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Abstract— In this work, we propose a new framework for
reachable set computation through continuous evolution of a set
of parameters and offsets which define a parametope, through
the intersection of constraints. This results in a dynamical
approach towards nonlinear reachability analysis: a single
trajectory of an embedding system provides a parametope
reachable set for the original system, and uncertainties are
accounted for through continuous parameter evolution. This is
dual to most existing computational strategies, which define sets
through some combination of generator vectors, and usually
discretize the system dynamics. We show how, under some
regularity assumptions of the dynamics and the set considered,
any desired parameter evolution can be accommodated as
long as the offset dynamics are set accordingly, providing a
virtual “control input” for reachable set computation. In a
special case of the theory, we demonstrate how closing the
loop for the parameter dynamics using the adjoint of the
linearization results in a desirable first-order cancellation of the
original system dynamics. Using interval arithmetic in JAX, we
demonstrate the efficiency and utility of reachable parametope
computation through two numerical examples.

I. INTRODUCTION
Verifying safe operation of complex control systems is of

great importance, especially when applied in safety-critical
domains like autonomous driving, aerospace systems, and
human-robot interactions. A common strategy for ensuring
safe behavior is through reachable set overapproximation [1],
where safety is verified for a guaranteed overapproximation
of the set of states the system can reach under uncertain
initial conditions and inputs.

For linear systems, the reachable set computation problem
is more or less solved. It was shown in [2] that only
n+ 1 simulations are required to propagate any generalized
star set, which are defined using what are called generator
vectors, and can represent any region of the state space. In
essence, a basis of generators G define a set of points through
some constrained combination, e.g., {x̊+Gα : P (α)}, where
x̊ is some point, α is a vector of coefficients defining a linear
combination Gα, and P is some predicate evaluating True or
False. For linear systems, the superposition principle allows
one to simply evolve the center x̊ and the generator vectors
in G to obtain the reachable star set.

For nonlinear systems, many computational packages [3],
[4], [5] have adopted similar strategies by propogating sets
in generator form. The crucial operation is an iterated appli-
cation of a one-step reachability computation, e.g., using a
first order conservative linearization like the following,

Rk = eAτRk−1 ⊕ L⊕ τW,
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where τ is some discretization step, A is the linearization of
the system, and the Minkowski sums ⊕ handle the inputs
W and errors L between the linearization and the true
nonlinear dynamics. Since the main computational blocks
are linear mappings and Minkowski sums, these tools have
developed different set representations [6], which greatly
improve the efficiency (and closure) of these operations.
Various generator set representations have been developed,
which have different tradeoffs between reachable set accu-
racy and computational efficiency. To name a few, there are
zonotopes [3], constrained zonotopes [7], polynomial zono-
topes [8], hybrid zonotopes [9], ellipsotopes [10], and taylor
models [11]. Beyond these generator-based approaches, there
are many other frameworks for reachable set computation.
For instance, level set methods use the Hamilton-Jacobi
equations [12], [13] to represent the reachable set as a level
set of a solution to a partial differential equation.

In contrast to generator-based approaches, one can con-
sider a dual formulation where the reachable set is defined
by a set of constraints on the space, rather than a set
of generators. Such constraint-based frameworks abstractly
propagate parameters which dynamically update the con-
straints, rather than generator vectors for a set. For instance,
in linear systems, evolving dual vectors using the adjoint
dynamics provides supporting hyperplanes for the reachable
set [14]. For nonlinear systems, reachable sets represented
using polytopes defined as the intersection of halfspaces
(H-polytopes) can be computed by evolving offsets along
the various facets on the boundary of the polytope [15].
We recap these two approaches [14], [15] briefly in Sec-
tion II. When the halfspaces are axis aligned, the polytopes
are interval sets [16] which provide efficient bounds at
the cost of accuracy [17]. A related framework is mixed
monotonicity [18], which embeds the original system into
a monotone dynamical system in twice the states whose
evolution provides interval bounds of the reachable set [19].
Using results from contraction theory [20], matrix measures
have also been used to propagate norm balls [21], [22], [23].

Contributions: In this work, we unify and generalize
the previously mentioned embedding and constraint-based
frameworks using the parametope, a novel set representation
for reachable set computation. A parametope is represented
as the intersection of constraints given by level sets of a
parameterized function. In Theorem 1, we show how under
some regularity assumptions, the parameters α can arbitrarily
vary (continuously), as long as the offset terms y compensate
accordingly. We show how the appropriate compensation can
be computed as the solution to an optimization problem, or
overapproximated using efficient tools like interval analysis.
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In Corollary 1, we show how to build a controlled embedding
system, where a single trajectory provides overapproximating
parametope sets for the original system.

