
Run Time Assurance
for Safety-Critical Systems

An Introduction to Safety Filtering Approaches
for Complex Control Systems

Kerianne L. Hobbs, Mark L. Mote, Matthew C. L. Abate,
Samuel D. Coogan, and Eric M. Feron

POC: K. Hobbs (kerianne.hobbs@us.af.mil)
June 7, 2022

Approved for public release: distribution unlimited. Case Number AFRL-2021-2407.

More than three miles above the Arizona desert, an F-16 student pilot experienced a
gravity-induced loss of consciousness (GLOC), passing out while turning at nearly 9Gs (nine
times the force of gravity) flying over 400 knots (over 460 miles per hour). With its pilot
unconscious, the aircraft turn devolved into a dive, dropping from over 17,000 feet to less
than 8,000 feet in altitude in less than 10 seconds. An auditory warning in the cockpit called
out to the pilot “altitude, altitude” just before he crossed through 11,000 feet, switching to a
command to “pull up” around 8,000 feet. Meanwhile, the student’s instructor was watching
the event unfold from his own aircraft. As the student’s aircraft passed through 12,500 feet,
the instructor called over the radio “two recover,” commanding the student (“two”) to end the
dive. As the student’s aircraft passed through 11,000 feet the instructor’s “two recover!” came
with increased urgency. At 9,000 feet, and with terror rising in his voice the instructor yelled
“TWO RECOVER!” Fortunately, at the same time as the instructor’s third panicked radio call,
a new Run Time Assurance (RTA) system kicked in to automatically recover the aircraft. The
Automatic Ground Collision Avoidance System (Auto GCAS), an RTA system integrated on the
jets less than two years earlier in the Fall of 2014, detected that the aircraft was about to collide,
commanded a roll to wings level and pull up maneuver, and recovered the aircraft less than
3,000 feet above the ground. The event described here occurred in May 2016. A video from the
event was declassified and publicly released in September 2016 and the footage may be found at
[1]. While Auto GCAS monitored the behavior of a safety-critical cyber-physical system with

a human providing the primary control functions, the same concept is gaining attention in the

1

ar
X

iv
:2

11
0.

03
50

6v
2

 [e
es

s.S
Y

]
6

Ju
n

20
22

autonomy community looking to assure safety while integrating complex and intelligent control
system designs.

RTA Systems are online verification mechanisms that filter an unverified primary controller
output to ensure system safety. The primary control may come from a human operator, an
advanced control approach, or an autonomous control approach that cannot be verified to the
same level as simpler control systems designs. The critical feature of RTA systems is their
ability to alter unsafe control inputs explicitly to assure safety. In many cases, RTA systems
can functionally be described as containing a monitor that watches the state of the system
and output of a primary controller, and a backup controller that replaces or modifies control
input when necessary to assure safety. Note that RTA and the controllers within the architecture
go by many different names, as described in the sidebar titled “RTA Aliases.” RTA designs
specifically to bound the behavior of neural network control systems used as the primary
controller are discussed in the sidebar titled “Shielded Learning.” An important quality of an
RTA system is that the assurance mechanism is constructed in a way that is entirely agnostic to
the underlying structure of the primary controller. By effectively decoupling the enforcement of
safety constraints from performance-related objectives, RTA offers a number of useful advantages
over traditional (offline) verification. Another way to think of RTA is to consider designing
controllers so that there is always a plan B, as discussed in a sidebar titled “The Case for Plan
B.”

Verification, validation, assurance, and certification methods present the largest barriers to
operational use of autonomous control in safety critical systems, such as passenger aircraft,
vehicles, medical devices, and nuclear power plants. For example, the commercial aviation
domain requires showing stringent safety constraint satisfaction for any failure that is more likely
than “extremely improbable,” defined as an event that occurs with a probability of 10�9 [2], (more
than one in a billion flight hours). While verification, validation, assurance, and certification are
related, there are slight variations in their meaning. Additionally, these are also confused with
concepts described in the “Safety, Reliability, and Security” sidebar. Verification is an activity that
determines whether a system meets requirements [3], in effect answering the question “Did we
build the system right?” Validation assesses whether a system meets the needs of the end user [4],
answering the question “Did we build the right system?” Model validation refers to evaluating
how well a model represents reality. Assurance is justified confidence that the system functions
as intended with limited vulnerability to uncertainty, hazards, and threats based on evidence
generated through development activities [5]. Certification determines whether a system conforms
to a set of criteria or standards for a class of similar systems [6]–[13]. Verification, validation,
certification and assurance of safety critical dynamical systems requires the development of

2

techniques that incorporate comprehensive analysis based on rigorously developed specifications
as well as techniques that continuously evaluate system behavior at run time.

A significant benefit of RTA is that it alleviates the need to design the primary controller
in a way that conforms to traditional safety standards, which may not be directly applicable
to the primary control design. Practical consequences of this are that RTA provides a means
of testing new control algorithms on hardware platforms without compromising safety potential
as well as a near-term certification path for autonomous controllers and safety-critical human-
controlled systems. Additionally, the verification of an assurance mechanism is generally simpler
than verification of a performance-based controller as it does not require consideration of the
potentially complex performance-related objectives. That is, safety verification does not become
more difficult as the primary controller grows more complex, and the verification process does not
need to be repeated when changes are made to the primary controller. Note that RTA is envisioned
to increase safety confidence, not provide a substitute for having some level of confidence in
the safety of a primary controller. Additionally, as described in the sidebar “To RTA or not to
RTA? That is the Question,” there are times when RTA is not appropriate.

RTA is emerging as the dominant approach for enforcing safety in real world autonomous
systems and semi-autonomous systems. Though not always directly associated with the term run
time assurance, notable autonomous systems applications are seen in road vehicles [14], [15],
bipedal walking [16], [17], air traffic control [18], fixed wing aircraft collision avoidance [19]–
[23] and flight envelope protection [24], VTOL aircraft [25] [26], spacecraft collision avoidance
[27], manipulator arms [28], and propulsion [29] to name a few.

The rise in popularity of RTA can be attributed to many factors, including: (i) the emergence
of mobile autonomous systems operating in safety critical environments, e.g. away from very
specialized and remote applications to the vicinity of humans; (ii) the increasing complexity
of the primary control system in these systems making traditional verification techniques
prohibitively difficult; (iii) the growing desire to quickly update complex system software without
compromising safety or repeating a costly verification process; (iv) the ability to perform fast
computation online, e.g., integrating trajectories or reachable sets online has only recently become
a tractable task for non-trivial systems; (v) the emergence of control barrier function (CBF)
and active set invariance filtering (ASIF) methods that give smooth and minimally invasive
modifications to the desired actions. Additionally, RTA seems to provide an attractive solution
to bounding the behavior of machine learning and artificial intelligence (AI) systems. While some
notable efforts have been made in the direction of generating and verifying provably safe deep
neural network controllers [30]–[33], the complexity and dynamic nature of these systems often
precludes the ability to generate rigorous safety guarantees on the primary controller. The RTA

3

paradigm enables an alternate path, without a need to compromise on safety. Reinforcement
learning (RL) applications on safety-critical systems often fall into the domain of safe RL,
described as a process of policy learning that maximizes expected return while ensuring system
performance and/or respecting safety constraints [34]. The safe RL community generally takes
one of two approaches: modifying the optimality criterion to reduce risk or using an RTA
mechanism during the training process, often referred to as a shield [35].

This article provides a tutorial on developing RTA systems. First a description of the
basic architecture, modeling framework, and fundamental definitions are introduced. Second,
categories and properties of RTA systems are identified, and systems engineering and human-
machine interaction considerations beyond the system dynamics are discussed. Third, a particular
category of RTA systems called the Simplex architecture is described. Fourth, a second category
of RTA systems called active set invariance filters is described. Fifth, implicit and explicit
variations of both the Simplex architecture and active set invariance filter RTA approaches
are described for the canonical double integrator system. Sixth, approaches for RTA system
performance under uncertainty is described. Seventh, verification approaches for RTA algorithms
and architectures are presented. Additional topics, applications, definitions, examples, and
supplemental information are found in sidebars throughout.

Run Time Assurance for Safety-Critical Cyber-Physical Systems

Cyber-physical systems feature computing devices that interact with the physical world via
actuators and sensors [36], and such systems are safety-critical when failure would result in loss
of life, damage to property, or other unacceptable damages such as environmental harm [37]. An
RTA architecture acts as an online-verification and enforcement tool for cyber-physical systems
that guarantees certain system-level safety requirements are met at run time. In this section, the
RTA problem formulation, appropriate RTA employment in the control loop, and other important
design considerations are discussed.

The Run Time Assurance Architecture

RTA presents an approach to control design that allows a designer to sidestep the common
trade-off between performance and safety. The central idea behind RTA is to decouple the task
of enforcing safety constraints from all other objectives of the controller. This is achieved by
splitting the control system into two components: a performance-driven primary controller, and
a safety-driven RTA mechanism. The RTA mechanism preempts the desired inputs from the
primary controller when necessary for ensuring the safety of the system, and otherwise lets the
input pass through unaltered. This approach is associated with the feedback control architecture

4

shown in Figure 1b. The output of the performance-driven controller is referred to as the desired
input and assigned the variable udes, and the output of the RTA mechanism is referred to as the
actual input (or assured input) and is assigned the variable uact. At its core, an RTA mechanism
is a mapping from a state x 2 Rn and a desired input udes 2 Rm to an actual input uact 2 Rm,
and has the objectives of (i) enforcing safety of the system as defined by state constraints, and
(ii) having uact as close as possible to udes, so long as it does not conflict with the first objective.
A common choice for measuring how close the two signals are is the norm of the difference
between the two variables, however, this measurement may also take other forms, such as the
integral of the deviation. An RTA mechanism is said to be assured when the output uact is always
verifiably safe, as defined in later sections. Moreover, an assured RTA mechanism guarantees
safety for the entire system, and for all time, and this is true regardless of the chosen primary
controller. Although not considered an RTA architecture under the definitions in this paper, a
related concept for an alternative safety architecture is described in the sidebar titled “Reference
and Command Governors.”

Modelling Cyber-Physical Systems

Mathematical models that provide an abstraction of real world system behavior may be
defined at varying levels of complexity based on the contrasting needs of accurately predicting
system behavior and conducting mathematical analysis. This article focuses mainly on cyber-
physical systems modeled as dynamical systems; hereafter the variable x 2 X ✓ Rn denotes the
state vector of the system model and the variable u 2 U ⇢ Rm denotes a bounded control input,
where X is the set of all possible system states and the set U is the admissible set of controls,
determined a priori by the actuation constraints of the real-world system. Continuous-time system
models appear as systems of ordinary differential equations as in

ẋ = Fc(x, u), (1)

and discrete-time system models appear as state-update maps as in

x+ = Fd(x, u). (2)

While the computational elements responsible for the control of a CPS live in a discrete world,
the physical laws of motion tend to take the form of ordinary differential equations. In many
cases, systems of the form (2) are obtained from discretizing equations of the form (1) over the
controller update period.

A natural generalization is to consider hybrid systems that combine continuous-time and
discrete-time elements [38], [39]. In fact, as seen below, some RTA mechanisms are naturally
interpreted as inducing a hybrid system in closed-loop, even when the open-loop system is of

5

Controller Plant
ሻݔሺݑ

ݔ

RTA
Mechanism PlantPrimary

Controller

ሻݔୱሺୣୢݑ ǡݔୟୡ୲ሺݑ ୱሻୣୢݑ

Assured Controller

ݔ

(a)

(b)

Figure 1: To illustrate where run time assurance sits within the control system architecture, (a)
depicts a prototypical feedback control system architecture, and (b) shows the insertion of a run
time assurance mechanism. The primary controller (e.g. human operator, an advanced control
approach, or an autonomous control approach) is performance-driven and outputs a desired input
udes. The run time assurance mechanism maps the state x 2 Rn and a desired input udes 2 Rm to
an actual input uact 2 Rm, with the objectives of (i) enforcing state constraints, and (ii) outputing
uact as close as possible to udes. Run time assurance can be thought of as a safety filter on the
performance controller output.

the form (1). For the purposes of this article, attention is restricted to to systems with dynamics
governed by (1) or (2) and will not formally characterize hybrid systems, but we note instances
where RTA tools have been specifically extended to such systems in the literature.

Throughout this article, it is discussed how one may verify or assure system models of
the form (1) or (2) against safety constraints. However, (1) and (2) are only models, and real-
world systems generally deviate from their models. When this deviation is significant, safety
guarantees derived from the models are invalid. One method for addressing this limitation is to
instead consider a nondeterministic model that explicitly considers uncertainties that account for
the deviation between the real-world system and the deterministic models presented in (1) or (2).
This article first focuses on the deterministic system models (1) and (2) and discusses extensions
to nondeterministic models in the Section “Assurance in the Presence of Uncertainty.”

6

Admissible Control of Cyber-Physical Systems

The main focus of this article is in devising safe controllers for cyber-physical systems
modeled as in (1) or (2). Safety control schemes must conform to the boundaries of admissible
control. That is, a control law can only be realized on a physical system if its outputs are bounded
to a set of signals that respect the actuation constraints of that system. A feedback control law u

denotes a mapping to Rm from either the state domain or an augmentation of the state domain.
For instance, in the context of RTA, many primary control laws will take the form u : X ! Rm,
while RTA control laws will generally take the form u : X ⇥ Rm ! Rm, and either can be
extended to include explicit dependence on time. Control laws are said to be admissible when
their range is the admissible input set U , e.g. u : X ! U or u : X ⇥ Rm ! U .

Any control law u can be made admissible via composition with a saturation (also called
clamping) function; a saturation function � : Rm ! U is such that �(u) is approximately
equal to u when u is in the interior of U and �(u) is approximately the projection of u onto
the boundary of U when u is outside of U . Here, there are two main approaches: (i) hard
clamping, whereby the saturation function �(u) = u for all u 2 U and �(u) is a projection
onto the boundary @U , and (ii) smooth clamping, whereby � takes the form of a differentiable
function that such that �(u) ⇡ u for u 2 U . For example, for the case of scalar input and
U = [�1, 1] ⇢ R, then �1(u) = max(�1,min(1, u)) is a hard clamping function while �2(u) =

tanh(u), �3(u) =
2
⇡ tan(

⇡
2u), �4(u) = u(1+u2)�1/2, and �5(u) = tanh(u+0.5u3) are examples

of smooth clamping functions.

