x) is

def jacif (f) :
df = immrax.natif(jax.jacfwd(f))
def F (x:Interval, xc:jax.Array) -> Interval :
return df(x) @ (x - xc) + f(xc)

return F

Note that the usage of @ here calls Interval.__matmul__,
which is explicitly defined in the inclusion module as

Interval.__matmul__ = immrax.natif(jnp.matmul)

In turn, jnp.matmul uses the jax.lax.dot_general_p
primitive, for which the minimal inclusion function is
provided. In practice, the true implementations of jacif
and mjacif work for functions of any number of inputs—
and one can even specify multiple centers and/or multiple
permutations using kwargs, for which the minimum and
maximum are taken accordingly.

Finally, all of these function transforms were carefully
written to retain the ability to be composed with existing
JAX transforms, such as jax.jit for JIT compilation,
jax.vmap for parallelization, and jax.grad/jax.jacfwd
for Automatic Di↵erentiation. The derivative of an in-
terval or with respect to an interval is not directly a
well defined object—instead, one can take the deriva-
tive of a real-valued function of an interval output, e.g.,
(out.upper - out.lower), the objective function for the
pendulum in Section 4, or simply the upper/lower bound.

The following example compares the inclusion functions
generated from a call of natif, jacif, and mjacif.

Example 8. For the function f(x1, x2) = ((x1 + x2)2, x1 +
x2+2x1x2), we compare the natural, Jacobian-based, and
mixed Jacobian-based inclusion functions on the input
[�0.1, 0.1] ⇥ [�0.1, 0.1], for x̊ = 0 and � = (1, 2):

f = lambda x : jnp.array([
(x[0] + x[1])**2, x[0] + x[1] + 2*x[1]*x[2]])

Fnat = immrax.natif(f)
Fjac = immrax.jacif(f)
Fmix = immrax.mjacif(f)
x0 = immrax.icentpert(jnp.zeros(2), 0.1)
for F in [Fnat, Fjac, Fmix] :
F(x0) # JIT Compile
ret, times = utils.run_times(1000, F, x0)

F Output Average Runtime

Fnat [0, 0.04]⇥ [�0.22, 0.22] 4.778⇥ 10
�5

Fjac [�0.08, 0.08]⇥ [�0.24, 0.24] 8.611⇥ 10
�5

Fmix [�0.06, 0.06]⇥ [�0.24, 0.24] 6.856⇥ 10
�5

Table 1. Inclusion function outputs and run-
times for Example 8

While the implementation of mjacif might seem more
complicated upon first glance, after being Just-In-Time
Compiled, the performance is better than the standard
jacif. This is because a natural inclusion function com-
putation takes on the order of at least twice as much as
a standard computation (upper and lower bound)—and
while the Jacobian-based approach builds a full matrix of
interval components using natural inclusion functions, the
mixed Jacobian approach is able to reduce the number
of interval computations by fixing some elements to the
center x̊, reducing to a standard singleton computation.

3. EMBEDDING MODULE: MIXED MONOTONE
EMBEDDING SYSTEMS IN JAX

In this section, we consider the theory and the implementa-
tion of continuous-time embedding systems in JAX, which
provides an e�cient and scalable method for bounding the
reachable sets of dynamical systems.

3.1 Mixed Monotone Embedding Systems

Consider the nonlinear system

ẋ = f(x,w), (1)

where x 2 Rn is the state of the system and w 2 Rq is
the disturbance input to the system. Assume that F is an
inclusion function for f . Then, F induces the associated
embedding system

ẋi = Ei(x, x, w,w) := Fi(x, xi:x, w, w),

ẋi = Ei(x, x, w,w) := Fi(xi:x, x, w,w),
(2)

where i 2 {1, . . . , n} and the new state
⇥ x
x

⇤
2 T 2n

�0

evolves on the upper triangle,
⇥w
w

⇤
2 T 2q

�0. In the next
proposition, we use a single trajectory of the embedding
system to overapproximate the true reachable set of the
system (1) (Jafarpour et al., 2023, Proposition 5).