Our embedding system can be viewed as a dual ap-
proach to generator representation strategies. Rather than
propagating generators, which represent real vectors in the
linear case, we propagate parameters, which represent dual
vectors in the linear case. Further, rather than discretizing and
handling uncertainty through Minkowski sums, we handle
uncertainty dynamically, avoiding the need to compute any
additional set operations. In Section IV, we work out two
special cases of the theory using the adjoint dynamics of
the linearized system to update the parameters, and provide
two numerical experiments demonstrating the computational
efficiency when using interval methods in JAX.

A. Notations

Let ≤ denote the elementwise order on Rn satisfying x ≤
y if and only if xi ≤ yi for every i = 1, . . . , n. Let ∥ · ∥
denote an arbitrary norm unless otherwise specified. Let ∥·∥op
denote the operator or induced matrix norm. For a mapping
f : Rn → Rm, let Df : Rn → Rm×n be the Jacobian matrix
Df(x) = ∂f

∂x (x). Let In denote the n× n identity matrix.

II. EXPOSITION: H-POLYTOPE EVOLUTION

In this section, we briefly recall two existing results
for reachable set computation using H-rep polytopes. For
simplicity, we omit the disturbance input for these examples
and focus on intuition and clarity rather than full rigor.

A. Flowing Dual Vectors for Linear Systems

Consider the linear autonomous system

ẋ = Ax, x(0) = x0 ∈ {x : αT
0 (x− x̊0) ≤ y0},

with an initial condition inside a halfspace determined by
dual vector α0, centering point x̊0, and offset y0. We want
to find a curve t 7→ α(t), such that the trajectory x(t) ∈ {x :
α(t)T (x − x̊(t)) ≤ y0}, for fixed offset y0, and t 7→ x̊(t)
as the trajectory from x̊0. As an ansatz, suppose the desired
curve α(t) is differentiable, then

d

dt
(αT (x− x̊)) = α̇T (x− x̊) + αTA(x− x̊).

The choice α̇ = −ATα sets the RHS to 0 uniformly for any
x. These dynamics on α are called the adjoint dynamics,
which specifically preserve the dual pairing αTx along any
trajectory of the system. Thus, if we build the following
dynamics on α and x̊,

˙̊x = Ax̊, α̇ = −ATα,

we have that for every t ≥ 0,

x(t) ∈ {x : α(t)T (x− x̊(t)) ≤ y0},
since α(t)T (x(t)− x̊(t)) ≡ αT

0 (x0 − x̊0) ≤ y0 is a constant
function using the adjoint dynamics for α. For an H-rep
polytope represented as K halfspaces, {α0(x− x̊(t)) ≤ y0},
for α ∈ RK×n, y ∈ RK , we can simultaneously flow each

row using the adjoint equation as α̇ = −αA to obtain
x(t) ∈ {α(t)(x− x̊(t)) ≤ y0}. This idea is the basic premise
explored in [14].

B. Fixed Dual Vectors for Nonlinear System

Another approach for flowing H-rep polytopes is to fix the
halfspaces and bound the vector field along each face of the
polytope. Consider the system

ẋ = f(x), x0 ∈ {x : α(x− x̊0) ≤ y0},

with initial condition inside a compact polytope. It is shown
in [15, Theorem 1] that under some regularity conditions, if
some absolutely continuous curve t 7→ y(t) satisfies

ẏk(t) ≥ αT
k (f(x)− f (̊x))

for every x along the k-th face of the polytope {α(x− x̊) ≤
y(t), αT

k (x − x̊) = yk(t)}, then trajectories are in the H-
polytope determined using the dual vectors α and the offset
y(t). In other words, if we build the following dynamics on
x̊, α, y,

˙̊x = f (̊x), α̇ = 0, ẏk ≥ sup
x:α(x−x̊)≤y
αk(x−x̊)=yk

αT
k (f(x)− f (̊x)),

we have that for every t ≥ 0,

x(t) ∈ {x : α(x− x̊(t)) ≤ y(t)},

with fixed matrix α.
As a final remark, a special case of the fixed dual vector

strategy arises when the parameters are structured as α =
[−In In]

T , which given the offset y = [−yT yT ]T , results
in the interval set {x ∈ Rn : y ≤ x ≤ y}. This corresponds
to setting the offset dynamics to the following,

−ẏ
i
≥ −(sup−eTi f(x)) =⇒ ẏ

i
≤ inf fi(x),

ẏi ≥ sup eTi f(x) = sup fi(x),

which are easily under and over approximated using interval
analysis as [17], [19].

III. GENERAL THEORY: PARAMETRIC
REACHABLE SETS

In the previous section, we recalled two approaches for
tracking the evolution of polytopic reachable sets in H-rep.
Motivated by these examples, in this section, we pose the
following questions: (i) can we bridge these theories in the
nonlinear case, allowing us to dynamically update parameters
constraining a set like the adjoint dynamics in the linear case,
while properly handling their error using offset dynamics as
in the nonlinear case? (ii) can we generalize beyond H-rep
polytopes to improve the generality of the result?