Safety and Invariance of Cyber-Physical Systems

In a colloquial context, safety means freedom from harm or danger. For safety critical
systems, safety is freedom from conditions that would, in a worst-case environment, lead to an
unacceptable loss, such as a loss of control, physical damage to the system under control, loss
of human life, human injury, property damage, environmental pollution, or failure of the mission
[40], [41]. In the context of a dynamical system, safety is a characterization of the state of the
system and its evolution. While alternate approaches to forming safety specifications exist (e.g.
temporal logic), this research focuses specifically on set invariance requirements derived from
static properties on the state. Specifically, safety properties are specified with state constraints,
and safety relates to whether a particular initial condition will lead to the safety constraints being
satisfied for all time.

In this article, safety constraints are defined with inequality constraints on the state. In
particular, we consider 'i : X ! R for i 2 {1, . . . ,M}, where M is the number of safety

7

constraints and it is required that always 'i(x) � 0 for each i. The set of states that satisfy all
of the safety constraints is referred to as the constraint set (sometimes called the allowable set
or the constraint space) and is given by

CA := {x 2 X |'i(x) � 0, i 2 {1, . . . ,M}}. (3)

Example: Consider a wingman aircraft with position (xW, yW) flying co-altitude
in formation with a lead aircraft with position (xL, yL) and the requirement is that the two
aircraft never go within 30 meters of each other. A constraint set over the states x =

[xL, yL, ẋL, ẏL, xW, yW, ẋW, ẏW]T is given by:

CA = {x 2 R8 |
p

(xL � xW)2 + (yL � yW)2 � 30 � 0}. (4)

⌃

Importantly, there may exist states in CA that obey the safety constraints at a given time, but
that inevitably lead to violations in the future. For example, in the aircraft case it is possible for
the wingman aircraft to have just more than 30 m separation with the lead aircraft initially, but
be traveling too fast to be able turn, climb, or descend to avoid a collision. Though the state falls
in the constraint set CA at a given time, it is not “safe” as it will inevitably lead to a departure
from the set. A meaningful definition of safety must encode additional information relating to
whether the safety constraints will continue to be satisfied for all time with a particular control
law and subject to a particular set of dynamics and actuation constraints.

Informally, a system is safe if the state belongs to CA for all time. This concept is formalized
with the notion of set invariance: A state x(t0) is safe with respect to a closed-loop dynamical
system if that state lies in a forward invariant subset of the constraint set, i.e. if:

x(t0) 2 CS =) x(t) 2 CS 8 t � t0 (5)

where CS ✓ CA. In this case, CS is said to be a safe set. Furthermore, control laws are said
to be safe when they render some nonempty subset of CA forward invariant. It is generally
desirable that a control law be designed such that the safe set is as large as possible. However,
it is generally not possible to find an admissible control law that will render CA itself forward
invariant. The distinction between CS and CA is necessary as the system is subject to actuation
and dynamics constraints, meaning that the control signal only has a limited amount of influence
over the evolution of the state.

It is important to note that forward invariance, and by extension safety, are properties of
the closed-loop system and are not defined in absence of a controller. The existence, size, and
shape of CS are all dependent on the controller. The question of whether it is possible to find

8

ࡿ

ࢄ

ሺ߮ ݔ Ͳሻ

ࡿ

ࢄ

ሺ݄ ݔ Ͳሻ

ሺ߮ ݔ Ͳሻ

ሺ݄ ݔ Ͳሻ
࢈

߶ሺݐǢ ሻݔ

ݔ ߶ሺܶǢ ሻݔ

Figure 2: Safe set CS and constraint set CA topology for explicit (left) and implicit (right) cases.
Here X represents the set of all states, the constraint set CA is the set of states considered safe
when there are no controller limitations, and the safe set CS is a subset representing the set of
states that are safe under the limits of the control system. For example, a car approaching a wall
is in the constraint set CA so long as it does not hit the wall. However, if the car is two feet
from the wall and moving at 100 miles per hour, the it can be in the constraint set CA but not
in the safe set CS. To be in CS, the car must be able to stop before hitting the wall. In cases
where it is hard to define CS, but a predefined backup control is known (e.g. car slamming on
the brakes), an implicit backup set Cb may be used instead of CS.

a control law that will render a particular set invariant is addressed with the concept of control
invariance. A set S ✓ X is said to be control invariant (also called viable) if there exists an
admissible control law that renders S forward invariant. The largest control invariant subset of
CA is known as the viability kernel [42]. Intuitively, the viability kernel is the largest achievable
safe set, and it forms the boundary between the states for which it is and is not possible to find
a control input that will keep the system safe for all time. A fact that will become important in
later sections is that control invariant sets are forward invariant under controllers that take the
form of certain optimization-based procedures.

Identifying Safe Sets

Computing invariant sets has been the subject of a wide variety of research. A common
approach to identifying an invariant region is to find a Lyapunov function. Since stability is a

9

stronger condition than invariance, any stable region under a particular controller must also be
invariant under that controller. Moreover, invariance of a set under an admissible control law
u : X ! U , also implies control invariance under U . Invariant regions may also be computed by
identifying barrier certificates [43]. While identifying Lyapunov functions or barrier certificates
is typically a difficult task, they may be computed automatically for polynomial dynamics using
sum-of-squares (SOS) optimization [15], [44], [45] at moderate to high computational costs.
Other approaches include using discretized solutions the the Hamilton-Jacobi equations [46],
and sampling [47]. Safe sets may also be computed for discrete time systems using approaches
in computational geometry [48]. These approaches typically rely on convexity of the set CA and
linearity of the dynamics for the purposes of implementing set operations. See [49]–[51] for a
more extensive overview of techniques for invariant set computation.

Example: Consider the double integrator system—e.g. a spacecraft in linear motion—
described by

ẋ1 = x2

ẋ2 = u
(6)

where the state vector x = [x1, x2]T 2 R2 is composed of a position state x1, and a velocity state
x2, and u 2 [�1, 1] is the acceleration due to thrust. The safety constraint '(x) = �x1 � 0 is
imposed on the system, reflecting the requirement that the system avoid collision with an object
located at x1 = 0, and extending to x1 � 0. The constraint set is

CA = {x 2 R2 | � x1 � 0}. (7)

The largest control invariant subset (i.e. the viability kernel) of CA is CS = {x 2 R2 |h(x) � 0}
where

h(x) =

8
<

:
�2x1 � x2

2 if x2 > 0

�x1 if x2 0.
(8)

The unsafe states in the constraint set CA \ CS represent states for which a future collision is
inevitable. Intuitively, x2 =

p
�2x1 represents the maximum safe velocity at x1. If this approach

speed is exceeded, then there will not be sufficient distance to stop before a collision occurs.
This result is made apparent by considering the flow of the system under a recovery maneuver
u = �1, which applies maximum thrust force away from the obstacle. It can be seen that CS is
a forward invariant set under this control law. Figure 3 shows a depiction of the described sets,
and the flow under various inputs.

⌃

10

Figure 3: A car moving straight towards a wall can be modeled as a double integrator system.
This shows a phase plot for double integrator system with u = �1, 0, 1, where x1 is position, x2

is velocity, u = 1 represents full forward acceleration, u = 0 represents continuing at a constant
velocity, and u = �1, represents full acceleration away from the wall. The viability kernel CS is
shaded green and represents the safe states where it is possible to apply full negative acceleration
to avoid hitting the wall. Collision states are shaded red and represent states in which the car
has hit or driven past the wall X \ CA. The inevitable collision states CA \ CS are shaded purple
and represent cases where the car has not yet hit the wall, but is traveling too fast towards the
wall to be able to stop in time.

Implicit and Explicit Definitions of the Safe Set

Given a constraint set CA and an admissible control law u : X ! U , the question arises
of how one can determine if a given state x 2 X is safe. In many cases, the set of safe states
CS can be identified explicitly with a functional representation; e.g.

CS = {x 2 X |h(x) � 0}, (9)

with h : X ! R. Checking whether x 2 CS is then equivalent to checking whether h(x) � 0. The
safe set boundary may be determined in a number of ways, such as through Lyapunov arguments
or reachability analysis. Additionally, for continuous-time systems as in (1), Nagumo’s theorem
states that, under appropriate regularity assumptions on f , u, and h, a necessary and sufficient
condition for invariance of a candidate set CS as in (9) is @h

@x(x)
TFc(x, u(x)) � 0 for all x such

that h(x) = 0 [52], and thus Nagumo’s theorem can be used to verify that a candidate safe set is
invariant. Moreover, as discussed in the Section “Assurance in the Presence of Uncertainty,” it is

11

possible to consider nondeterministic effects through the identification of sets that are robustly
forward invariant, that is, that are forward invariant under any realization of the nondeterminism.

Example: Consider the double integrator system (6), now paired with the constraint
set CA = {x 2 R2 | 1 � kxk1 � 0}. Suppose that a control law is constructed such that for all
x 2 CA, u = �x1 � x2. Note that actuation constraints can be ignored in CA if a hard clamping
function is used, and that for all x 2 CA, u(x) 2 U . In this case, the closed-loop dynamics are

ẋ =

"
0 1

�1 �1

#
x, (10)

for all states in CA. A valid safe set can be constructed by identifying a region of attraction
contained in CA. For instance, note that

V (x) = 1.2x2
1 + 0.2x1x2 + 1.1x2

2 (11)

is a Lyapunov function for the closed-loop system and the level curve V (x) = 1 is contained in
CA. Thus, CS = {x 2 R2 |h(x) � 0}, where h(x) = 1� V (x) defines an invariant set contained
in CA. The sets CS and CA are depicted along with the system flow in Figure 4(a). Note that
while CS is invariant, it is not the largest forward invariant set contained in CA. It is said to be
conservative. ⌃

Explicit identification of forward invariant subsets is typically obtained only at the expense
of conservatism. In particular, the methods used to identify forward invariant sets are not generally
scalable to complex and high-dimensional systems, and the safe sets obtained with these methods
may greatly underapproximate the largest safe set obtainable. However, an explicit (functional)
representation of the safe set boundary is not always necessary. One may implicitly define CS
in terms of the closed-loop trajectories under the control law. For example, consider a backup
control law ub : X ! U , and let �ub(t; x) represent the state reached after starting at x 2 X

and applying ub for t units of time. Then the set

CS = {x 2 X | 8t � 0, �ub(t; x) 2 CA} (12)

is by definition an invariant set under ub, and it is entirely contained in CA. The utility of this
definition arises from the observation that it is possible to check whether individual states are
safe simply by integrating the dynamics forward from those states. For example, if CA = {x 2
X |'(x) � 0} then the following are equivalent:

(i) 8t � 0, �ub(t; x) 2 CA, (ii) inf
t2[0,1)

'(�ub(t; x)) � 0 (13)

It is interesting to note that in special cases where the infimum can be solved in closed form, the
solution can be used to define an explicit safe set, as shown in (8) and in the following example.

12

((a)) Explicit safe set CS (green) ((b)) Implicit safe set CS (green) and backup set Cb (blue)

Figure 4: Phase plots for a mass-spring-damper system (10), modeled as a double integrator with
the constraint set CA = {x 2 R2 | 1� kxk1 � 0}, where with the complement of the constraint
space CA is shaded red, and CA\CS is shaded purple.

Example: Consider the system,
"
ẋ1

ẋ2

#
=

"
cos(x2)

u

#
(14)

with u 2 [�1, 1], the constraint set CA = {x 2 R2 | x1 � 0} and the admissible control law
ub = 1. The solution for the flow from initial state x0 = [x0,1, x0,2]T is given by

"
�ub
1 (t; x0)

�ub
2 (t; x0)

#
=

"
x0,1 � sin(x0,2) + sin(x0,2 + t)

t+ x0,2

#
(15)

and x0 is safe if inft2[0,1) �
ub
1 (x0, t) = x0,1 � sin(x0,2) � 1 � 0. Using this information, a safe

set under this maneuver can be defined explicitly as

CS = {x 2 R2 | x1 � sin(x2)� 1 � 0}. (16)

The sets CA, CS are depicted in Figure 5 along with the flow of the system under ub = 1. ⌃

Importantly, the system flow �ub(t; x) can readily be evaluated over a finite time horizon
T = [0, T] by numerically integrating the dynamics. In this case, safety of a trajectory can be
shown by ensuring that (i) the trajectory lies in CA over T and (ii) the endpoint of the finite
trajectory T lies in a known invariant subset Cb ✓ CA. That is,

CS = {x 2 X | 8t 2 T , �ub(t; x) 2 CA ^ �ub(T ; x) 2 Cb}. (17)

13

Figure 5: Phase plot for system (14) under ub = 1. The safe set CS is shaded green, the
complement of CA is shaded red, and CA\CS is shaded purple.

In this context, a safe terminal set Cb ✓ CA is referred to as a backup set, and the set (17) is
the safe backward image (SBI) of Cb. Note that numerical integration over a continuous interval
[0, T] requires that the trajectory be approximated with a finite amount of points sampled along
this interval; e.g. T = {t1, ..., tK} ⇢ [0, T]. Testing with the discrete set of points does not
strictly prove invariance as it does not ensure that the trajectory will not leave between the
sampled points. While the approximation is sufficient for most practical purposes, this may be
addressed with a finer time discretization or by deriving bounds for an inner approximation of
the constraint set as in [53].

While a single case is presented here, various forms of implicit safety may arise under
modified assumptions. For instance, [54] considers the case where Cb is not forward invariant,
and guarantees are in finite time. As discussed in the Section “Assurance in the Presence of
Uncertainty,” this concept may be extended to nondeterministic systems by approximating the
forward reachable sets or invariant tubes around the recovery trajectories. The topology of the
constraint and safe sets for both implicit and explicit cases is illustrated in Figure 2.

Example: Consider the system (10) along with the associated constraint set CA =

{x 2 R2 |'(x) � 0} with '(x) = 1 � kxk1. We now consider the safe set from the previous
example as the backup set. That is, consider the backup set Cb = {x 2 R2 |hb(x) � 0 } with
hb(x) = 1�V (x) and V (x) described by (11). The flow for this system can be evaluated exactly

14

as

�ub(t; x) = eAtx (18)

where A is the system matrix from (10). Consider the backup time horizon T = [0, T]. A state
x 2 R2 is in the safe backward image if the following conditions are met

(i) 8t 2 T , '(eAtx) � 0, (ii) hb(e
ATx) � 0. (19)

The sets for this case are depicted in Figure 4(b). ⌃

Identifying Safe Backup Sets

Backup sets Cb are safe terminal sets that act as seeds of safety. As seen in Figure 4
the backup set may be used to implicitly identify a larger safe region via trajectories under
a backup controller. This is useful because small invariant sets are generally much easier to
find than large ones. Furthermore, a finite-time trajectory can be used to show safety over an
infinite horizon when it is shown that it the trajectory safely reaches such a set. This concept has
been frequently explored in the context of trajectory optimization and Model-Predictive Control
(MPC) [23], [55]. In the literature related to MPC, the backup set is often referred to as a
terminal feasible invariant set. Backup sets are safe sets and may be computed as any safe
subset of CA using the methods described above. However, it is common to construct these from
domain knowledge of safe configurations of the particular system.