Proposition 9. (Reachability via embedding). Consider the
system (1) with an inclusion function F and its induced

embedding system E (2). If t 7!
h
x(t)
x(t)

i
denotes the tra-

jectory of E starting from initial condition
⇥ x0
x0

⇤
2 T 2n

�0 at

t0 with disturbance
⇥w
w

⇤
2 T 2n

�0 , then for every t � t0,
x(t) 2 [x(t), x(t)], where t 7! x(t) is the trajectory of (1)
from initial condition x0 2 [x0, x0].

The problem of evaluating an infinite number of trajec-
tories for the reachable set is replaced with overapprox-
imated interval bounds using a single trajectory of the
embedding system, which provides an e�cient, scalable
approach for online reachable set estimation.

Remark 10. If F is a monotone inclusion function, then
the induced embedding system E is a monotone dynamical
system (Angeli and Sontag, 2003) with respect to the
southeast partial order SE. If F is additionally a thin

inclusion function, then the approach is equivalent to the
decomposition-based approach from Coogan and Arcak
(2015). Thinness ensures that the decomposition function

di(x, x̂, w, ŵ) :=

⇢
Fi(x, x̂i:x, w, ŵ) x x̂, w ŵ
Fi(x̂i:x, x, ŵ, w) x̂ x, ŵ w

satisfies d(x, x, w,w) = f(x,w).

3.2 immrax.embedding Module Implementation

Similar to the usage of the inclusion function trans-
forms, immrax provides transforms on dynamical systems,
generating dynamical embedding systems. First, one de-
fines a System object, which evolves on a state x 2
Rn and defines the vector field f : Rn ⇥ · · · ! Rn.
Here, · · · represents any number of additional inputs
to the system. Given a System object sys, and an in-
clusion function F for the dynamics sys.f, the trans-
form ifemb(sys, F) returns an EmbeddingSystem object
whose dynamics are constructed using (2) on the inclusion
function F. For convenience, the transforms natemb(sys),
jacemb(sys), and mjacemb(sys) automatically construct
the EmbeddingSystem induced by the natural inclusion
function (natif(sys.f)), the Jacobian-based inclusion
function (jacif(sys.f)), and the Mixed Jacobian-based
inclusion function (mjacif(sys.f)).

4. APPLICATIONS

We demonstrate the usage of immrax through reachability
on a nonlinear vehicle controlled by a neural network and
robust closed-loop control synthesis on a pendulum. 3

4.1 GPU Acceleration for Neural Network Feedback Loops

In this example, we reimplement the interaction-aware
first-order inclusion function from our previous work
ReachMM (Jafarpour et al., 2023) using immrax with
jax_verify for neural network verification. We compare
to the nonlinear bicycle model (Jafarpour et al., 2023, Sec-
tion VII.A)—and the full implementation details can be
found in the correponding Jupyter notebook in the immrax
documentation. In Table 2, we compare the runtimes (after
JIT compilation) across several di↵erent numbers of initial
partitions on the CPU/GPU, as well as to a similar (hybrid
mode) implementation in ReachMM (Jafarpour et al., 2023).
The compiled immrax implementation sees substantial im-
provement in the runtime on the CPU, allowing it to
perform the higher fidelity Tsit5 algorithm in a similar
runtime as Euler integration on ReachMM. Additionally,
while the GPU performance on a single initial partition
is worse than the CPU, as the number of initial partitions
increase, the benefits of the parallelization is clear as it can
compute, e.g., 625 partitions in less than 10⇥ the runtime
of a single partition on the CPU.

4.2 Automatic Di↵erentiation for Robust Optimal Control

In this example, we use Automatic Di↵erentiation to
solve a robust optimal control problem in the embedding
space of a nonlinear pendulum. In particular, we provide
3

All experiments were performed on a computer running Kubuntu

22.01, with a Ryzen 5 5600X, Nvidia RTX 3070, and 32 GB of RAM.

Part.
ReachMM immrax (Euler) immrax (tsit5)

(Euler) CPU GPU CPU GPU

1
4
= 1 .0476 .0112 .0178 .0649 .0983

2
4
= 16 .690 .143 .0207 .856 .112

3
4
= 81 3.44 .627 .0306 3.86 .187

4
4
= 256 11.0 1.44 .0489 8.87 .302

5
4
= 625 27.1 4.60 .095 27.9 .588

6
4
= 1296 55.8 11.1 .198 67.1 1.13

Table 2. Summary of average runtimes (over
10 runs) in seconds for the bicycle model on

di↵erent numbers of initial partitions.

and discuss the relevant immrax code needed to build an
objective function with robust constraints, automatically
create and compile functions evaluating their gradients,
Jacobians, and Hessians, and finally setup an IPOPT
minimization problem to find a locally optimal solution.