A. Parametopes: A New Set Representation

We first introduce a new set representation called a
parametope, which is defined as the intersection of several
parameterized sublevel sets with specified offset.

Definition 1. A parametope is the set

J̊x, α, yKg := {x ∈ Rn : g(α, x− x̊) ≤ y},

where x̊ ∈ Rn (center), α ∈ Rp (parameters), y ∈ RK

(offset), g : Rm×Rn → RK (nonlinearity). Notationally, set
the k-th face of the parametope

∂J̊x, α, yKkg := J̊x, α, yKg ∩ {x ∈ Rn : gk(α, x− x̊) = yk}.

Example 1. The following are examples of different types
of sets which can be represented using parametopes.

i. (H-rep Polytopes) Let α ∈ RK×n and y ∈ RK . Then
the H-rep polytope {x : α(x − x̊) ≤ b} is clearly a
parametope taking g(α, x − x̊) = α(x − x̊). Analyzing
further, we see that for each k, gk(α, x−x̊) = αT

k (x−x̊)
is the canonical pairing between dual vector (row) αk

and x− x̊.
ii. (Ellipsoids) Let g(α, x) = xTαTαx, α be a square

invertible matrix, and y > 0. The parametope J̊x, α, yKg
is the ellipsoid around the center x̊,

{x ∈ Rn : (x− x̊)TαTα(x− x̊) ≤ y}.

iii. (Annulus) Let α be a square invertible matrix, and ∥ · ∥
be a norm on Rn, g(α, x) = ∥αx∥, 0 < rl < ru. Then
J̊x, α, (−rl, ru)K(−g,g) represents the annulus

{x ∈ Rn : rl ≤ ∥α(x− x̊)∥ ≤ ru}.

Remark 1. The following remarks comment on the parame-
tope set representation.

• The center x̊ is not necessarily inside the parametope.
For instance, in Example 1 (iii), ∥α(̊x − x̊)∥ = 0 < rl
so x̊ /∈ J̊x, α, (rl, ru)Kg .

• A parametope is not necessarily convex or star-convex.
The annulus also demonstrates this. However, structural
properties of the nonlinearity and the offsets can result
in additional structure of the parametope. For instance,
if g is a quasiconvex function in x (i.e., g(α, sx +
(1 − s)y) ≤ max{g(α, x), g(α, y)}, ∀s ∈ [0, 1]), the
parametope J̊x, α, yKg is convex, as the sublevel set of
the quasiconvex function x 7→ g(α, x− x̊).

• If K = 1 and x 7→ g(α, x − x̊) is a positive definite,
radially unbounded function, then J̊x, α, yKg = {x :
g(α, x − x̊) ≤ y} is a compact set as the sublevel set
of a Lyapunov candidate.

• Under no regularity assumptions for g, the parametope
can represent any set S using its indicator function,
e.g., taking g(α, x) = −1S(x) and y = −1. However,
in Theorem 1, we will assume g is C1 with Lipschitz
partial derivatives.

B. Reachable Parametopes

We now present the main Theorem of this paper. Consider
a general nonlinear system defined by

ẋ(t) = f(x(t), w(t)), x(t0) = x0, (1)

where x ∈ Rn is the state of the system, w ∈ Rm is
a disturbance input, and f : Rn × Rm → Rn is locally
Lipschitz in x locally uniformly on w. This means that for
any compact sets X ⊆ Rn and W ⊆ Rm, there exists Lf > 0
such that ∥f(x1, w) − f(x2, w)∥ ≤ Lf∥x1 − x2∥ for every
x1, x2 ∈ X , w ∈ W . Under these assumptions, the system
has a unique trajectory for some neighborhood of t0 under
essentially bounded disturbance t 7→ w(t), which we will
denote t 7→ ϕf (t, t0, x0, w).

For the proof of Theorem 1, we require some additional
regularity of the sets considered.

Definition 2 (Locally Lipschitz face [24, Lemma 6.1]). We
say that the k-th face ∂J̊x, α, yKkg is locally Lipschitz in y if
for every x ∈ ∂J̊x, α, yKkg , there exist neighborhoods Bδ(x),
Bε(y) and Lk > 0 such that for every y1, y2 ∈ Bε(y), the
following holds: for any x1 ∈ Bδ(x) ∩ ∂J̊x, α, y1Kkg there
exists x2 ∈ B2δ(x) ∩ ∂J̊x, α, y2Kkg such that

∥x1 − x2∥ ≤ Lk∥y1 − y2∥.