For an example of a safe backup set, consider that ground vehicles and vertical takeoff and
landing (VTOL) air vehicles may bring themselves to rest in a safe location. In this case, the
role of ub is to generate a safe stopping maneuver; e.g. [56]. Individual rest states are invariant
points in the state space, and sets of adjacent rest states form invariant surfaces or volumes. In
many cases it is not possible or practical to bring a vehicle to rest, and a backup set may instead
be identified from safe periodic trajectories. For example, fixed wing aircraft may compute safe
loiter circles [18], [22], [23], [57] or spacecraft may compute a set of safe orbits [58]. In many
cases, the invariant set is a region without volume, and only an infinitesimal perturbation is
required to cause a departure from the set. In practice, it is desirable to show that such surfaces
are locally attractive under some backup control law, or to explicitly identify a larger invariant
region around the initial set. For example, [58] develops a control law that stabilizes the a
spacecraft to a set of safe orbits.

Example: Consider the damped linear system

ẍ = �ẋ+ u (20)

15

with the constraint set given by CA = {x 2 R | x � 0}. A safe backup set is given by the subset
of CA with zero velocity: Cb = {x 2 R | x � 0, ẋ = 0}. Note that Cb ⇢ CA and that Cb is
invariant when u = 0. ⌃

Example: Consider two spacecraft in planar orbit around a central body: (i) a target
spacecraft, which is in a fixed circular orbit with period ⌧ , and (ii) a chaser spacecraft of mass
m. In this setting, the dynamics of the chaser spacecraft are given by the Clohessy-Wiltshire-Hill
equations, as developed in [59]:

ẋ1 = x3

ẋ2 = x4

ẋ3 = 3n2x1 + 2nx4 +
1
mu1

ẋ4 = �2nx3 +
1
mu2

ẋ5 = �|u1|� |u2|

(21)

with state x 2 R5 and control input u 2 [�umax, umax]2. In this setting, x1, x2 denote the relative
distances between the spacecraft, x3, x4 denote the relative velocities, and x5 denotes a fuel state.
Additionally, n = 2⇡

⌧ [59]. The constraint set is defined by the constraints that the chaser must
not run out of fuel and must stay at a distance greater than Rmin from the target spacecraft. The
constraint set is CA = {x 2 R5 | x2

1 + x2
2 �R2

min � 0, x5 � 0}.

Backup Set from Invariant Points: Invariant points exist as zero velocity states in the x2-
x5-plane, hence {x 2 R5 | x1 = x3 = x4 = 0} is invariant for u ⌘ 0. A safety set is obtained
from this set as Cb,1 = {x 2 R5 | x1, x2, x3 = 0, x5 � 0, |x2| � Rmin}.

Backup Set from Periodic Trajectories: It can be shown that the chaser spacecraft is on an
elliptical orbit around the target spacecraft whenever u = 0 and x3 = n

2x2, x4 = �2nx1, with
each individual orbit occupying the position states x2

1+
1
4x

2
2 = b2 where b � 0 is the semi-minor

axis of the orbit. Hence, the linear subspace {x 2 R5 | x3 = n
2x2, x4 = �2nx1} is an invariant

manifold composed of all such closed orbits. A backup set can be constructed from this subspace
by considering range of orbits that fall into the constraint set: Cb,2 = {x 2 R5 | x3 =

n
2x2, x4 =

�2nx1, x2
1 +

1
4x

2
2 � R2

min} ⌃

Properties of Run Time Assurance Systems

RTA has evolved over the last several decades stemming from research in control theory,
computer science, electrical, mechanical, and aerospace engineering. In this section, each of
several basic classifications and properties of RTA mechanisms are defined, concluding with
RTA-human interaction considerations. RTA approaches can be classified as: explicit or implicit,

16

zero or first order, and latched or unlatched. Explicit approaches precisely define a specific safe
set, while implicit RTA approaches define recovery trajectories under a predefined backup control
law. Zeroth order RTA methods do not use gradients of the dynamics and are often associated
with RTA systems that use methods described in the Section “The Simplex Architecture,”
while first order methods take advantage of gradient computations and are used in methods
such as those described in the Section “Active Set Invariance Filtering.” Latched RTA systems
switch to a backup controller and remain under its control until a specified release condition
is met, while unlatched implementations return to the primary control as soon as the system
returns to a safe set. In addition to these classifications, RTA systems feature safety and
performance properties described in this section, including innocuity, viability, nuisance freedom,
and integrity monitoring. Finally, this section discusses important concepts with respect to RTA-
human interaction including: variable risk tolerance, ability to turn the RTA off, transparency,
and missed detection/false alarm considerations.

Implicit and Explicit RTA Approaches

Fundamentally, an RTA mechanism is a control law that renders a subset of the constraint
space forward invariant, activates a recovery response near the boundary of that set, and that
passes through the desired input from the primary controller everywhere else. The set made safe
under the RTA is referred to as the safe operational region of the RTA system, and it is denoted
by CS. In cases where the recovery response relies on switching to a backup control law ub,
the safe operational region is a subset of the constraint set CA that is forward invariant under
that control law. Approaches of this type are considered in the section entitled “The Simplex
Architecture.” Alternatively, in cases where the recovery response is determined as the solution to
an optimization program, and safety is enforced with the constraints of that program, then the safe
operational region is a control invariant subset of CA. This is because the optimization program
searches over all feasible control actions — i.e. control invariant sets are forward invariant under
certain optimization procedures. Approaches of this nature are considered in the section “Active
Set Invariance Filtering.”

As with the safe sets discussed previously, the safe operational region can be identified
explicitly or implicitly. Implicit (or trajectory-based) approaches compute finite-time trajectories
under a backup controller {�ub(t; x) 2 X | t 2 T } online (at run time) and use the information to
decide when or how to intervene. Explicit (or region-based) approaches may or may not switch
to a backup controller, but do not rely on simulating trajectories of the backup controller online.
Typically, explicit approaches identify trusted regions offline via the construction of either a large
forward invariant or control invariant set. That is, implicit RTA approaches are those that utilize
an online look-ahead and will bound the system to an implicitly defined safe set such as (17)

17

while explicit RTA approaches determine safe states a priori and will bound the system to an
explicitly defined safe set such as (9). This concept is demonstrated in the following example.

Example: Consider the mass-spring-damper system described by (10) with the
constraint space CA = {x 2 R2 | 1 � kxk1 � 0}. An RTA mechanism can be constructed
by requiring that the backup controller be applied near the boundary of a set CS, where CS is
safe under the backup controller. Let the RTA mechanism be,

u(x) =

8
<

:
ub if #(x)

udes otherwise.
(22)

where udes is the desired control input and #(x) represents the activation condition (or switching
condition). Considered below are implicit and explicit activation conditions.

Explicit Condition

Let CS = {x 2 R2 | h(x) � 0} with h(x) = 1 � V (x) and V (x) being the Lyapunov
function (11). The set CS is said to be trusted as it is safe under ub. The activation condition

#(x) : h(x) � " (23)

ensures safety of CS with respect to uact by activating ub near the boundary where " > 0 defines
the size of the RTA activation region. Since, V (x) defines a Lyapunov function for the closed-
loop dynamics under ub, it is known that h(x) is increasing whenever ub is applied. Furthermore,
since ub is activated before the boundary h(x) = 0, (22) enforces that h(x) is always positive,
meaning that the system will be forward invariant in CS ⇢ CA.

Implicit Condition

Let Cb = {x 2 R2 | h(x) � 0} with h(x) = 1 � V (x) and V (x) being the Lyapunov
function (11), then a condition for invariance in the safe backward image of Cb is

#(x) : [8t 2 [0, T], '(eAtx) � "1] ^ [hb(e
ATx) � "2] (24)

where "1, "2 > 0. The safe backward image in this case defines the safe operational region for
the RTA. It is depicted as the green region in Figure 4(b). ⌃

There are important tradeoffs associated with implicit and explicit approaches. While
identifying invariant sets explicitly offline generally reduces the online computational burden
of the algorithm, the task may become intractable for complex and high-dimensional systems.
In such cases, implicit, trajectory-based approaches become favorable. The key advantage to
assessing safety through trajectories online is that, in the simplest case, it only requires a finite-
time simulation of the recovery maneuver, which is generally a tractable task. A secondary

18

benefit is that it handles dynamic environments and changes in the model better; i.e. rather
than needing to recompute an invariant subset of CA, one only needs to update the simulation
parameters. However, an important practical consideration is that trajectory-based approaches
rely on the ability to accurately forecast recovery trajectories, and the predicted behavior may
be increasingly sensitive to noise (i.e. less accurate) as the length of the backup trajectory is
increased.

܊
܊

܊

explicit approach
(no trajectory forecasting)

invariant point or
periodic trajectory

Figure 6: Notional depiction of the tradeoff between a longer integration horizon and a larger
backup set. The thick green arcing arrow represents the desired trajectory of the primary
controller, the teal region represents a backup safe set Cb, and the thin teal arcing arrows
represent trajectories to the backup set. Large explicit backup sets Cb, reduce the need for
online computation of trajectories to the backup set, but may be intractable for complex and
high-dimensional systems. Computing online finite-time simulation of a recovery maneuver may
be more tractable in some cases, but is more vulnerable to noise or model inaccuracies.

It is interesting to note that since a backup set Cb is an explicitly defined invariant subset
of the constraint set CA, an implicit approach to safety will typically involve a combination
of (i) explicitly identifying an invariant set Cb offline and (ii) finding a safe trajectory to this
set online. In this sense, the explicit approach can be viewed as a special case of the implicit
approach where the backup trajectory consists of only a single point. Furthermore, any explicitly
defined safe set can be used as part of an implicit approach. The implicit approach allows for the
problem to be solved by taking full advantage of both offline and online resources. Specifically,
finding a larger backup set offline reduces the online computational burden by reducing the
length of the trajectory required to obtain the same operational region; likewise, integrating
backup trajectories over a longer horizon reduces the need to identify large safe sets offline. An
depiction of this tradeoff is illustrated in Figure 6. Generally, for simple systems, the problem
can be solved offline, and as systems become more complex, one must rely more and more on
online simulations.

19

Zero-Order and First-Order Methods

Filtering approaches in RTA may be classified into zero-order and first-order methods.
Zero-order algorithms are derivative free. They are typically, though not necessarily, associated
with the Simplex architecture and choosing from a discrete set of possible control signals. For
example, the RTA mechanism may choose between applying the input from the primary control
law udes or a backup control law ub at any time. In this case, one may observe the effects
of chatter; i.e. variations in the output of the RTA mechanism are not smooth with respect to
variations in the initial state or desired input. This may have practical implications to real world
systems. For instance, the action may cause excessive wear to the actuators, on-board components
may experience interruption to their operations, or passengers may observe the intervention as
being more abrupt, resulting in a less pleasant experience (e.g. consider an automobile that only
intervenes through applying the brakes at maximum capacity). These effects may be handled with
various heuristics; e.g. hysteresis, or interpolating between ub and udes as the state approaches
the boundary of the safe operational region. Alternatively, one may turn to a first order method.

First order methods require computing derivatives, and are typically associated with
methods described in the “Active Set Invariance Filtering” section. In this case, the gradient
information is used in a barrier condition, which constrains the set of available inputs to a
subset of admissible and safe inputs. An optimization framework may be used to choose the
input within this set according to some cost function. A common cost specification requires
that the RTA choose the control that is closest (in a 2-norm sense) to the desired input. RTA
filters constructed in this way will have smooth variations in the output signal uact. While this
eliminates the effect of chatter, it introduces added complexity into the problem and generally
requires greater computational resources. The Robotarium is an example explicit ASIF RTA
implementation is discussed further in the sidebar titled “The Robotarium: An RTA Enabled
Remote-Access Swarm Robotics Testbed”

Latched and Unlatched Implementations

RTA systems based on those described in the Section “The Simplex Architecture” activate
a recovery maneuver when the monitor detects that one of the boundary violation conditions
has become active. At this point, the decision logic must specify when to return control to the
primary controller. In an unlatched implementation, the decision logic releases control of the
recovery controller as soon as the boundary violation condition becomes inactive. For example,
an unlatched RTA implementation that switches from the primary control law udes to the backup
control law ub whenever a condition # is satisfied will take the form of a hybrid system as
in (22). Alternatively, a latched implementation will hold its activation state until a separate

20

TABLE 1: Classification of RTA Applications in the Literature

Implicit Explicit
spacecraft collision avoidance [27] waypoint tracking cyber-physical system [60]

fixed wing aircraft ground avoidance (Auto-GCAS) [61], [62] advanced flight control systems [63]
Simplex fixed wing aircraft obstacle avoidance [22], [23], [64] lane keeping [65]

safety against LTL specifications [66], [67] aircraft conflict resolution [68]–[70]
collision avoidance for high speed quadrotor navigation [56], [71] decentralized collision avoidance for quadrotors [72], [73]

collision avoidance during lane-changing maneuvers [74] ground robot navigation around obstacles [75], [76]
bipedal walking/ exoskeletons [77] bipedal walking/ exoskeletons [78], [79]

robotic manipulator arms [28] lane keeping [14], [15]
ASIF mobile inverted pendulum (Segway) [54] mobile inverted pendulum (Segway) [80]

rapid aerial exploration of unknown environments [26] robotic grasping [81]
multi-robot systems [82] swarm robotics (Robotarium) [83]–[86]

fixed wing aircraft collision avoidance [87] motorized rehabilitative cycling system [88]

release condition is met. The release condition may for example consist of following the backup
trajectory for some fixed amount of time, bringing the system to a particular configuration, or
having a human operator return control after assessing the problem. Auto GCAS is an example
of a temporary latched system that holds the maneuver until the aircraft is on a collision free
course [61]. Other implementations of latched RTAs may require a system reset before switching
back, such as a computer reset supervised by a human operator. Note that this requires that the
decision logic remember the current activation state.