Consider the dynamics of a forced, damped pendulum

ml2✓̈ + b✓̇ +mgl sin ✓ = ⌧, (3)

with m = 0.15kg, l = 0.5m, b = 0.1N · m · s, and g =
9.81m/s2. The torque ⌧ := (1 + w)u, where u 2 R is the
desired torque input and w 2 [w,w] := [�0.02, 0.02] is a
bounded multiplicative disturbance on the control input.
We implement this as a 2-state system with x := (✓, ✓̇),

ẋ = f(x, u, w) =

"
x2

(1 + w)u � bx2

ml2
� g

l
sinx1

#
(4)

This is implemented in immrax as a System, with the
specified dynamics written using jax.numpy.

import jax.numpy as jnp
import immrax
class Pendulum (immrax.System) :
def __init__(self, m=0.15, l=0.5, b=0.1) :
self.evolution = ’continuous’
self.xlen = 2
self.m = m; self.l = l; self.b = b

def f (self, t, x, u, w) :
return jnp.array([x[1],
(((1 + w[0])*u[0] - self.b*x[1]) /

(self.m * self.l**2))
- (g/self.l)*jnp.sin(x[0])])

sys = Pendulum()

In the preceding code, we specified two key properties for
the Pendulum: evolution tells immrax that the system is
in continuous time, which is needed to build the proper
continuous embedding system, and xlen tells immrax the
length of the state vector.

We seek to find a finite-time closed-loop optimal control
policy ⇡ : [0, T] ⇥ Rn ! R to swing up the pendulum
to an a priori safe region at the top. We consider linear
feedback control policies of the form ⇡(t, x) := K(x(t) �
xnom(t))+u↵(t), where K is a time invariant linear closed-
loop stabilizing term to help counter the disturbance,
u↵ : [0, T] ! R is a feedforward control policy, and
xnom : [0, T] ! Rn is the nominal trajectory of the
deterministic system under the feedforward control law u↵

with known disturbance mapping wnom : [0, T] ! R. The
closed-loop system is thus

ẋ = f(x,⇡(t, x), w) = f⇡(t, x, w). (5)

Consider the following function

[F⇡(t, x, x, w,w)] := ([Mx] + [Mu]K)([x, x] � xnom(t))
+ [Mw]([w,w] � wnom(t)) (6)
+ f(xnom(t), u↵(t), wnom(t)),

with [Mx Mu Mw] := [M⇠nom(t)
� (x, x, u↵(t), u↵(t), w, w)],

where M is defined as Proposition 7 for the map f̂ :
Rn+p+q ! Rn such that f̂((x, u, w)) := f(x, u, w),
for some (n + p + q)-permutation �, and ⇠nom(t) :=
(xnom(t), u↵(t), wnom(t)). This is a valid inclusion function
for the closed-loop dynamics f⇡ (5) (proof uses Proposi-
tion 7 Part (i)). We use the mjacM transform to implement
the inclusion function in immrax as follows

sys_mjacM = immrax.mjacM(sys.f)
def F (t, x, w, K, nominal) :
tc, xc, uc, wc = nominal
iuc = immrax.interval(uc)
iK = immrax.interval(K)
Mt, Mx, Mu, Mw = sys_mjacM(t, x,
iuc, w, centers=(nominal,))[0]

return ((Mx + Mu @ iK) @ (x - xc)
+ Mw @ (w - wc) + sys.f(tc, xc, uc, wc))

embsys = immrax.ifemb(sys, F)

The final step creates the embedding system embsys, i.e.
E from (2) induced by the inclusion function F⇡ (6). Using
the embedding system, we would like to solve the following
robust optimal control problem,

min
uff ,K

NX

i=1

|u↵(ti)|2 + kKk2F +
NX

i=1

kx(ti) � x(ti)k22

s.t. xf x(tj), x(tj) xf , j = Ne, . . . , N, (7)

x(0) = x(0) = (0, 0),h
x(ti+1)
x(ti+1)

i
=

h
x(ti)
x(ti)

i
+�tE(ti, x(ti), x(ti), w, w),

where the embedding dynamics E are discretized using
Euler integration with step size �t. The first and second
terms of the objective are typical quadratic conditioning
of the decision variables. The third term is a regularization
factor intended to help curb the expansion of the gap
between the upper and lower bound, which empirically
helps the optimization problem converge to a feasible
solution. Finally, in the inequality constraints, we require
that the pendulum reach a target set [xf , xf] and stay
within these constraints for t 2 [tNe , tN].