Remark 2 (Constraint Qualifications). For sets defined struc-
turally as a parameterized level set, there are some suffi-
cient conditions, known as constraint qualifications, which
ensure Lipschitz behavior with respect to the parameters. For
instance, the Linear Independence Constraint Qualification
(LICQ) implies that if for every x ∈ J̊x, α, yKg , the vectors{

∂gk
∂x

(α, x− x̊) : gk(α, x− x̊) = yk

}
are linearly independent, then each face ∂J̊x, α, yKkg is locally
Lipschitz as Definition 2 [24, Lemma 6.1]. More generally,
one can use the Mangasarian-Fromovitz Constraint Qualifi-
cation (MFCQ) [24, Eq. (1.4)].

Theorem 1 (Parametric reachable sets). Consider the system
ẋ = f(x,w) from (1), let g : Rp × Rn → RK be a C1 map
with locally Lipschitz partial derivatives, W ⊆ Rm be a
compact set, t 7→ ẘ(t) ∈ W measurable, and t 7→ x̊(t) =
ϕf (t, t0, x̊0, ẘ). If t 7→ α(t), y(t) are absolutely continuous
curves satisfying:

i) for a.e. t ∈ [t0, tf ], ∥α̇(t)∥ ≤ A < ∞ for some A > 0;
ii) for every t ∈ [t0, tf ] and every k ∈ {1, . . . ,K},

∂J̊x(t), α(t), y(t)Kkg is locally Lipschitz as Definition 2;
iii) for a.e. t ∈ [t0, tf ] and every k ∈ {1, . . . ,K}, every x ∈

∂J̊x(t), α(t), y(t)Kkg and w ∈ W satisfies ξk(t, x, w) ≤
ẏk(t), where

ξk(t, x, w) :=
∂gk
∂α

(α(t), x− x̊(t))[α̇(t)] (2)

+
∂gk
∂x

(α(t), x− x̊(t))[f(x,w)− f (̊x(t), ẘ(t))];



then for any x0 ∈ J̊x(0), α(0), y(0)Kg and measurable t 7→
w(t) ∈ W , for every t ∈ [t0, tf ],

ϕf (t, t0, x0, w) ∈ J̊x(t), α(t), y(t)Kg.

Proof. Set the notation x(t) := ϕf (t, t0, x0, w) and h(t) :=
g(α(t), x(t) − x̊(t)). Let T := {t ∈ [t0, tf ] : ∃i, hi(t) >
yi(t)}, and for contradiction, suppose T ̸= ∅.

Set t1 := inf T . Using hypothesis (ii), let δ, ε > 0 such
that Bδ(x(t1)) and Bε(y(t1)) are neighborhoods satisfying
Definition 2 for every k, and let L = max{L1, . . . , LK} > 0.
By continuity, ∃t4 > t1 such that ∥x(t) − x(t1)∥ < δ/2,
∥y(t)− y(t1)∥∞ < ε/2 for every t ∈ [t1, t4].

Let Lf > 0 be a Lipschitz constant of f and F > 0 bound
∥f(x,w)∥ on Bδ(x(t0)) × W . Let Lg, L∂αg, L∂xg > 0 be
Lipschitz constants for g, ∂g

∂α , and ∂g
∂x respectively, on {α(t) :

t ∈ [t1, t4]} × {x− x̊(t) : x ∈ B2δ(x(t1)), t ∈ [t1, t4]}.
Since t1 is the inf of T , there is a γ > 0 and a t ∈ (t1, t4]

such that hi(t) > yi(t)+γ for some i. [17, Lemma 4] implies
the existence of absolutely continuous, nondecreasing ρ :
[t1, t4] → R satisfying (a) 0 < ρ(t) ≤ min{γ, ε/2, δ/(2L)}
for every t ∈ [t1, t4]; and (b) ρ̇(t) ≥ Cρ(t) for a.e. t ∈
[t1, t4], where C := L(L∂αgA + Lg + 2L∂xgF ). Let t3 :=
inf{s ∈ [t1, t4] : ∃i, hi(s) ≥ yi(s) + ρ(s)} (there exists a
point satisfying this property since ρ ≤ γ). Since ρ(t1) > 0,
h(t1) < y(t1) + ρ(t1)1. Continuity implies t3 > t1 and
h(t) < y(t)+ρ(t)1 for all t ∈ [t1, t3). Also, ∃k s.t. hk(t3) =
yk(t3) + ρ(t3), by continuity and t3 being the inf . Finally,
set t2 := sup{s ∈ [t1, t3] : hk(s) ≤ yk(s)}. Continuity and
ρ > 0 imply t2 < t3 and hk(t2) = yk(t2).