Properties and Systems Engineering Considerations for Run Time Assurance Design

While it is convenient to treat safety as a binary “safe” or “unsafe” property, safety is
often a complex weighting of risk among primary and secondary safety constraints. This section
provides a few definitions of design considerations for incorporating RTA solutions into the larger
control system. In practice, RTA system design ultimately relies on domain-specific knowledge to
achieve acceptable performance. However, there are common safety and performance properties
of good RTA designs. In order to keep the system safe, the RTA mechanism must select control
inputs that are innocuous and viable. In addition to safety, the performance of the RTA may be
evaluated by its adherence to a nuisance free property.

Innocuity

Ideally the entire state of the system is contained in one vector x and the entire constraint
set can be explicitly defined in a set CA. However, in practice this is rarely the case. Instead, RTA
decisions are not solely based on system dynamics, but must factor in the states of interacting
subsystems, human interactions, fault management, or interlock condition management. Innocuity

21

is the property that each component of the design has no unacceptable impact on the larger
system design [89]. Innocuity of RTA systems implies the selected control action does not have
unintended behavior, such as causing a violation of a secondary safety constraints. An interlock
is a set of two mutually exclusive states such as mechanisms that prevent elevator doors from
opening when the elevator is in motion, or that prevent the elevator from moving when the
doors are open. This relationship between RTA-level and system-level constraints may result in
a combination of RTA system modes (described as a finite state machine), if-statements, and
dynamics considerations [90].

For example, in the development of Auto GCAS, the high-level requirements in order of
precedence were to do no harm, do not interfere, and prevent collisions [61], [91]. The “do no
harm” and “do not interfere” requirements in Auto GCAS are examples of innocuity properties.
These requirements don’t directly define the RTA response, but describe special considerations
to prevent unintended consequences of the RTA design. This requirement ordering might seem
counter-intuitive, as one might expect preventing collisions to be the top priority of a collision
avoidance system. However, this order of requirements proved critical in acceptance of the system
[92]. To give a little more insight, selected generalized, conceptual requirements for Auto GCAS
are presented below and divided here in terms of “do no harm,” “do not interfere,” and “prevent
collisions.” The “prevent collisions” requirements are typical of what is generally considered an
RTA requirement. However, the “do no harm” and “do not interfere” requirements describe how
the RTA system should operate in the context of the aircraft control system that interacts with
human operators, experiences failures, and has a defined set of interlock conditions.

Do No Harm

• The automatic recovery shall not cause harm to pilot, aircraft, or components.
• The automatic recovery maneuver shall not place the aircraft in an uncontrollable state.
• The pilot shall be able to interrupt a maneuver.
• The pilot shall be able to manually engage a maneuver.
• Subsystem monitors shall determine if a failure exists and be provided to Auto GCAS.
• Auto GCAS shall not activate an automatic recovery maneuver if a failure of a subsystem

supporting Auto GCAS exists.
• Auto GCAS shall leave the failed mode state if a failure does not exist.
• The automatic recovery maneuver shall not activate during aerial refueling.
• The automatic recovery maneuver shall not activate when the aircraft has an excessively

high angle of attack.
• The automatic recovery maneuver shall not activate when the aircraft velocity is too low.
• Auto GCAS shall inform the pilot if the aircraft speed is too low for the automatic recovery

22

maneuver.

Do Not Interfere

• The automatic recovery maneuver shall not activate during landings.
• The pilot shall be able to turn the system off.
• The pilot shall be able to select the protection level.
• Auto GCAS shall notify the pilot when the automatic recovery maneuver initiates and

terminates.
• The system shall record data about each automatic recovery maneuver activation.
• The Digital Terrain Elevation Data used by the system shall have a resolution and accuracy

that supports safe and nuisance free operation.

Prevent Collisions

• The system shall conduct an automatic recovery maneuver when the projected recovery
trajectory intersects the terrain profile contour with buffers.

• The system shall terminate an automatic recovery maneuver as soon as it is determined that
the aircraft will clear the terrain threat.

• The recovery maneuver shall consist of a roll to wings level and a pull up.

Systems engineering, computing hardware availability, and human-machine interaction
all require practical considerations that play important roles in imparting secondary safety
constraints on RTA designs. From a computing hardware standpoint, assuming availability of
high performance computing may not be valid. In some domains, design constraints such as
size, weight, and power coupled with vibration and radiation tolerance limit the processing and
memory of computing hardware onboard the dynamical system. In these cases simpler RTA
solutions may be favored over optimal solutions. An example of this occurs in aviation, where
RTA designs are expected to be backwards compatible with older aircraft, and simple approaches
may be to climb, descend, or turn right or left at a specified rate [93]. Additionally, when the
automated backup control of the RTA systems impact human operators, humans trust an easily
understood maneuver consistent with human training, expectations, and preferences [94]. For
Auto GCAS, familiarity of the roll to wings level and pull maneuver and its consistency with
pilot training and behavior resulted in strong positive perceptions of the system [92].

Viability

Viability ensures the selected control action does not eliminate availability of a safe action
downstream, i.e. the RTA mechanism will always be able to identify a safe input in the future.

23

This concept is formalized in Figure 3, where the green area under the curve describes maximum
velocity for any distance from the obstacle. One way to ensure viability in an implicit RTA
design approach is to define a limited set of pre-determined recovery actions. Simple, pre-defined
recovery responses can be pre-verified for use, reduce online computation burden, and make the
RTA system more easily understood and trusted by a human operator [94]. In Auto GCAS, rather
than optimizing a trajectory for each specific collision avoidance scenario, a predefined set of
verified maneuvers was created. In F-16 Auto GCAS, a single roll to wings level and 5g pull
maneuver is conducted [62]. In the Automatic Air Collision Avoidance System (Auto ACAS),
nine different maneuvers are considered [95]. In patented [96] and experimental Auto GCAS
designs for small UAVs [97], lesser capability aircraft [98], and cargo-class aircraft [99], three
or more possible maneuvers may be considered. In the case of multiple maneuvers, one popular
approach that combines viability with nuisance freedom is to engage the last available maneuver
right before it is too late.

Nuisance Freedom

In a nuisance-free RTA system, the constraint set CA and corresponding operating envelope
CS of the primary controller is as large as feasible. Other ways to describe this property is that
the RTA should be minimally invasive and should not interfere with the primary function of
control system udes unless absolutely necessary. In Auto GCAS, a collision avoidance maneuver
is considered nuisance-free if it occurs after an aware pilot would have maneuvered to avoid a
collision. To formally define nuisance-free operations, a time available metric described zero time
available as the point where an activation would just barely scrape the ground, and increasingly
positive time available would result in maneuvers at greater altitudes above the terrain. To assign
a value to an acceptable time available activation range, a 1995 study measured when pilots felt
an aggressive recovery should be activated to avoid a collision [61], [91]. Pilots flew towards
the ground at a variety of dive angles, bank angles, air speeds, and load factors and activated
a recovery maneuver when his or her comfort threshold was met. After each run, the pilots
rated the timing of the recovery initiation, their anxiety level during the maneuver, and the
precision/aggressiveness of the maneuver for each run. Based on this information a 1.5 second
time available design criteria was identified, and collision avoidance maneuvers that activated
with less than 1.5 seconds time available were considered nuisance-free [61], [91].

More generally, the number of RTA activations, magnitude of the response, activation
timing, and size of the safe set can be use to compare nuisance criteria across different RTAs.

• In many scenarios, the RTA should not come on often because activations interrupt the
primary mission. An RTA activations metric tracks the number of seconds or discrete time

24

steps that a recovery maneuver is in control. This metric allows comparing different RTA
approaches as it provides a measure of relative conservatism of various RTA solutions in
the presence of the same, possibly faulty primary controller.

• The RTA should ideally not impart a large change in control, measurable via a control
magnitude metric.

• An RTA invasiveness metric describes whether the RTA activates appropriately when near
the safety constraint boundary, while refraining from activating when far from the allowable
boundary. A variety of application-specific measurements of this may be applied, such as
the time available metric in Auto GCAS.

• An RTA safe set size measures of the volume of the safe set CS. The larger the volume, the
more space the primary controller has to operate optimally, and the less invasive the RTA
is. Different RTA approaches may be more or less conservative, which impacts the size of
CS.

Run Time Assurance Integrity Monitoring

Recognizing and accommodating failures that could impact an RTA system is a critical
element of RTA design. The failures could come from inside the RTA system or from externally
provided information that the RTA uses to make a response decision. Possible software checks
include monitoring for missing “heartbeat” signals from components and “reasonableness checks”
that ensure incoming data are within a reasonable range of values [97]. For example, a failure of
the inertial navigation system should not allow Auto GCAS to roll inverted and pull down into the
ground instead of pulling up to avoid a collision [61]. Auto GCAS uses System Wide Integrity
Management (SWIM) hardware and software tests used to mitigate single-point-of-failure risks
[61], [95], [100].

Human Interaction with Run Time Assurance Systems

When designing RTA systems, it is important to consider the interaction of the system with
human operators. While the topic of human-machine interaction can swell quickly, this article
focuses on a few key design considerations in RTA.

Variable Risk Tolerance and an “Off Switch”

One of the challenges of developing an RTA system is the need to balance nuisance-
freedom with the risk tolerance of a particular task or operator. Adding the ability to tune risk
corresponding to safety buffers or other factors facilitates flexibility and acceptability of the RTA
in operational use. For example, Auto GCAS features two pilot selectable modes that enable

25

variable risk tolerance: a “norm” mode with adequate safety buffers for most cases, and a “min”
mode which minimizes buffer size for nuisance-free low-level flying at the trade-off of reduced
protection [61], [91]. In addition, the ability to turn the system off was an important feature that
engendered pilot trust [92].

Transparency and Trust

The primary basis of trust in automation comes from dependability and predictability
[101]. However additional factors with a measurable impact on human trust include the past
performance (e.g. system pedigree or heritage), simplified and understandable performance,
system intent, and reliability [94]. In Auto GCAS transparency comes through pilot training
before operations and through visual indicators on the aircraft’s head-up-display (HUD) [92],
[102]. A discussion of the difference between safety, security, and reliability is provided in the
sidebar titled “Safety, Reliability, and Security.” Reliability is important for human trust in RTA
systems as humans initially assume that machines are perfect and any errors rapidly deteriorate
trust [103]. Knowledge of Auto GCAS’s 98% reliability increased test pilot trust of the system
[92].

Missed Detections and False Alarms

It is important to consider an acceptable rate of missed detections and false alarms in the
design of an RTA system. Missed detections are a failure of the monitor to detect an imminent
safety violation. For example, if Auto GCAS fails to detect an imminent collision with terrain, it
could lead to loss of life and the aircraft. False alarms occur when the RTA monitor believes the
system is entering an unsafe state, when in reality no safety violation is imminent. False alarms
erode confidence in the RTA system. For example, during psychological study on the development
and deployment of Auto GCAS, one pilot indicated that a single false fly-up (automatically
maneuvering to avoid the ground when there was no imminent collision) would likely cause
pilots to turn the system off and lose the protection it provided [61], [91]. Developing pilot trust
in Auto GCAS hinged on its nuisance avoidance criteria, i.e. keeping the number of false alarms
very low [102].

In statistical hypothesis testing, missed detections and false alarms are Type I and Type II
errors. Hypothesis testing is a formal technique to verify that a system meets a specification or
requirement [104]. A hypothesis can have two possible outcomes: a null hypothesis H0, such as
a collision is not imminent, and an alternative hypothesis H1, such as a collision is imminent.
As summarized in Table 2, a Type I error is a false alarm (i.e. activate ub when not near the
constraint boundary @CA), while a Type II error is a missed detection (i.e. failing to activate

26

ub near @CA, resulting in a departure from the safe set. When considering a collision avoidance
system for example, a Type I error occurs when a collision avoidance system maneuvers to avoid
a collision that would not have happened, and a Type II error occurs when a collision avoidance
system does not maneuver to prevent a collision.

TABLE 2: False Alarms and Missed Detections Type I and Type II Errors, with Collision
Avoidance as an Example.

H0 H1

Collision Collision
Not Imminent Imminent

Do Not Reject H0 Type II Error
Correct False Negative

System Decides Missed Detection
Not Imminent � probability

Reject H0 Type I Error
False Positive Correct

System Decides False Alarm
Collision Imminent ↵ Probability

In some systems, like Auto GCAS, the acceptable rates of false alarms ↵ are very low
because of the consequence of an unnecessary interruption of the system mission is high. In
other systems like elevators, the acceptable rate of a missed detection � (not detecting a human
is in the way of the closing doors) would be very low, and false alarms would be more acceptable
(there is almost always an option to take the stairs). During the development of RTA systems,
studies are required to determine acceptable ↵ and � rates.

The Simplex Architecture

Simplex Architecture RTA designs [60], [105]–[107] feature a monitor or watchdog that
watches for imminent violations of safety constraints, and a backup safety controller that provides
a guaranteed safe control output to remedy the unsafe situation. A critical feature here is that
the backup control is applied via a switch, rather than gradually as in ASIF described next. One
way to describe Simplex RTAs is as a hybrid dynamical system [38] described by Eq. (22).
The monitor and safety controller are inserted before the plant as demonstrated in Fig. 7. In
this model, the following functional components describe specific functions and interactions that
may be implemented on one or more physical components:

27

ǡݔୟୡ୲ሺݑ ୱሻPrimaryୣୢݑ
Controller

Backup
Controller

Decision
Logic

Plant
ሻݔୱሺୣୢݑ

ሻݔୠሺݑ

RTA Mechanism

ݔ

Figure 7: Simplex Architecture with a physical plant, a verified safety controller, a verified
decision module and switch, and an unverified complex controller.

• Plant: This functional component is the system under control and could be a spacecraft,
aircraft, boat, car, or other robotic system.

• Primary controller: This functional component is the primary, high performance controller
of the system that may not be fully verified with traditional offline verification techniques.
Depending on the application this could be a human pilot, neural network-based control,
or complex control software.

• Backup Controller: This functional component continuously computes a safe control
response to the state of the plant. For example, in Auto GCAS the safety controller is a
predefined roll and pull maneuver. One school of thought places heavy verification burden
on the safety controller, boundary monitor, and decision logic as a way to certify advanced
controllers that cannot be verified to the current certification standards [108]. Another school
of thought requires no assumptions on the safety or verification of the backup controller.
That is, safety can be guaranteed through online integration of the backup controller, and
the system may revert at any time to the most recently computed safe trajectory. Formal
guarantees are obtainable in both cases.

• Boundary (a.k.a. safety) monitor: This functional component monitors the state of the
plant and the nominal controller for predetermined safety boundary violations. Examples of
boundary violations might be a trajectory prediction that intersects the terrain (indicating
an imminent ground collision) or a control input that would cause excessive acceleration
(risking damage to the structure or components).