To setup the minimization problem in IPOPT, we first
implement a function called rollout_cl_embsys, which
uses jax.lax.scan to perform Euler integration on the
dynamics for a given control sequence (u↵(ti))Ni=1 and gain
matrix K, returning the state sequence (xti)

N
i=1.

def rollout_cl_embsys (u) :
u, K = split_u(u)
def f_euler (xt, ut) :
xtut, xnomt = xt
xtutp1 = xtut + dt*embsys.E(0., xtut, w, K,

(jnp.array([0.]), xnomt,
jnp.array([ut]), jnp.array([0.])))

xnomtp1 = xnomt + dt*sys.f(0., xnomt,
jnp.array([ut]), jnp.array([0.]))

return ((xtutp1,xnomtp1), xtutp1)
_,x = jax.lax.scan(f_euler, (x0ut,x0cent), u)
return x

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 0.00

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 0.50

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 1.00

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 2.00

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 2.50

�0.50 �0.25 0.00 0.25 0.50
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

t = 3.00

Fig. 1. The swinging trajectory of the pendulum embed-
ding system induced by (6) controlled by the closed-
loop control policy generated by the problem (7) is
visualized for various time instances. The angle [✓, ✓]
is represented as a wedge, where blue represents the
interval of possible angles. The gray wedge represents
the desired final state of the pendulum.

Note that the input u 2 RN+2 holds all decision variables,
i.e., u := (ut1 , ut2 , . . . , utN ,K1,1,K1,2). To compute the
nominal trajectory xnom, we simulate the undisturbed
system (wnom = 0). Next, we implement the objective,

def obj (u) :
x = rollout_cl_embsys(u)
return (jnp.sum(u**2)
+ jnp.sum((x[:,2:] - x[:,:2])**2))

The final set is implemented as con_ineq(u) � 0,

xf = immrax.icentpert([jnp.pi,0.],
[10*(jnp.pi/360),.1])

xfl, xfu = immrax.i2lu(xf)
def con_ineq (u) :
x = rollout_cl_embsys(u)
return jnp.concatenate((
(x[Ne:,:2] - xfl).reshape(-1),
(xfu - x[Ne:,2:]).reshape(-1)))

Next, we use JAX’s autodi↵ transforms to automatically
create functions to compute the objective’s gradient and
Hessian, as well as the Jacobian and Hessian vector prod-
uct of the constraints with respect to Lagrange multipliers.

obj_grad = jax.grad(obj)
obj_hess = jax.jacfwd(jacrev(obj))
con_ineq_jac = jax.jacfwd(con_ineq)
def con_ineq_hessvp (u, v) :
def hessvp (u) :
_, hvp = jax.vjp(con_ineq, u)
return hvp(v)[0]

return jax.jacrev(hessvp)(u)

After JIT compiling all of these functions, we use cyipopt
with the MA57 linear solver to find a feasible solution.
The setup and compilation steps took 147.91 seconds, and
IPOPT was run for 100 iterations, taking 2.60 seconds and
satisfying all constraints with a tolerance of �1.40⇥10�4.
The resulting trajectory is visualized in Figure 1.

5. CONCLUSIONS

In this paper, we presented a di↵erentiable and paralleliz-
able framework for interval analysis in JAX. We applied
this framework to two case studies demonstrating the tool-
box’s potential for e�cient closed-loop reachability analy-
sis and robust controller design. Future work will involve
certified robust training of neural network controllers.

REFERENCES

Altho↵, M. (2015). An introduction to CORA 2015.
In Proc. of the 1st and 2nd Workshop on Applied
Verification for Continuous and Hybrid Systems, 120–
151. EasyChair.

Angeli, D. and Sontag, E.D. (2003). Monotone control
systems. IEEE Transactions on Automatic Control,
48(10), 1684–1698.

Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., and
Schilling, C. (2019). JuliaReach: a toolbox for set-based
reachability. In Proc. of the 22nd International Con-
ference on Hybrid Systems: Computation and Control,
39–44.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. (2018). JAX: composable transformations of
Python+NumPy programs. URL http://github.com/
google/jax.

Coogan, S. and Arcak, M. (2015). E�cient finite ab-
straction of mixed monotone systems. In Proceedings of
the 18th International Conference on Hybrid Systems:
Computation and Control, 58–67.

Everett, M., Bunel, R., and Omidshafiei, S. (2023). Drip:
Domain refinement iteration with polytopes for back-
ward reachability analysis of neural feedback loops.
IEEE Control Systems Letters, 7, 1622–1627.

Fan, J., Huang, C., Chen, X., Li, W., and Zhu, Q. (2020).
ReachNN*: A tool for reachability analysis of neural-
network controlled systems. In International Symposium
on Automated Technology for Verification and Analysis,
537–542. Springer.

Harapanahalli, A., Jafarpour, S., and Coogan, S. (2023).
A toolbox for fast interval arithmetic in numpy with
an application to formal verification of neural network
controlled system. In 2nd ICML Workshop on Formal
Verification of Machine Learning.

Jafarpour, S., Harapanahalli, A., and Coogan, S.
(2023). E�cient interaction-aware interval analysis
of neural network feedback loops. arXiv preprint
arXiv:2307.14938.

Jaulin, L., Kie↵er, M., Didrit, O., and Walter, É. (2001).
Applied Interval Analysis. Springer London.

Shen, K. and Scott, J.K. (2017). Rapid and accurate
reachability analysis for nonlinear dynamic systems by
exploiting model redundancy. Computers & Chemical
Engineering, 106, 596–608. ESCAPE-26.

Wang, Y., Zhou, W., Fan, J., Wang, Z., Li, J., Chen, X.,
Huang, C., Li, W., and Zhu, Q. (2023). Polar-Express:
E�cient and precise formal reachability analysis of
neural-network controlled systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems.

http://github.com/google/jax
http://github.com/google/jax

Appendix A. ADDITIONAL FIGURES

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 1, euler

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 16, euler

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 81, euler

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 256, euler

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 625, euler

0.0 2.5 5.0 7.5
px

0

2

4

6

8

py

partitions: 1296, euler

Fig. A.1. The reachable set over-approximations computed
by simulating the embedding system from (Jafarpour
et al., 2023) using Euler integration are visualized in
light blue. The initial set [7.95, 8.05] ⇥ [6.95, 7.05] ⇥
[� 2⇡

3 � 0.01,� 2⇡
3 + 0.01] ⇥ [1.99, 2.01] is divided into

di↵erent numbers of partitions. 100 Monte Carlo
trajectories are pictured in dark red. In all cases, the
vehicle is certified to avoid the obstacle pictured in
light red, with varying degrees of accuracy to the true
reachable set.

0 1 2 3
t

�1

0

1

2

3

�

0 1 2 3
t

�2

0

2

4

6

�̇

Fig. A.2. The swinging trajectory of the embedding sys-
tem induced by (6) controlled by the closed-loop con-
trol policy generated by the optimization problem (7)
is plotted versus time. Left: The angle [✓, ✓] vs. t
in seconds (blue), with the terminal set constraint
✓ 2 [⇡ � 10⇡

360 ,⇡ + 10⇡
360] (gray). Right: The angluar

velocity [✓̇, ✓̇] vs. t in seconds, with the terminal set
constraint ✓̇ 2 [�0.1, 0.1] (gray).

Appendix B. PROOF OF CLOSED-LOOP
PENDULUM INCLUSION FUNCTION

In this appendix, we prove that (6) is an inclusion function
for the system (5). Consider the nonlinear system

ẋ = f(x, u, w), (B.1)

where f : Rn ⇥ Rp ⇥ Rq ! Rn is a parameterized vector
field. Consider a piecewise continuous feedforward control
curve [0, T] 3 t 7! u↵(t) 2 Rp, a piecewise continuous
disturbance trajectory [0, T] 3 t 7! wnom(t) 2 [w,w]
and some initial condition x0 2 Rn. Let [0, T] 3 t 7!
xnom(t) 2 Rn denote the corresponding trajectory of (B.1)

from initial condition x0, under control mapping u↵ and
disturbance mapping wnom. For some gain matrix K 2
Rp⇥n, define the feedback control policy ⇡ : [0, T] ⇥
Rn ! Rp, such that ⇡(t, x) = K(x � xnom(t)) + u↵(t).
Denote the closed-loop system as