Set t 7→ ỹ(t) such that ỹi(t) = max{hi(t), yi(t)}. Then
for every t ∈ [t2, t3], h(t) ≤ ỹ(t) and hk(t) = ỹk(t),
thus, x(t) ∈ ∂J̊x(t), α(t), ỹ(t)Kkg . Since h(t) ≤ y(t) + ρ(t)1,
∥ỹ(t)− y(t)∥∞ ≤ ρ(t) ≤ ε/2 for every t ∈ [t2, t3]. Thus

∥ỹ(t)− y(t1)∥∞ ≤ ∥ỹ(t)− y(t)∥∞ + ∥y(t)− y(t1)∥∞
≤ ε/2 + ε/2 = ε,

and y(t), ỹ(t) ∈ Bε(y(t1)) for every t ∈ [t2, t3]. Since
x(t) ∈ Bε(x(t1)) ∩ ∂J̊x(t), α(t), ỹ(t)Kkg , hypothesis (ii)
implies the existence of z(t) ∈ ∂J̊x(t), α(t), y(t)Kkg such that

∥x(t)− z(t)∥ ≤ L∥ỹ(t)− y(t)∥∞ ≤ Lρ(t) ≤ δ/2,

thus, triangle inequality implies

∥z(t)− x(t1)∥ ≤ ∥z(t)− x(t)∥+ ∥x(t)− x(t1)∥
≤ δ/2 + δ/2 = δ,

so z(t) ∈ Bδ(x(t1)) for every t ∈ [t2, t3].
For ζ ∈ {x, z}, fix the notation ∂αgk(ζ) :=

∂gk
∂α (α(t), ζ(t)−x̊(t)) and ∂xgk(ζ) :=

∂gk
∂x (α(t), ζ(t)−x̊(t)).

For a.e. t ∈ [t2, t3], using the chain rule

ḣk(t)

= ∂αgk(x)[α̇(t)] + ∂xgk(x)[f(x(t), w(t))− f (̊x(t), ẘ(t))]

= ∂αgk(z)[α̇(t)] + ∂xgk(z)[f(z(t), w(t))− f (̊x(t), ẘ(t))]

+ (∂αgk(x)− ∂αgk(z))[α̇(t)]

+ ∂xgk(x)[f(x(t), w(t))− f(z(t), w(t))]

+ (∂xgk(x)− ∂xgk(z))[f(z(t), w(t))− f (̊x(t), ẘ(t))]

≤ ξk(t, z(t), w(t)) + (L∂αgA+ Lg + 2L∂xgF )∥x(t)− z(t)∥
≤ ẏk(t) + (L∂αgA+ Lg + 2L∂xgF )Lρ(t) = ẏk(t) + Cρ(t),

using hypothesis (iii) since z(t) ∈ ∂J̊x(t), α(t), y(t)Kkg and
w(t) ∈ W . For a.e. t ∈ [t2, t3], since ρ̇(t) ≥ Cρ(t),

ḣk(t)− ρ̇(t) ≤ Cρ(t)− ρ̇(t) + ẏk(t) ≤ ẏk(t)

=⇒ d
dt [hk(t)− ρ(t)− yk(t)] ≤ 0,

so t 7→ hk(t)− ρ(t)− yk(t) is nonincreasing for t ∈ [t2, t3].
Thus, −ρ(t2) = hk(t2)− ρ(t2)− bk(t2) ≥ hk(t3)− ρ(t3)−
bk(t3) = 0, which is a contradiction, so T = ∅.

Our proof structure resembles that of [15, Theorem 1],
which proves a similar result for H-polytopes with fixed half-
spaces. Theorem 1 generalizes that result to any parametope,
with time-varying parameters α.

Remark 3 (Connections to the literature). Theorem 1 recov-
ers several results from the literature as special cases.

i) (Adjoint evolution) For the linear system ẋ = Ax, and
polytope sets corresponding to functionals gk(α, x −
x̊) = αT

k (x − x̊), we get ξk(t, x) = (x − x̊)T α̇k +
αT
k (ẋ − ˙̊x) = −(x − x̊)TATαk + αT

kA(x − x̊) = 0.
Thus, ẏ = 0 (or y(t) ≡ y(0)) satisfies the hypotheses of
Theorem 1, and recovers the result from Section II-A.

ii) (Fixed dual vectors) Similarly, H-polytopes for the non-
linear system ẋ = f(x,w) with α̇ = 0 results in
ξk(t, x, w) = αT

k (f(x,w) − f (̊x,w)), recovering the
result from Section II-B.

iii) (Contraction theory) Consider the autonomous system
ẋ = f(x) for C1 differentiable f , α a square invertible
matrix, α̇ = 0, and g(α, x − x̊) = ∥x − x̊∥α =
∥α(x − x̊)∥ for a differentiable norm. Using the curve
norm derivative formula [25, Def. 17], for any x ∈
∂J̊x, α, yKkg = {x : ∥x− x̊∥α = y}, using a weak pairing
WPα compatible with ∥ · ∥α [25, Def. 15],