• Decision Logic: The functional component takes inputs from all the other components
pictured and determines which control output, complex or safety, to output to the plant.

28

Variations on Simplex

Variations on Simplex include nested RTA, multi-recovery RTA, and multi-monitor RTA
designs. Nested RTA designs implement safety controls at each layer of the control architecture
as shown in Figure 8. Multi-recovery RTA designs have multiple reversionary controllers at the

Figure 8: Nested feedback RTA architecture for an Unmanned Aerial System (UAS) plant [109].
In a nested RTA architecture, the inner-loop control law RTA ensures aircraft stability, the
guidance control law RTA ensures safety of commands generated to follow waypoints, the flight
management system RTA checks that the waypoints along the path are safe, and the mission
planning system RTA ensures the safety of task allocations to meet mission goals of the plant. In
each RTA layer, a monitor watches for unsafe conditions and decision logic determines switching
between the primary controller and backup controller.

same level of the control architecture and a switch that considers all possible recovery function
options. The concept is discussed in a recent ASTM standard for the use of RTA in unmanned
aircraft [108] and depicted in Figure 9. The best approach to designing multiple recoveries is

Figure 9: ASTM F3269 RTA architecture with multiple recovery control functions at the same
level in the control hierarchy [108]. An example of this might be an aircraft that avoids collisions
with other aircraft, avoids collisions with the ground, and avoids flying into no-fly zones. Each
of these boundaries are disjoint; however, it is possible that violations of multiple boundaries
could be predicted to occur at the same time.

29

an area of active research. One approach is to combine multiple RTA systems as an integrated
solution. For example, the Automatic Integrated Collision Avoidance System (Auto ICAS) [110],
[111] integrates ground and midair collision avoidance into a comprehensive collision avoidance
system. The advantage of this integrated approach is that each system can consider possible
conflicts between boundary violations and select a better solution than either might select on
their own. For instance, in a situation where an aircraft flying close to the ground is on a
collision course with another aircraft, a ground-aware midair collision avoidance system will
filter from the possible maneuvers to select a maneuver that avoids the midair collision while
at the same time ensuring none of those maneuvers will fly the aircraft into the ground. An
integrated solution has the benefit of generating a better solution than either separate system might
otherwise choose. However, this increase in performance also comes at a large increase in cost
and schedule. An alternative multiple recovery controller integration approach is to use an RTA
network architecture where each boundary monitor and recovery controller function is separate
[112]. An example of an architecture with multiple safety monitors and recovery functions is the
Expandable Variable Autonomy Architecture (EVAA) RTA Network [112]. On the one hand,
this modular approach eases verification of each individual component and facilitates quick
integration of new components and upgrades. On the other hand, additional stress is placed on
the verification of the decision module/switching component to determine which action to take
in the case where multiple safety boundaries may be violated at the same time. The EVVA
[112] answer to this challenge is to approach the decision like a human pilot, who responds to
the most critical boundary violation first before moving onto the next violation. A disadvantage
of the modular approach is that it is possible to violate a safety boundary. For instance, if a
ground collision and geofence collision were both imminent, the system might decide to engage
ground collision avoidance to first clear the threat of ground collision before engaging a geofence
controller and violating the geofence boundary. Depending on the scenario, this may or may not
be acceptable. An integrated solution could adjust the boundary of a geofence controller based
on awareness of ground and midair collision avoidance, or could select a collision avoidance
maneuver that also kept the aircraft within the geofence. Multi-monitor RTA designs feature
checks and balances to ensure integrity of the RTA system. These designs may include monitors
beyond a boundary or safety monitor. These monitors may include a failure monitor, an interlock
monitor, and a human supervisor, among others [90]. The failure monitor watches for unreliable
information coming into the RTA such as a failed or stale sensor signal and prevents the RTA
from acting on incorrect state information. The interlock monitor watches for conditions where
it may be safe to compute a backup control solution, but unsafe to engage a maneuver. For
example, an interlock condition might occur when a robotic system is physically connected to
another system and rapid maneuver may result in damage to one or both robots. Finally, there
are many circumstances where a cyber-physical system may be acting with a human teammate

30

or under supervision of a human. In these cases, a human supervisor may have roles such as
turning the RTA off, changing the RTA risk or sensitivity level, or manually activating the RTA
recovery control function.

Simplex RTA Safety Monitor Approaches

As discussed previously, approaches may be considered implicit or explicit based on
whether they rely on simulating backup trajectories online. Approaches to the design of a
Simplex-based RTA safety monitor tend to fall in categories of boundary violation (i.e. explicit),
trajectory prediction (i.e. implicit), or reach-tube prediction (i.e. nondeterministic). Boundary
violation monitors activate a recovery controller after a safety boundary has been violated. These
designs often feature a buffer to allow a recovery response time to complete before violating the
actual safety boundary. Trajectory prediction monitors predict the trajectory that the recovery

Figure 10: The RTA “Ameoba” diagram depicts the entire state space X , containing the set of
allowable states CA in purple, a safety buffer region CS2, and a safe zone with without switching
CS1. The trajectory of a primary controller is depicted in red. When the trajectory crosses the
switching condition boundary between CS1 and CS2, the RTA activates the backup controller
and the green trajectory shows backup control to a safe region Cb. Image inspired by [109].

would take if it were to activate and if that trajectory prediction intersects the safe boundary
with a small buffer, the recovery maneuver will activate [113], [114]. Reach-tube-based monitors
study a set of possible future states, arising from uncertainty in the dynamics, and in instances
where this prediction intersects the unsafe set the RTA recovery function will activate to ensure
safety [115], [116].

31

Simplex RTA as a Near-Term Certification Path

Within the last five years progress has been made towards developing certification criteria
for RTA [117] based on the Simplex architecture resulting in the publication of the first ASTM
standard for the use of RTA in unmanned aircraft [108]. A second iteration [118] of this standard
opens the door for alternative filtering RTA designs.

Provably Safe RTA with Black Box Backup Controllers

Implicit RTA systems rely on online simulations of a backup controller in order to assess
safety. An important consequence of this architectural choice is that the backup controller need
not be guaranteed to always produce a safe solution in order to guarantee safety of the RTA
system. That is, in the event that the backup controller fails to compute a new safe trajectory at
any time, it can follow the most recently found safe trajectory until it reaches the backup set. In
this sense, the job of the backup controller is to search for and propose candidate safe trajectories.
A monitor can be used to determine whether this candidate trajectory is both feasible and safe.
A practical consequence of this is that high performing black-box controllers can safely be used
to generate backup trajectories. This concept has been used in practice [18] and is thoroughly
explored for the context of Simplex-based systems in [119]. Furthermore, the idea extends to
other methods of RTA. For example, in [54] an ASIF is constructed which utilizes a backup
controller taking the form of a neural network approximation of an optimal control policy.

Canonical Algorithms

Included in this section are a set of canonical algorithms for Simplex-based RTA. In this
case, we consider the deterministic discrete time system,

x(i+ 1) = F (x(i), u(i)) (25)

where x 2 X ✓ Rn denotes the state, u 2 U ⇢ Rm denotes the control input and i 2 Z denotes
the time index. A constraint set is defined as CA ✓ X . It is assumed that a backup control law
ub : X ! U is defined and we let �ub(i; x) be the state of (25) reached at i � 0 when beginning
at state x at time i = 0 and evolving under ub.

The idea behind the algorithms in this section is to assess the safety of a probe step. That
is, at any state xcurr 2 X , whether to accept or reject the desired control input udes 2 U is based
on whether the candidate next state reached under this input xcand := F (xcurr, udes) is safe. In
the first case, an explicit safe set is assumed to be defined. The second case considers an implicit
approach, which relies on online simulations under the backup dynamics. A deterministic discrete
time system is assumed for clarity of the algorithms and their associated guarantees. However, the

32

Algorithm 1 Region-Based Simplex Filter (RBSF)

input : Current State xcurr 2 X

: Desired Input udes 2 U

output : Safe Control Input uact 2 U

predefined: Constraint set CA ⇢ X

: Invariant Set CS ⇢ CA
: Backup Control Law ub : X ! U .

1: function uact =RBSF(xcurr, udes)
2: xcand F (xcurr, udes)

3: if xcand 2 CS then
4: return udes

5: else
6: return ub

algorithms may be adapted to continuous time systems, to multiple backup controllers, latched
implementations, etc.

Explicit Simplex Filter

Algorithm 1 describes an explicit Simplex-based RTA algorithm, the Region-Based Simplex
Filter (RBSF). In addition to a backup control law ub, it is assumed that a safe set CS ✓ CA
is defined such that CS is invariant under ub. The algorithm renders the RTA system forward
invariant in CS. This is apparent through the observations that (i) by nature of the invariance
property, applying ub anywhere in CS will lead to a next state that is still in the set (ii) the
sample step allows for inputs that would cause a departure from CS to be detected and replaced
with ub. In practice, one may choose to add conservatism to the approach by working with any
underapproximation C̃S ✓ CS. The region CS \ C̃S is often referred to as a buffer. A practical
consideration is that the backup controller should locally attract solutions outside of C̃S to C̃S.
That is, it is favorable to ensure that a recovery is possible in the case where the state is perturbed
outside of the safe region. One way to do this is to ensure that all initial conditions in the buffer
will lead to C̃S if ub is applied; e.g. this is the case when CS and C̃S are both sublevel sets of a
Lyapunov function.

Example: Consider the double integrator system described by (6) discretized over a
period of 0.1 s, and consider the constraint set (7). The backup control law udes = �1 renders
the set CS = {x 2 R2 | � 2x1 � x2

2 � 0} forward invariant and it is clear that CS ✓ CA. Figure

33

15(a) shows a simulation of the RBSF algorithm with these parameters under the desired control
udes = 1. ⌃

Implicit Simplex Filter

Algorithm 2 describes an implicit Simplex-based algorithm, the Simulation-based Simplex
Filter (SBSF). It is assumed that a backup set Cb ✓ CA is defined such that Cb is invariant under
a backup control law ub : X ! U . No assumptions are made on the structure of ub, it may
come from a closed form control expression, a black box function, an MPC, a motion primitive,
etc. In contrast to the RBSF algorithm, which constrains the system to evolve in the explicitly
defined invariant region, SBSF uses the smaller invariant set Cb as a means to access a larger
implicitly defined invariant set. Specifically, SBSF constrains the system to the safe backward
image of Cb:

CS = {x 2 X |�ub(i; x) 2 CA 8i 2 {0, ..., N � 1}, �ub(N ; x) 2 Cb} (26)

where, �ub(i; x) is the ith point in an N +1 point trajectory obtained from simulating under the
dynamics (25) and backup controller ub. Since CS is forward invariant under ub, the algorithm
renders the RTA system forward invariant in CS. As in the case of the RBSF algorithm, this
becomes apparent from the observations that (i) applying ub anywhere in CS will lead to a state
that is also in CS and (ii) the sample step under udes can reliably be used to detect inputs that
would cause a departure from CS. Conservatism can be added to this approach by using under-
approximations of CA and Cb. Note that the above algorithm assumes a deterministic system and
relies on simulating single trajectories under the backup dynamics. This can be extended to the
nondeterministic case by simulating an overapproximation of the forward reachable set under
the backup dynamics and requiring that Cb is robustly forward invariant.

Example: Consider the double integrator system described by (6) discretized over a
period of 0.1 s, and consider the constraint set (7). The backup control law udes = �1 renders
the set Cb = {x 2 R2 | � x1 � 0, �x2 � 0} forward invariant and it is clear that Cb ✓ CA.
Figure 16(a) shows a simulation of the SBSF algorithm with these parameters under the desired
control udes = 1. ⌃

Example: (From [58]) Consider the system (21) discretized in time to have a 1 s
resolution, and with CA = {x 2 R5 | krk1 � rmin � 0, 1 + 2krk1 � kvk1 � 0} where
r := [x1, x2]T , and v := [x3, x4]T are the relative position and speed vectors respectively. The
backup controller ub is taken as the first input in the solution to a mixed integer quadratic program
(MIQP); solved subject to the constraints that (i) all intermediate points lie in CA and (ii) the
endpoint lies in a set Cb, that is defined from the set of natural motion trajectories lying outside

34

Algorithm 2 Simulation-Based Simplex Filter (SBSF)

input : Current State xcurr 2 Rn

: Desired Input udes 2 U

output : Safe Control Input uact 2 U

predefined: Constraint Set CA ⇢ X

: Invariant Backup Set Cb ✓ CA
: Backup Control Law ub : X ! U .

1: function uact =SBSF(xcurr, udes)
2: xcand F (xcurr, udes)

3: compute: �ub(i; xcand) 8i 2 {0, . . . , N}
4: if �ub(i; xcand) 2 CA 8i 2 {0, . . . , N � 1} AND �ub(N ; xcand) 2 Cb then
5: return udes

6: else
7: return ub

of CA. In this case x 2 CS is true whenever the MIQP has a feasible solution with initial state x.
Figure 11 shows a simulation of the RTA system with a primary controller that is designed to
drive the system to an invariant point along the y-axis. The simulation uses parameters m = 50

kg, n = 0.001027 rad/s, and umax = 0.5 N, rmin = 0.5 km, 1 = 0.5m/s, and 2 = 2n s�1. ⌃

Active Set Invariance Filtering

Active set invariance filtering (ASIF) methods are RTA approaches associated with a class
of first-order, optimization-based algorithms. As with many Simplex-based techniques they are
system agnostic, provably correct, and exhibit a number of robustness properties which make
them attractive in practice. In addition, ASIFs are minimally invasive with respect to the safety
constraints. This results in a smoother and more gradual intervention than with approaches that
rely on switching to backup controllers directly.

This section considers systems of the form

ẋ = f(x) + g(x)u. (27)

35

Figure 11: Projected trajectories of a chaser spacecraft relative to a target spacecraft at the origin
under Clohessy-Wiltshire-Hill dynamics, described by (21) over a 2400 s period. For safety, the
chaser spacecraft is required to stay at least 0.5 km away from the target in both the x and
y directions (shown by dashed red lines on the left), and is required to stay below a dynamic
velocity limit (shown by dashed red lines in the figure on the right) where the spacecraft’s relative
velocity must slow down as it gets closer. The chaser spacecraft trajectories without RTA are
grey. The trajectories with a simulation-based Simplex filter RTA are blue when uact = udes, and
red when uact = ub. The backup trajectories (cyan) are shown at 8 s intervals.