ẋ = f(x,⇡(t, x), w) =: f⇡(t, x, w). (B.2)

Fix some t 2 [0, T], [x, x] 2 IRn, and [w,w] 2 IRq. One
can consider the vector field f : Rn ⇥ Rp ⇥ Rq ! Rn as a
mapping f̂ : Rn+p+q ! Rn. Let (x, u, w) := ⇠, (̊x, ů, ẘ) :=
⇠̊, and define ⇠ := (x, u↵(t), w) and ⇠ := (x, u↵(t), w).

Then, for any center ⇠̊ 2 [⇠, ⇠] and any permutation � on

(n+p+q), Proposition 7(i) implies that for every ⇠ 2 [⇠, ⇠],

f̂(⇠) 2 [M⇠̊
�(⇠, ⇠)](⇠ � ⇠̊) + f̂(⇠̊). (B.3)

With the definition [M⇠̊
x M⇠̊

u M⇠̊
w] := [M⇠̊

�], the previous
statement is equivalent to

f(x, u, w) 2 [M⇠̊
x(x, x, u↵(t), u↵(t), w, w)](x � x̊)

+ [M⇠̊
u(x, x, u↵(t), u↵(t), w, w)](u � u↵(t))

+ [M⇠̊
w(x, x, u↵(t), u↵(t), w, w)](w � ẘ)

+ f (̊x, u↵(t), ẘ).

(B.4)

Let x̊ := xnom(t), ẘ := wnom(t), u := ⇡(t, x) = K(x �
xnom(t))+u↵(t), and ⇠nom(t) := (xnom(t), u↵(t), wnom(t)).
If xnom(t) 2 [x, x] and wnom(t) 2 [w,w],

f⇡(t, x, w) 2 [M⇠nom(t)
x (x, x, u↵(t), u↵(t), w, w)](x � xnom(t))

+ [M⇠nom(t)
u (x, x, u↵(t), u↵(t), w, w)](K(x � xnom(t)))

+ [M⇠nom(t)
w (x, x, u↵(t), u↵(t), w, w)](w � wnom(t))

+ f(xnom(t), u↵(t), wnom(t)).
(B.5)

Combining terms,

f⇡(t, x, w) 2 ([M⇠nom(t)
x (x, x, u↵(t), u↵(t), w, w)]

+ [M⇠nom(t)
u (x, x, u↵(t), u↵(t), w, w)]K)(x � xnom(t))

+ [M⇠nom(t)
w (x, x, u↵(t), u↵(t), w, w)](w � wnom(t))

+ f(xnom(t), u↵(t), wnom(t)).
(B.6)

Thus, as long as xnom(t) 2 [x, x] and wnom(t) 2 [w,w],

[F⇡(t, x, x, w,w)] = ([M⇠nom(t)
x (x, x, u↵(t), u↵(t), w, w)]

+ [M⇠nom(t)
u (x, x, u↵(t), u↵(t), w, w)]K)([x, x] � xnom(t))

+ [M⇠nom(t)
w (x, x, u↵(t), u↵(t), w, w)]([w,w] � wnom(t))

+ f(xnom(t), u↵(t), wnom(t))
(B.7)

is an inclusion function of the closed-loop vector field f⇡.

In particular, note that the condition xnom(t) 2 [x, x]
is satisfied when (B.7) is used to build an embedding
system, as long as the initial condition x0 2 [x0, x0] used as
the initial condition of the embedding system trajectory,
and for every t 2 [0, T], wnom(t) 2 [w,w] used as the
disturbance bounds in the embedding system.

	Introduction
	Inclusion Module: Inclusion Function Transforms in JAX
	Inclusion Functions
	immrax.inclusion Module Implementation

	Embedding Module: Mixed Monotone Embedding Systems in JAX
	Mixed Monotone Embedding Systems
	immrax.embedding Module Implementation

	Applications
	GPU Acceleration for Neural Network Feedback Loops
	Automatic Differentiation for Robust Optimal Control

	Conclusions
	Additional Figures
	Proof of Closed-Loop Pendulum Inclusion Function