ẏ ≤ ξ(t, x, w) =
d

dt
∥x− x̊∥α

=
WPα(f(x)− f (̊x(t)), x− x̊(t))

∥x− x̊(t)∥α
= ∥x− x̊(t)∥α sup

s∈[0,1]

µ(Df(sx+ (1− s)̊x(t))) ≤ cy

using [25, Rem. 28], where µ(A) = limh↘0
∥I+hA∥op−1

h
is the logarithmic norm, and c is an upper bound for
µ(Df(x)) on the set of interest. Grönwall’s lemma
results in the bound ∥x(t) − x̊(t)∥ = y(t) ≤ ecty(t) =
ect∥x(0) − x̊(0)∥. This recovers the results from [21],



[22], [23] which use matrix measures for norm ball
reachable set computation.

Remark 4. For simplicity, we assumed W was a constant
compact disturbance set. The same theory allows for a time-
varying disturbance set as long as W(t) is compact.

C. Controlled Embeddings
Theorem 1 provides a very general result for computing

reachable parametopes for nonlinear systems. In practice,
the following Corollary demonstrates how the curves t 7→
x̊(t), α(t), y(t) can be obtained as the solution to a controlled
embedding system.

Corollary 1 (Controlled embeddings). Consider the setting
of Theorem 1. Define the embedding system

˙̊x = f (̊x, ẘ), α̇ = U (̊x, α, y), ẏ = E(̊x, α, y),

evolving on Rn × Rp × RK , where U is a locally Lipschitz
map, and E is a locally Lipschitz map satisfying

(x,w) ∈ ∂J̊x, α, yKkg ×W =⇒

Ek (̊x, α, y) ≥
∂gk
∂α

(α, x− x̊)[U (̊x, α, y)]

+
∂gk
∂x

(α, x− x̊)[f(x,w)− f (̊x, ẘ)],

for every k ∈ {1, . . . ,K}. If for every t ∈ [t0, tf ],
Jϕ(f,U,E)(t, t0, (̊x0, α0, y0), ẘ)Kg has locally Lipschitz k-
faces as Definition 2, then for any initial condition x0 ∈
J̊x0, α0, y0Kg and disturbance map t 7→ w(t) ∈ W ,

ϕf (t, t0, x0, w) ∈ Jϕ(f,U,E)(t, t0, (̊x0, α0, y0), ẘ)Kg,

for every t ∈ [t0, tf ].

Proof. Under the specified assumptions, there is a trajectory
t 7→ (̊x(t), α(t), y(t)) = ϕ(f,U,E)(t, t0, (̊x0, α0, y0), ẘ) for
some neighborhood of t0. x̊, α, y are absolutely continuous
and satisfy the assumptions of Theorem 1 on [t0, tf ].

Corollary 1 provides a dynamical framework for reachable
set computation by embedding the original system into a new
system evolving on Rn×Rp×RK . Computationally, we only
need to simulate one trajectory of this embedding system to
obtain a valid reachable parametope for the original system.
Additionally, since the map U is arbitrary, this provides
a new virtual input to control the parameters defining the
reachable set.
Remark 5 (Monotone embedding). Let U (̊x, α, y) = U (̊x, α)
(no dependence on the offset y). Consider the tight embed-
ding system, constructed by taking equality for the offset
dynamics in Corollary 1, i.e., when ∂J̊x, α, yKkg ̸= ∅,

Ek (̊x, α, y) = sup
x∈∂Jx̊,α,yKkg ,

w∈W

ξk(t, x, w).

The Lipschitz assumption for the k-faces from Definition 2
also implies that the solution to the optimization Ek is locally
Lipschitz with respect to α, y [24, Lemma 6.2].

The tight embedding system is a monotone system [26]
with respect to the order (̊x(1), α(1), y(1)) ⪯ (̊x(2), α(2), y(2))
if and only if x̊(1) = x̊(2), α(1) = α(2), y(1) ≤ y(2).

IV. ADJOINT EMBEDDINGS

Recall the intuition from Section II-A and Remark 3 (i):
for autonomous linear dynamics and polytope sets, a suitable
choice of dynamics for the parameters αk (which define
linear functionals on the space) is the adjoint dynamics
α̇k = −ATαk, which set the offset dynamics to 0. When
studying nonlinear systems, we propose a similar strategy:
to set the parameter dynamics equal to the adjoint dynamics
of the linearized system around the center trajectory x̊. In
this section, we introduce the feedback term U = −αDf (̊x)
and discuss two different methods to obtain rigorous bounds
for the corresponding offset dynamics defined by ξ. 1

A. Adjoint of the Linearization

We first work out a special case of the theory, noting
this restriction is not strictly necessary but will simplify the
resulting expressions. For the dynamics, consider the case of
linear dependence on the disturbance,

ẋ = f(x) + Cw,

where f : Rn → Rn is C2 smooth, C ∈ Rn×p fixed. For
the parametope, suppose that for each k, gk factors into a
composition of a scalar valued function hk and a matrix
multiplication with a subset of the parameters αk as,

gk(αk, x− x̊) = hk(αk(x− x̊)).