When (1) is of the form (27), the dynamics are said to be control affine, and it is assumed
throughout the following that f(x) : Rn ! Rn and g(x) : Rn ! Rn⇥m are locally Lipshitz
continuous in their inputs so that, in particular, solutions to (27) are unique when they exist.
ASIFs are constructed as quadratic programs, where the objective function is typically the l2

norm of the difference between the desired input udes and actual input uact, and where the
constraints on the program, which are known as barrier constraints, take the form BCi(x, u) =

ai(x)u + bi(x) � 0, i 2 {1, ..., N}. The canonical ASIF controller is given below as ASIF-QP:

ASIF-QP

uact(x, udes) = argminu2Uku� udesk22 (28)

s.t. BCi(x, u) = ai(x)u+ bi(x) � 0, i = 1, ..., N (29)

36

The ASIF-QP above guarantees system safety with respect to an operational region CS
when the properties #BC

1 and #BC
2 are satisfied by the barrier constraints:

• #BC
1 : if (29) is satisfied then the system is forward invariant in some set CS ✓ CA. i.e.

#BC
1 : BCi(x, u) � 0, 8i 2 {1, ..., N} =) CS is forward invariant (30)

where CS ✓ CA.
• #BC

2 : it is possible to satisfy (29) from any state in the set CS. i.e. 8x 2 CS, 8i 2 {1, . . . , N},

#BC
2 : sup

u2U
[BCi(x, u)] � 0 (31)

The first property ensures that the RTA mechanism will bound trajectories to the set CS, as long
as there exists a feasible input satisfying the barrier constraint. The second property ensures
that for all states in CS, it is possible to find a feasible input that satisfies the barrier constraint.
Since quadratic programs can be solved in such a way that feasible solutions are found whenever
they exist, guaranteeing the existence of a solution is sufficient for ensuring feasibility of the
ASIF-QP. When both properties are satisfied, CS defines a safe set with respect to the ASIF-QP.
Moreover when the barrier constraints satisfying the properties above, the ASIF-QP is minimally
invasive in the sense that the l2 distance between uact and udes is minimized, subject to the barrier
constraints.

As with the case of Simplex, implicit and explicit approaches emerge for ASIF based
on how the safe operational region CS is identified. First, explicit ASIFs are studied. In this
case, CS obtained by identifying a control invariant set explicitly as the super zero level set
of a smooth function. Next, in the case of implicit ASIFs, a control invariant set is identified
implicitly through the trajectories of a backup control law. A more thorough review of explicit
ASIF approaches is provided in [120] and implicit ASIF approaches in [53]. See also [49] for
a review of both implicit and explicit ASIF approaches.

Barrier Constraints from an Explicitly Defined Safe Set

Consider a set CS that is defined as the super zero-level set of a continuously differentiable
function h : Rn ! R, i.e.,

CS = {x 2 Rn |h(x) � 0} (32)

@CS = {x 2 CS |h(x) = 0} (33)

and suppose that 0 is a regular value of h; i.e. the gradient of h does not vanish on the boundary.
The goal is to design a barrier constraint BC(x, u) that satisfies #BC

1 and #BC
2 , and consequently

37

makes the set CS forward invariant under the ASIF-QP. One method for ensuring the forward
invariance of CS involves checking subtangentality condition over the boundary of CS. Sometimes
called Nagumo’s condition, this result is as follows: if

Lfh(x) + Lgh(x)u(x) � 0 (34)

holds for all x 2 @CS, then CS is forward invariant for the closed-loop dynamics of (27) under
u(x), where Lf , Lg in (34) denote Lie derivatives of h along f and g, respectively. Informally,
(34) ensures that ḣ(x) � 0 for all x 2 @CS and, thus, any control law u(x) satisfying (34) ensures
the forward invariance of CS when applied to (27).

ሶ࢞ ൌ ݂ ࢞ ݃ ࢞ ݄ݑ ࢞

݄ ࢞ ൌ Ͳ
݄ ࢞ Ͳ

݄ ࢞ ൏ Ͳ

ሶ݄ ࢞ ൌ ்݄ ࢞ ሶ࢞

Figure 12: Barrier geometry for constraint function h : R2 ! R.

The constraint (34) is not very practical for use directly in an optimization framework as
it is activated exactly on the boundary of CS, which is a region without volume. The solution
presented in [121] is to use similar condition that is active everywhere in CS, and that includes
a strengthening term which relaxes the constraint away from the boundary: for all x 2 CS

Lfh(x) + Lgh(x)u(x) + ↵(h(x)) � 0 (35)

where ↵ : R! R is an extended class 1 function. A continuous function ↵ : R! R is class-
1 if ↵ is strictly increasing and ↵(0) = 0. Since ↵(h(x)) = 0 on the boundary, satisfaction of
(35) implies satisfaction of (34). Hence, (35) implies CS is forward invariant for the closed-loop
dynamics of (27) under u(x). For this reason, an attractive method for constructing the ASIFs
(28)–(29) is to form barrier constraints using

BC(x, u) = Lfh(x) + Lgh(x)u+ ↵(h(x)). (36)

Applying the previous theoretical results, the resulting ASIF ensures the forward invariance of
CS and therefore satisfies #BC

1 , as discussed above.

38

In order to satisfy the requirement #BC
2 , the functions h, ↵ must be chosen in such a way

that ensures that there always exists u 2 U satisfying the barrier constraint; equivalently,

sup
u2U

[Lfh(x) + Lgh(x)u] � �↵(h(x)). (37)

must hold for all x 2 CS. Though it is on occasion possible to obtain h, ↵ directly
through intuitive reasoning, satisfying this requirement is accomplished in general through the
computation of a control invariant subset of CA. Specifically, if CS is a control invariant set,
then it is always possible to find a strengthening function ↵(x) such that the viability property
is satisfied [80]. In practice, ↵ often takes the form of a linear or odd polynomial function, and
can to an extent be chosen in a way that shapes the response of the RTA mechanism to have
some desired behavior. For example, a common trade-off that occurs when shaping this function
is in choosing between a more gradual response that activates further inside the safe set, and a
more abrupt intervention activating closer to the boundary of CS. Alternatively, one may bypass
choosing ↵ altogether with a relaxed QP formulation (see [80], [49] for more details). Identifying
a large control invariant subset CS ✓ CA is the key challenge in implementing this method.

Example: Consider the double integrator system described by (6) and the constraint
set (7). A control invariant set is given by the super zero level set of h(x) = �2x1 � x2

2 and
given a class 1 function ↵, the barrier constraint is �2x2(1 + u) + ↵(�2x1 � x2

2) � 0. Note
that 8x 2 CS, ↵(h(x)) � 0 and supu2U [Lfh(x) + Lgh(x)u] = 0, hence the barrier constraint is
viable. ⌃

Example: Consider the dynamics of a spacecraft in unconstrained rotation,

ẋ = J�1(�x⇥ Jx) + J�1u (38)

where x 2 R3 represents the angular velocity, J = diag(J1, J2, J3) 2 R3⇥3 is a diagonal inertia
matrix and u 2 [�1, 1]3. A control invariant set for this system is given by CS = {x 2 R3 |h(x) �
0} with,

h(x) = K � xTJx (39)

for any K 2 R+. The fact that this set is control invariant is made apparent with the observation
that the rotational kinetic energy xTJx is constant when u = 0. Choosing ↵(x) = x the barrier
constraint is rhT (x)ẋ+ h(x) � 0, which simplifies to,

K � xTJx� 2xTu � 0 (40)

It is easy to show that this constraint is viable everywhere within CS. Namely, K � xTJx � 0

everywhere in CS, and one can always find u 2 U such that �2xTu � 0.

⌃

39

Algorithm 3 Explicit Active Set Invariance Filter

input : Current State xcurr 2 X

: Desired Input udes 2 U

output : Safe Control Input uact 2 U

predefined: Allowable Set CA ⇢ X

: Invariant Set CS ⇢ CA
: Extended Class 1 Function ↵ : R! R

1: function uact =EASIF(xcurr, udes)
2: solve: (28) subject to the constraint (36).
3: return uact(xcurr, udes).

If there exists an extended class 1 function satisfying (37) for all x 2 X then h(x) is
said to be a control barrier function [120], [122], [123]. Barrier functions were first developed
in the context of nonlinear and hybrid system verification [43], [124], [125]. The idea was first
extended to the RTA problem with quadratic programs in [126], and it was developed more
in [122]. In recent years, there has been a surge in interest in this topic. The theory has been
extended to relax assumptions on smoothness [127], to discrete time [128] stochastic [129]
and nondeterministic systems, and to enforce temporal logic specifications [130] [131] [132].
Likewise, the practicality of the approach is demonstrated in a variety of real world applications,
as shown in Table 1. It is important to note that in order for (36) to depend on the control
input u, the constraint function h(x) must have a relative degree of one; i.e. Lgh(x) 6= 0. Safety
constraint functions with higher relative degrees are addressed in the literature on exponential
control barrier functions [133], and high order control barrier functions [134], [135].

Example: Consider the system ẍ = u with u 2 U = (�1,1) and the constraint
function h(x) = �x1. Note that while actuation is unlimited in this case, it is not possible to
enforce the barrier constraint Lfh(x) + Lgh(x)u � ↵(h(x)) as Lgh(x) = 0. ⌃

Barrier Constraints from an Implicitly Defined Safe Set

As discussed in the previous section, the barrier constraint is viable when it restricts the
system to a control invariant set. If an explicit representation of a large control invariant subset of
CA can be obtained, then with the appropriate choice of ↵, a valid barrier constraint is obtained
through (36). The key idea behind the implicit approach to ASIF [53], [54], [80] is to filter with
respect to an implicitly defined control invariant set. Specifically, given a backup control law ub

and a backup set Cb that is invariant under ub, one can develop barrier constraints that activate

40

near the boundary of the safe backward image of Cb; see (17). The idea was first proposed in
[80] and further developed in [53], [54]. A tutorial on the topic is provided in [87], and some
notable applications are listed in Table 1. A key advantage to this approach is that it does not
require the computation of a large control invariant set.

Consider a smooth backup control law ub : Rn ! U and suppose that the constraint set is
given by,

CA := {x 2 Rn |'(x) � 0} (41)

and a backup set Cb ✓ CA is given by,

Cb = {x 2 Rn |hb(x) � 0}. (42)

The safe backward image of Cb is

CS = {x 2 Rn | 8t 2 [0, Tb], '(�ub(t; x)) � 0 ^ hb(�
ub(Tb; x)) 2 Cb}. (43)

where �ub(t; x) is the flow of (27) under ub, evaluated t units of time from x. Given an extended
class 1 function ↵, it can be shown that the following constraints are sufficient for invariance
in CS:

d'(tb; x))

dt
+ ↵('(�(tb; x))) � 0 (44)

dhb(�(Tb; x))

dt
+ ↵(hb(�(Tb; x)) � 0 (45)

for all tb 2 [0, Tb]. The constraint (44) enforces that the points along the backup trajectory stay
in the constraint space CA, and (45) enforces that the endpoint of the backup trajectory stay in
Cb. Expanding the derivative terms yields the implicit ASIF barrier constraints:

r'(�ub(tb; x))D�ub(tb; x)[f(x) + g(x)u] + ↵('(�ub(tb; x))) � 0 (46)

rhb(�
ub(Tb; x))D�ub(Tb; x)[f(x) + g(x)u] + ↵(hb(�

ub(Tb; x))) � 0 (47)

for all tb 2 [0, Tb]. Note that since tb lives in the interval [0, Tb], (46) represents an
uncountable number of constraints. In practice one may approximate the constrained set of
states by numerically integrating (27) forward under ub and evaluating �ub(t; x) at discrete
times tb 2 {0, t1, ..., tN�1, Tb}. It is shown in [53] how the finite set of intermediate constraints
may be tightened in such a way that is sufficient for satisfying the constraints with an infinite
number of trajectory points. One may compute D�ub(tb; x) by integrating along with (27) a
sensitivity matrix Q(tb, x) = D�ub(tb; x). As explained in [136], Q(tb, x) is obtained as the
solution to the following differential equation,

dQ(tb, x)

dtb
= Dfcl(�

ub(tb; x))Q(tb, x) (48)

41

Algorithm 4 Implicit Active Set Invariance Filter

input : Current State xcurr 2 Rn

: Desired Input udes 2 U

output : Safe Control Input uact 2 U

predefined: Allowable Set CA ⇢ X

: Invariant Backup Set Cb ✓ CA
: Smooth Backup Control Law ub : X ! U .
: Extended Class 1 Function ↵ : R! R

1: function uact =IASIF(xcurr, udes)
2: compute: �ub(tb; xcurr) 8tb 2 {0, t1, ..., tN�1, Tb} by integrating (27) under ub

3: evaluate: Dfcl(�ub(tb; xcurr)) 8tb 2 {0, t1, ..., tN�1, Tb}
4: compute: D�ub(tb, xcurr) 8tb 2 {0, t1, ..., tN�1, Tb} by integrating (48)
5: solve: (28) subject to the constraints (46)-(47)
6: return uact(xcurr, udes).

with Q(0, x) = In⇥n and where Dfcl(�ub(tb; x)) is the Jacobian of the closed-loop dynamics of
(27) under the control law ub(x), evaluated at �ub(tb; x). In order for this term to be defined, it
is necessary that the control law ub be smooth. As such, it is often necessary to consider smooth
saturation functions for bounding the control law to the admissible domain U .

Example: Considered here is finite-time safety (collision avoidance) for two vehicles
having combined dynamics,

2

6664

ẋ1

ẋ2

ẋ3

ẋ4

3

7775
=

2

6664

0 1 0 0

0 �b1 0 0

0 0 0 1

0 0 0 �b2

3

7775

2

6664

x1

x2

x3

x4

3

7775
+

2

6664

0 0

1 0

0 0

0 1

3

7775

"
u1

u2

#
(49)

where x1, x3 denote positions and x2, x4 denote velocities for the vehicles, b1 = 0.1 and b2 =

0.25. The safety constraint is collision avoidance '(x) = x3 � x1 and the constraint set is
CA = {x 2 R4 |'(x) � 0}. To simplify the analysis, finite-time safety is considered, with the
endpoint constraint (47) being omitted. The backup controller ub = [�1, 1]T is integrated over
a 10 s horizon and ↵(x) = 2x. Figure 13 shows the result of a simulation with udes(t) =

[1� exp(�0.1 t), exp(�0.25 t)� 1]T . ⌃

42

Figure 13: Simulation of Implicit ASIF algorithm for cooperative collision avoidance of two
vehicles.

Example: Consider the system given by (38) and the constraint set CA = {x 2
R3 |'(x) � 0} with,

'(x) = !2
max � x2

1 � x2
2 � x3

3 (50)

where !max 2 R+ represents the maximum allowable angular speed. It can be shown that this
set is not itself forward invariant in general. The backup control law

ub = tanh((x⇥ Jx)� kdJx) (51)

with kd � 0 is bounded to [�1, 1] and stabilizes system (38) to the origin. Furthermore, it can be
shown that Cb = {x 2 R3 |K�xTJx � 0} is invariant under ub(x) (see from previous example
that this is invariant under the control law u(x) ⌘ 0). The largest ellipsoid of this form that is
contained in CA is obtained by choosing K = !2

max/min(J1, J2, J3).

Figure 14 shows an illustration of the filtered trajectory under the (unsafe) primary
controller ud(x) = [sin(t2), sin(

t
2 �

⇡
4), sin(

t
4 + ⇡

4)]
T and with !max = 1m/s, kd = 1,

J1 = 12 kgm2, J2 = 12 kgm2, J3 = 5kgm2 and the backup horizon tb 2 {0, 0.05, ..., 3}.
The trajectory is colored blue where udes = uact and red where the RTA mechanism is active. ⌃

Additional Design Considerations

Recall that when the properties #BC
1 and #BC

2 are satisfied, a set CS is forward invariant under
the RTA control law uact given by the ASIF-QP. While guarantees exist under the assumptions
of the model, and indeed the formulations presented exhibit some robustness properties, it is
desirable in practice to consider the behavior of the system in the case where an unmodelled
effect perturbs the state outside of CS. A simple solution is to make CS a locally attractive set by
switching to a stabilizing backup controller whenever x 62 CS. Alternatively, for explicit ASIF,
if h is a concave function, then the barrier constraint will cause uact to attract solutions to the

43

Figure 14: Simulation of implicit ASIF algorithm for spacecraft angular velocity dynamics. The
constraint set CA is represented by the purple sphere, the backup set Cb is represented by the
blue ellipsoid. The surface of this ellipsoid has constant kinetic energy. The bottom right plot
projects this information into normed space, and the top right plot shows the desired and actual
control values.

interior of CS whenever the ASIF-QP is feasible. A backup controller should be present for
the case where a feasible solution is not found. While outside of the scope of this article, it is
interesting to note that attracting solutions outside of CS to CS doesn’t necessarily correspond to
the best response of the physical system. For instance [137] (Section V.B) presents a method
for minimizing a function of damage in the presence of an inevitable collision.

Discussion and Comparison of Approaches on Double Integrator System

Figure 16 shows a comparison of the four algorithms presented in this article on the double
integrator system given by (6) with u 2 [�1, 1], CA = {x 2 X | � x1 � 0}, and a controller
update period of 10 Hz. For the case of the Simplex algorithms, the continuous dynamics are
discretized to fit this period. The simulations begin at state x(0) = [�1.75, 0]T and have desired
input udes = 1. Here it can be seen that both Simplex-based algorithms exhibit near identical
behavior, and likewise both ASIF algorithms exhibit similar behavior. In spite of the implicit
methods lacking explicit knowledge of the boundary, all cases exhibit similar operational regions.
Note that the backup trajectory under the implicit Simplex filter violates the safety constraint.
This is by design, as the trajectories are integrated forward after taking a theoretical probe step.
A buffer could be added to the switching region to assure safety. The ASIF approaches are
slightly more conservative due to the presence of the ↵ term in the barrier constraints. This

44

((a)) The explicit simplex filter switches from primary control to filtered control according to Algorithm 1.

((b)) The explicit active set invariance filter offers a more gradual intervention that solves a quadratic program
to minimize the difference of the actual control signal from the desired control signal of the primary controller,
while assuring safety according to Algorithm 3.

Figure 15: Comparison of explicit run time assurance algorithms on double integrator system
(6) with constraint set (7) and U 2 [�1, 1]. The viability kernel is shaded green, collision states
are shaded red, and the inevitable collision states are shaded purple. In the figures on the left, x1

represents distance to the collision state boundary, x2 represents velocity relative to the collision
state boundary, the state under the desired control from the primary controller is blue, the state
under the filtered control is red, and safety constraint boundaries are green. Figures on the right
show the actual control output of the filtered signal.

function may be modified to shape the response.

While the Simplex and ASIF methods are most distinctive in terms of behavior, the implicit
and explicit methods are most distinctive in terms of requirements. For instance, the key challenge
in using the implicit methods in the design of the backup controller and the identification of the
backup set. Once these have been identified the it is relatively straightforward to implement either
approach. Likewise, the key challenge in implementing the explicit algorithms is identifying an
invariant set. Importantly, the explicit ASIF approach is the only algorithm that does not require
any backup controller to be defined.

45

((a)) The implicit simplex filter switches from primary control (full acceleration) to a backup control (full
deceleration), as predicted by the path of the system under the backup control according to Algorithm 2.

((b)) The implicit active set invariance filter computes a backup trajectory by integrating under a backup control
law and solving the quadratic program under implicit barrier constraints according to Algorithm 4.

Figure 16: Comparison of implicit run time assurance algorithms on double integrator system
(6) with constraint set (7) and U 2 [�1, 1]. The viability kernel is shaded green, collision states
are shaded red, and the inevitable collision states are shaded purple. In the figures on the left, x1

represents distance to the collision state boundary, x2 represents velocity relative to the collision
state boundary, the state under the desired control from the primary controller is blue, the state
under the filtered control is red, implicit backup trajectories are cyan, and safety constraint
boundaries are green. Figures on the right show the actual control output of the filtered signal
versus simulation time.

Assurance in the Presence of Uncertainty

While CPS may be modeled using dynamical systems as in (1)–(2), real world systems
rarely —if ever— obey the dynamics of their model precisely. Furthermore, deterministic models
do not capture the effects of external disturbances, which are universal in real-world systems.

One way to address model error is to construct a higher fidelity system model, i.e. a
higher order parameterized model that can be tuned in system identification. However, producing

46

higher fidelity modes can become an exhaustive procedure and can be unfruitful when a newly
suggested complex model performs less accurately in comparison to its simpler predecessor.
These hindrances have attracted the attention of numerous fields of study, e.g. , robust control
[138], Sim2Real [139].

A second way to address model error and external disturbances is to construct a
nondeterministic system model, i.e. a dynamical model that accounts for environmental, internal
disturbances, errors, by incorporating one or more noise terms. In continuous-time, one such a
model is represented by

ẋ = f(x) + g1(x)u+ g2(x)w, (52)

where x 2 X and u 2 U maintain their definitions as the system state and control input, and
where now the term w(t) 2 W ⇢ Rp is included to represent a bounded nondeterministic input
signal to the system. Employing a nondeterministic system model as in (52) reduces the design
burden involved in forming an accurate representation of real world phenomena. When designed
correctly, a nondeterministic model will in general describe the real world behavior accurately.

This section presents run time assurance mechanisms in the context of uncertain systems, as
in (52). First, an explicit RTA formulation is presented in which robust control barrier functions
are employed to assure system trajectories evolve in a given safe set. Next, an implicit solution
to this problem is presented, where run time safety is assessed through the online computation
of a reachable sets.

Explicit Run Time Assurance for Uncertain Systems

In this setting of (52), an ASIF provides a control policy uact that renders a given safe set
CS = {x 2 X |h(x) � 0} forward invariant, regardless to disturbance input w(t) chosen. For
this reason, ASIFs are naturally constructed from robust control barrier functions, as discussed
next.

Robust control barrier functions extend the general barrier function theory presented above
to the nondeterministic setting of (52). A continuously differentiable function h : Rn ! R is a
robust control barrier function for (52) if there exists a class- function ↵ : R ! R such that
for all x 2 CS := {x 2 X |h(x) � 0} there exists a u 2 Rm satisfying

BC(x, u, w) = Lfh(x) + Lg1h(x)u+ Lg2h(x)w + ↵(h(x)) � 0 (53)

for all w 2 W , where Lfh(x), Lg1h(x) and Lg2h(x) are naturally taken to be the lie derivatives
of h along f , g1 and g2. The barrier constraint (53) is a linear inequality on the variable u for
any x 2 Rn and any w 2 W , and when a candidate controller udes(x) satisfies (53) for all x 2 CS

47

and all w 2 W , the set CS will be robustly forward invariant for the closed-loop dynamics of
(52) under udes.

When instead udes(x) does not satisfy (53), an ASIF can be employed to assure the forward
invariance of CS. One such filter, given below as RASIF-QP, is posed as quadratic program where
the constraints in this program are constructed from (53).

RASIF-QP

uact(x) = argmin
u2U

||u� udes(x)||22 (54)

s.t. Lfh(x) + Lg1h(x)u+ Lg2h(x)w + ↵(h(x)) � 0

for all w 2 W
(55)

When h is a robust control barrier function for (52), the RCBF-QP is always feasible and
the set CS is robustly forward invariant for closed-loop dynamics of (52) under uact. However,
this program contains an infinite number of linear constraints and, thus, is not always practically
implementable. In the special instance where the disturbance set W is a polytope, the program
RCBF-QP can be reduced to include only a finite number of linear constraints. Assume, for
instance, that

W = Conv{w1, · · · , wq} (56)

for some w1, · · · , wq 2 Rp, where Conv denotes the convex hull operator. Then an explicit ASIF
is constructed using

RASIF-QP (polytope W)

uact(x) = argmin
u2Rm

||u� udes(x)||22 (57)

s.t. Lfh(x) + Lg1h(x)u+ Lg2h(x)w + ↵(h(x)) � 0

for all w 2 {w1, · · · , wq}
(58)

and this program contains only q linear constraints.

48

Implicit Active Set Invariance for Uncertain Systems

In this section, an implicit RTA formulation is introduced for the nondeterministic setting
of (52). As in the case of deterministic systems, the implicit ASIF allows the system to leave the
safe set CS when safety is verified a priori via the assessment of a known safe backup control
policy.

In the deterministic setting of (27), the safety of a given state x 2 X with respect to
the backup controller ub is assessed via a system simulation; however, in the nondeterministic
setting of (52), it is necessary to assess the effects of the disturbance, perhaps through, e.g. ,
computing reachable sets [67], [140], [141]. For initial set A ✓ X and time t � 0, the time-t
reachable set of (52) under ub is

R(t;A) :=
�
�ub(t; x,w) 2 X

�� x 2 A, w : [0, t)!W

(59)

where �ub(t; x, w) denotes the state of (52) reached at time t when beginning at state x 2 X

at time 0 and evolving subject to the backup control input ub and the disturbance signal w :

[0, t] ! W . In particular, an implicit ASIF ensures R(Tb; x) ✓ Cb for all states x along the
system trajectory, where Tb � 0 maintains its definition and function as the horizon time of the
backup controller.

In general, it can be difficult to compute reachable sets in closed form. However numerous
efficient computational methods exists for over-approximating reachable sets, with computational
speeds suitable for, e.g. , computing reachable sets in the control-loop and enforcing safe
behavior online from these predictions [140]–[143]. Of particular interest to this work, the mixed
monotonicity property of dynamical systems can be applied to compute a hyperrectangular over-
approximation of R(t; x) using a single simulation of a related 2n-dimensional deterministic
embedding system; a technique that have been applied in domains including transportation
system [144], and biological systems [145]. Further details on the mixed monotonicity property
are provided in the sidebar titled “Mixed Monotonicity for Efficient Reachability” in this work.

In the remainder of this section, we present one possible implicit ASIF construction,
where over-approximations of reachable sets are computed online using the mixed monotonicity
property. The basic idea is as follows: when the system is at state x, the ASIF computes
a hyperrectangular overapproximation of R(Tb; x) using the mixed monotonicity procedure.
A barrier condition is then enforced for each vertex of the approximation, as to ensure
R(Tb; x) ✓ Cb for all states x along the system trajectory. In this way safety is ensured. Specific
details are as follows.

For a finite set S ⇢ R, and some fixed parameter p > 0, the Log-Sum-Exponential (LSE)

49

of S is given by

LSE(S) = �1

p
log

X

s2S

exp(�p · s). (60)

The LSE has several useful properties: namely, LSE(S, p) is differentiable with respect to the
elements of S , and LSE(S, p) approximates minS , i.e.,

minS � n

p
log 2 LSE(S, p) < minS (61)

for all p > 0, and this approximation can be made arbitrarily tight by choosing p large enough. We
use the LSE, in this section, to approximate the minimum evaluation of h over a hyperrectangular
subset of the statespace. Define the following:

LSEh(a) := LSE({h(z) | z 2 hhaii }, p) (62)

�(t; x) := LSEh(�
E(t; x)) (63)

 (x) := sup
0⌧Tb

�(⌧ ; x) (64)

where hhx, yii in (62) denotes the set of 2n corners of a rectangle [x, y] and is given by

hhx, yii := {z 2 X | zi 2 {xi, yi}}. (65)

From the above definitions we have that (x) � 0 when there exists a t 2 [0, Tb] so that
[�E(t; x)] ✓ Cb and in this case R(Tb; x) ✓ Cb as Cb is assumed robustly forward invariant
for (52) under the backup controller ub. Thus, an implicit ASIF for (52) is constructed using
Algorithm 5. See [140], [142], [143] for further details.

Verification of Run Time Assurance Algorithms and Architectures

A key question in trusting RTA systems is “who checks the checker?” In many applications,
RTA systems serve a safety critical role and therefore must be rigorously verified. One can
imagine a second RTA to check the RTA, and another third to check that RTA until it is turtles
all the way down. Proponents of the Simplex architecture advocate simple switching logic and
preplanned backup control actions that reduce the verification burden [108]. Other approaches
may rely on mathematical proofs for verification [146]. Nearly all approaches see the RTA as a
modular component within the closed-loop control system that can be verified sub-component.
It is worth noting that this verification can be done on the algorithms or the actual software
implementation. This section focuses on verification of RTA algorithms and architectures in the
early design phases using formal and compositional reasoning.

50

Algorithm 5 Implicit ASIF for Nondeterministic Control Systems

input : Current State xcurr 2 X

: Desired Input udes 2 U

output : Safe Control Input uact 2 U

predefined: Constraint set CA ⇢ X

: Invariant Set CS ⇢ CA
: Backup Control Law ub : X ! U .