In this special case, using the notation ∂hk := ∂hk

∂1 (αk(x−
x̊)), ξk simplifies to

ξk(t, x, w) = ∂hk [Uk[x− x̊] + αk[f(x)− f (̊x)] + C[w − ẘ]] ,

where α̇k = Uk.
Using Taylor’s theorem on f , expanding around x̊ and

using Lagrange’s mean value remainder form, we obtain

f(x)− f (̊x) = Df (̊x)[x− x̊] + 1
2D

2f(z)[(x− x̊)⊗ (x− x̊)],

for some z = sx + (1 − s)̊x, s ∈ (0, 1), where D2f(z) is
a multilinear map of partials, and ⊗ is the tensor product.
Plugging this expansion into the above expression yields

ξk(t, x, w) = ∂hk[(Uk + αkDf (̊x))[x− x̊] + C[w − ẘ]

+ 1
2D

2f(z)[(x− x̊)⊗ (x− x̊)]].

The choice Uk = −αkDf (̊x) cancels the expansion of f to
first order, resulting in

ξk(t, x, w) = ∂hk[C[w − ẘ] + 1
2D

2f(z)[(x− x̊)⊗ (x− x̊)]].

From another perspective, the rows (αk)
T
j of αk evolve

according to the linearized adjoint dynamics as (αk)j =
−Df (̊x)(αk)j .

Tools like immrax [27] with automatic differentiation
capabilities can overapproximate this ξk(t, x, w) term using
interval arithmetic, as we demonstrate in the next Example.

1All experiments were performed on a desktop computer running Kubuntu
22.04, 32GB RAM, Ryzen 5 5600X. The code is available at https:
//github.com/gtfactslab/Harapanahalli_CDC2025.git

https://github.com/gtfactslab/Harapanahalli_CDC2025.git
https://github.com/gtfactslab/Harapanahalli_CDC2025.git
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Fig. 1. The overapproximating polytope reachable sets for the Van der Pol
oscillator are pictured in black, with several Monte Carlo simulations in blue.
The embedding trajectory is computed using the adjoint embedding from
Section IV-A from the initial set [−2.125,−1.875]×[−0.00125, 0.00125].
Left: Qualitatively, the rotation of the polytope captures the spread of the
Monte Carlo samples. Right: Zooming into a region around [−2 0]T , the
reachable set of the system fully passes through the initial set, verifying the
stability of the limit cycle.

Example 2 (Van der Pol oscillator). Consider the dynamics
ẋ = f(x) of the Van der Pol oscillator,

ẋ1 = x2, ẋ2 = −x1 + µ(1− x2
1)x2, (3)

with µ = 0.25. We consider parameters α ∈ R2×2, with
g(α, x−x̊) =

[
−α(x−x̊)
α(x−x̊)

]
, and y =

[
−y

y

]
∈ R4 such that y ≤

y. The corresponding parametope is the symmetric polytope

J̊x, α, yKg := {y ≤ α(x− x̊) ≤ y}.
For example, we consider the initial set determined by
x̊ = [−2 0]T , α0 = I2, [y, y] = [−0.125, 0.125] ×
[−0.00125, 0.00125], which yields the interval set
[−2.125,−1.875]× [−0.00125, 0.00125].

We use the following embedding system,

˙̊x = f (̊x), α̇ = −αDf (̊x), ẏ = E(̊x, α, y),

where E is obtained using immrax with automatic dif-
ferentiation in JAX to automatically compute an interval
overapproximation of ξk(t, x, w) along each face ∂J̊x, α, yKkg
of consideration, and set Ėk to the upper bound of this guar-
anteed overapproximation. The embedding system trajectory
t 7→ J̊x(t), α(t), y(t)Kg is plotted in Figure 1. We use the
Tsit5 numerical integration scheme with tf = 2.2π, and step
size ∆t =

tf
500 . After JIT compilation, the reachable set is

computed in 0.00763s.

B. Ellipsoidal Reachable Sets

Consider the autonomous system ẋ = f(x), for C1 map f .
Let α0 be an invertible matrix, and consider the structured
nonlinearity from the previous section with h(z) = zT z,
resulting in g(α, x− x̊) = ∥α(x− x̊)∥22 = (x− x̊)TαTα(x−
x̊). Instead of using a Taylor expansion to second order, in
this section, we overapproximate the error dynamics of the
system using a linear differential inclusion as [23],

f(x)− f (̊x) ∈ M(x− x̊),

where M ⊆ Rn×n is a set of matrices. There are different
ways to obtain a set M that satisfies this bound. For instance,
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Fig. 2. The projection of the overapproximating reachable ellipsoids for
the robot arm onto the q1-q2 plane are pictured in black, around the nominal
trajectory x̊(t), for t ∈ [0, 10]. Monte Carlo samples starting in the initial
ellipsoid are pictured in blue. Left: Qualitatively, the ellipsoids capture
the variable spread of the Monte Carlo samples throughout the original
trajectory. Right: Zooming into a region, it is clear to see that while the
offset term y can never decrease, the adjoint embedding dynamics results
in a shrinking overapproximating reachable set.

if Df(sx+(1−s)̊x) ∈ M for every s ∈ [0, 1], an application
of the mean value theorem implies the inclusion [23, Prop.
1]. Alternatively, we can build the mixed Jacobian LDI [23,
Thm. 1], which is less conservative when using interval
analysis to overapproximate M since x̊(t) is known [23,
Cor. 1]. Plugging into the expression for ξ from the previous
section, since ∂h

∂z h(z) = 2zT , and setting α̇ = U =
−αDf (̊x) as before,

ξk(t, x) = 2(x− x̊)TαT [U [x− x̊] + α[f(x)− f (̊x)]]

≤ sup
M∈M

2(x− x̊)TαTα(M −Df (̊x))(x− x̊).

Recall that when optimizing over ξk for the embedding
dynamics, we are interested in points x along the boundary,
which satisfy y = g(α, x − x̊) = (x − x̊)TαTα(x − x̊).
Rearranging, we can build a linear matrix inequality (LMI),

sup
x∈∂Jx̊,α,yK

ξ(t, x)

≤ sup
M∈M

2(x− x̊)TαTα(M −Df (̊x))(x− x̊)

≤ cy = c(x− x̊)TαTα(x− x̊) ⇐⇒
(M −Df (̊x))TαTα+ αTα(M −Df (̊x)) ⪯ cαTα,

where any feasible c results in the following estimates,

ẏ ≤ cy =⇒ y(t) ≤ ecty(0),

using Grönwall’s Lemma. Thus, we can solve the following
SDP, with a single scalar decision variable, at every time t
to obtain a valid embedding trajectory:

min
c∈R

c s.t. ∀M ∈ {Mi}i, (4a)

(M −Df (̊x))TαTα+ αTα(M −Df (̊x)) ⪯ cαTα (4b)

where {Mi}i is a set of corners satisfying M ⊆ co({Mi}i).
Example 3 (Controlled ellipsoids). Consider the dynamics



ẋ = f(x) of a 4 state robot arm from [28], [22]

q̇1 = z1, q̇2 = z2,

ż1 =
−2mq2z1z2 − kp1q1 − kd1z1

mq22 +ML2/3
+

kp1u1

mq22 +ML2/3
,

ż2 = q2z
2
1 − kp2

q2
m

− kd2
z2

m
+

kp2
u2

m
,

with u1 = kp1 , u2 = kp2 , M = 1, L = 3, kp1 = 2, kp1 = 1,
kd1

= 2, kd2
= 1. We use the initial set J̊x0, α0, y0K, where

α0 = P 1/2 with P and x̊0 from [22], and the following
embedding system,

˙̊x = f (̊x), α̇ = −αDf (̊x), ẏ ≤ cy,

where c is the solution to the semidefinite program (4)
initialized as follows. We use immrax.mjacM to compute
the interval mixed Jacobian matrix [M] with the state
variable order [z1 z2 q1 q2]

T [27], sparsely extract the
64 corners (there are only 6 nonconstant elements), and
solve (4) using cvxpy with MOSEK. Comparing to the
result from [23], rather than occasionally resynthesizing a
P = αTα matrix in the semi-definite program, which is valid
for a specified horizon, we automatically and dynamically
update the parameters using the adjoint equation. We use
Euler integration with tf = 10, and step size ∆t = 0.01.
The embedding trajectory is computed in 18.6s, due to the
time consuming SDP optimization problem defining the RHS
of the embedding system.

V. CONCLUSION

In this work, we presented a new framework for parametric
reachable set computation through dynamical embeddings.
This paper, while primarily focused on the theory behind
reachable set computation using parametope embeddings,
demonstrated good accuracy, scalability, and computational
tractability. We believe there are many directions for future
work on the computational side. As with generator-based
strategies, we suspect that enforcing additional structure
to the parametope like constrained zonotopes, polynomial
zonotopes, etc., will provide better capabilities for improving
reachable set efficiency and accuracy. For instance, if g is de-
fined by a polynomial whose coefficients are the parameters
α, a higher order analogue of the adjoint embedding may
allow for higher order polynomial cancellations. Addition-
ally, the arbitrary dynamics for α leave room for synthesizing
various control policies for the embedding system to virtually
to control the growth of the reachable set.
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