1: function uact(x) =ASIF(xcurr, udes)
2: compute:
3: u⇤ = argminu2Rm ||u� udes||22
4: s.t. @

@x (xcurr)(f(xcurr) + g1(xcurr)u+ g2(xcurr)w) � �↵((xcurr))

5: 8w 2 hhw, wii
6: if Program feasible then return u⇤

7: else return ub(xcurr)

Formal Specification and Analysis of RTA System Requirements, Architecture and Design

Formal methods tools from computer science for automated verification of hardware and
software [147] can be brought to the problem of verifying RTA. In addition to the ability to
verify software implementations, formal methods can be used to aid in modeling and automated
analysis of algorithm and decision logic with mathematical rigor. At one level, Lyapunov proofs
can be used to guarantee safety of control systems. Formal methods can supplement these proofs,
or perhaps be used where Lyapunov proofs do not exist. Three goals of formal methods are
specification, analysis, and synthesis.

Formal specification facilitates a common, unambiguous understanding of the system
between users, designers, programmers, and testers. “Specification is difficult, unglamorous,
and arguably the biggest bottleneck facing verification and validation of aerospace, and other,
autonomous systems” [148]. RTA systems and formal specification and analysis have been
applied successfully in a variety of applications [60], [63], [66], [97], [106], [107], [149]–[161].
Formal RTA requirements specifications have also been developed and analyzed [162]–[164].

Formal analysis helps to find errors and increase reliability of the system. Formal analysis
can be divided [165] into axiomatic (e.g. . Hoare logic [166], theorem proving [167]), semantic
approaches (e.g. . model checking [147]), and static analysis methods (e.g. . abstract interpretation
[168]). Many formal analysis approaches focus on the satisfiability modulo theories (SMT)

51

where sets of variables are substituted with binary-valued functions of non-binary values called
predicates [169]. An example predicate is an inequality that is evaluated as true or false, such as
x+y c with variables x and y, and constant c. These predicates can be combined in a variety of
logics such as first order and temporal logics such as linear temporal logic (LTL), computational
tree logic (CTL), timed computational tree logic (TCTL), metric temporal logic (MTL), and
signal temporal logic (STL) [147], [170]–[172]. Formal verification of linear temporal logic
specifications has been applied to PID attitude control of spacecraft [173], a Simplex RTA
system for spacecraft attitude [160], [174], [175], switching logic for automatic maneuvering
[161], an LTL specification monitor automaton [67], and many other applications.

Formal synthesis integrates formal methods into the development process to convert a
design to implementation with some level of automation. While many controller designs are
synthesized in some fashion, formal synthesis typically involves automatic generation of a
controller, or a run time assurance filter from formal specifications [176].

Compositional Verification

Compositional verification, sometimes referred to as a “divide and conquer” approach to
verification [177], helps to verify or test portions of algorithms or systems architectures separately
and then make conclusions about the system as a whole. This verification approach is helpful
in modern engineering practices where engineering tasks are divided over large teams [178].
Compositional verification includes statements such as: if property p1 for subsystem A and
property p2 for subsystem B both hold, it implies property p holds for the entire system. A
compositional verification approach can be used to apply formal methods to verify components
of an RTA system, especially in Simplex-based RTA systems where multiple simple components
(monitors, backup controllers, and switching functions) work together to ensure safety [66], [90],
[160], [174], [175], [179].

Compositional verification often relies on assume-guarantee reasoning of the architecture
[180] or the hybrid switching [181]. Assume-guarantee contracts make guarantees on the output
of a component based on assumptions about the input. Assumptions are expectations that a
component has about it’s environment, while guarantees are behavior properties provided by the
component. Verification techniques are applied to individual components with explicit, formal,
assumptions and guarantees, as depicted in Figure 17.

52

Figure 17: Depiction of assume-guarantee reasoning for an automatic collision avoidance system,
were assumptions properties are guaranteed by a component based on assumptions about their
environment. Guarantees on the output of one component translate to assumptions on the input
of another component until larger properties of the overall system are proven.

Conclusions

RTA Systems are growing in popularity as a way to assure safety by altering unsafe
control inputs from a primary controller. The assurance mechanism of RTA systems is constructed
agnostic to the underlying structure of the primary controller, whether the primary control comes
from a human operator, an advanced control approach, or an autonomous control approach. By
effectively decoupling the enforcement of safety constraints from performance-related objectives,
RTA offers a number of useful advantages over traditional (offline) verification.

This article provided a tutorial on developing RTA systems with particular emphasis on
implicit and explicit safety definitions as well as Simplex architecture and active set invariance
filtering RTA approaches. Implicit (or trajectory-based) safety definitions computed finite-
time trajectories under a backup controller online, while explicit (or region-based) approaches
identified trusted regions offline via the construction of either a large forward invariant or
control invariant set. Simplex Architecture RTA designs monitor for imminent violations of
safety constraints, and switch from the primary controller to a backup controller when an
imminent unsafe condition is detected. By contrast, backup control intervenes gradually in ASIF
approaches, rather than with a hard switch.

Given the increasing complexity of modern control systems, RTA in its various forms is

53

one tool to assure safety and a potential path to certification in safety critical domains.

Sidebar: Run Time Assurance

Run Time Assurance (RTA) systems guarantee safety of increasingly complex and
intelligent control system designs by monitoring the state of the system and intervening when
necessary. RTA acts as a safety filter that sits between the primary controller and the plant
to assure the state of the system adheres to safety properties. The design of the RTA safety
mechanism is decoupled from the design of the primary controller, allowing for RTA to focus
on safety while the primary controller optimizes performance. Historically, verification techniques
for novel control approaches trail years to decades behind the development of the approaches
themselves [66]. RTA provides a path to introduce the use of these advanced controllers faster,
even in safety-critical applications. This article provides a tutorial on many ways to design RTA,
including explicit and implicit monitoring, Simplex and Active Set Invariance Filter (ASIF)
intervention approaches, and uncertainty with a variety of examples. Explicit monitors define
forward invariant or control invariant safe sets offline that are enforced online at run time,
while implicit monitors project the a finite-time trajectory of a backup controller online. Simplex
interventions switch from the primary controller to a backup controller, while ASIF interventions
gradually optimally modify the control signal subject to safety constraints. A conceptual and a
mathematical description are provided for each. Where possible, the Automatic Ground Collision
Avoidance System (Auto GCAS), an implicit Simplex RTA design, is used as an example to
illustrate several RTA concepts. The article assumes an introductory understanding of control
theory and state space concepts.

Sidebar: RTA Aliases

RTA provides a conceptually simple and highly effective approach to enforcing safety
constraints that has frequently been explored, utilized, and independently reinvented in a wide
variety of areas. As such, RTA and its applications go by many names in the literature, including:
active set invariance, active collision avoidance, advanced driver assistance, active safety, safety
filtering, emergency braking, sandboxing, conflict resolution, and constraint-based planning. The
primary controller goes by several names in the literature including advanced controller [182],
advanced system [41], experimental control module [152], baseline controller [152], unverified
controller [174], [183], nominal controller [184], complex subsystem [154], [183], and complex
controller [60]. Finally, the backup controller goes by many names in the literature, including
the recovery mechanism, reversionary controller [182], reversionary system [41], safety control
module [152], verified controller [174], backup controller [184], safety remediation controller

54

[154], recovery controller [61], [108], [159], [183], and safety controller [60].

Part of the different naming conventions comes from the different intentions and the
resulting implementation of the RTA intervention, which are grouped here as: recovery and
reversionary controllers. Recovery Controllers intervene in emergency situations and return
control authority to the primary controller as soon as possible. Recovery controllers are not
intended to perform the wide range of tasks a dynamical system is designed to perform, but
instead focuses solely on recovery maneuvers from an unsafe condition (e.g. collision avoidance,
adherence to keep out zones, or maintaining state limits). By contrast, reversionary controllers
detect inappropriate behavior of the primary controller and revert to a simpler, verified controller
to complete the rest of the tasks. The reversionary controller may sacrifice performance for
assurance. This article focuses on the design of recovery controller-based RTA systems.

Sidebar: Shielded Learning

No discussion of RTA for complex and autonomous control systems would be complete
without discussing the emerging challenges of using machine learning, and in particular,
reinforcement learning (RL), where a dynamical system learns from experience collected over
many episodes [185]. The use of RL has attracted attention for its ability to tackle complex tasks
with high-dimensional state spaces by world experts in Go [186], [187] and StarCraft II [188].
In addition, it is becoming popular in robotics research to operate in unknown environments and
learn state representations for many tasks [189]. Both control theory and RL share a common
concept of a system state (usually x 2 X in control theory and s 2 S in RL). A control
input (u 2 U in control theory) is formulated as an action a or A 2 A in RL, and the actions
are determined by a policy (i.e. controller) that maps states to actions. State-action sequences
(S0, A0, S1, A1, ...Sn, An) are called trajectories in RL. Both fields have a notion of partial
observability. A measurement y may come from sensors in control theory, or an observation
O in RL may be used to estimate the system state (e.g. . x̂ 2 X). In control theory, a controller
is optimized to minimize a cost function, while in RL, a policy is optimized to maximize a
reward function. In both control theory and RL, dynamics describe how the state evaluates in
the environment. RL approaches may be model-based, where the agent learns a model of the
environment, or model-free where dynamics are not explicitly modeled and the action is learned
directly through interactions with the environment.

A challenge in RL, especially when it takes place on a physical agent, is ensuring safety of
that agent. Safe RL is defined as the process of learning a policy that maximizes expected return
while ensuring adherence to safety constraints [34]. Safe RL usually employs either reward
shaping or shielding (i.e. RTA) to incorporate safety in the training process. Reward shaping

55

factors safety into the reward function to reduce risk. However, it is difficult to properly weight
safety rewards and reward shaping can sometimes have unintended impacts on performance. In
addition, reward shaping does not guarantee safety during operations. By contrast, RTA can be
used to filter the actions of the RL algorithms to ensure safety. A variety of RTA approaches
have been explored in the literature including human-like intervention [190], Lyapunov-based
approaches [191], [192], barrier functions [193], and formal verification of safety constraints
[194], [195]. Determining the appropriate way to include RTA in the training process is still an
area of active research.

Sidebar: The Case for Plan B

A fundamental concept underlying RTA is: always maintaining a safe “Plan B” during
mission execution, with the purpose of executing “Plan B” as soon as the nominal activity
appears to be dangerous. Considered from that perspective, maintaining a “Plan B” makes sense
and hundreds of examples can be found in everyday life. For example, financial advisers always
recommend their clients keep a few weeks’ worth of salary in a savings account so as to be
ready and face unexpected financial expenses, such as the medical costs following an accident,
the replacement of a commuting vehicle following a collision, a few weeks at a hotel if the home
is damaged by a hurricane, and so on. Defensive driving is another example, whereby a driver
is trained to always be aware of her surroundings and be ready to take appropriate action in
case of unexpected events. Currently U.S. regulations specify three levels of “circuit breakers,”
that are used to halt trading in stock exchanges when the S&P 500 index drops below certain
critical levels. One of the oldest examples of an engineered “Plan B” can be found in Greek
mythological the story of Ariadne’s thread [196]–[198]. In the story, Ariadne, daughter of Minos
the king of Crete, conceived of using a thread as a “Plan B” mechanism that would allow her
lover to exit Daedalus’ Labyrinth after killing the Minotaur. Similar themes appear in folktales
such as “Le Petit Poucet” (Hop-o’-My-Thumb) [199], [200] and “Hansel and Gretel.”

One may also observe this paradigm in nature. It is now known that acacia trees, whose
leaves are one common form of food for giraffes and other herbivorous fauna in Africa, are
capable of exercising a kind of “Plan B” making these leaves lethal by raising tannin-C in their
leaves to deadly levels in a matter of minutes if they are over-grazed [201]. Likewise, rodents
very often create burrows with emergency exits or “bolt holes” to escape predators, flooding
or other causes that may block their main entrances [202]. The sympathetic nervous system in
mammals acts as a physiological “Plan B” by preparing the body for a “fight or flight” response.
Upon detection of a threat, glucose is transmitted from storage sites, blood is shifted to the organs
that are most essential for physical exertion, heart rate is increased, adrenaline is released, and

56

cognition is sharpened [203].

Sidebar: Safety, Reliability, and Security

The primary function of an RTA system is to ensure safety (and in some cases security),
not reliability. Safety and reliability are two different concepts. Reliability is freedom from errors
and failures, while safety is freedom from harm. Reliability of a system is its ability to perform
consistently over time. For example, physical components may fatigue and degrade over time,
and reliability focuses on how long the performance is consistent and failure is unlikely [40],
[204]. Reliability of software, which doesn’t degrade over time (unless it changes over time,
in the case of intelligent control that continues to learn online), is based on it’s freedom from
design errors. In a related sense, security is freedom from harm from others. The difference in
safety and security is in intent, severity, and likelihood of harm.

Sidebar: To RTA or not to RTA? That is the Question

RTA is not a panacea for controller safety. Employing RTA incurs a cost-benefit trade-
off. Implementing RTA can increase system cost, complexity, the amount of testing or evidence
required for certification, the number of hardware and software components that can fail, and the
attack surface when cyber security is a concern. Designers must ask themselves critical questions
before deciding to use an RTA system. First, could a simple controller meet design requirements?
If a simple control design is sufficient, traditional simulation and testing can provide adequate
confidence, or the primary controller can be exhaustively verified, an RTA system should not
be used. Second, is the system safety or mission critical? If the system is not safety or mission
critical, an RTA could be an unnecessary design complication.

If the system under consideration is safety or mission critical and the control functions can
only be achieved by a complex or neural network control scheme, and certification of that high
performance controller is not possible via traditional simulation, test, or exhaustive analysis, then
an RTA system may be appropriate.

Sidebar: Reference and Command Governors

While this article focuses entirely on RTA designs that monitor the primary controller and
intervene before the control signal reaches the plant, it is worth noting that other approaches, such
as reference and command governors can be used for safety assurance. Instead of modifying the
control signal of the primary controller before it reaches the plant, reference and governors wrap
around the closed loop system and change the reference signal [205]. The reference governor

57

acts as a pre-filter on the desired reference command r(t) and state measurement or estimate
x(t) under noise w(t), resulting in a modified reference command v(t). A command or reference
governor architecture is depicted in Figure S1.

Figure S1: Depiction of a reference governor which modifies the input to the primary controller,
rather than the primary controller output to assure safety.

Sidebar: The Robotarium: An RTA Enabled Remote-Access Swarm
Robotics Testbed

The Robotarium [83]–[86] is a remotely accessible swarm robotics testbed with the stated
mission to democratize robotics by providing remote access to a state-of-the-art multi-robot
research facility. The lab consists of a 12ft⇥14ft custom arena and a number of differential
drive robots, known as GritsBots. The testbed exhibits features such as Vicon-based real time
motion-capture, wireless inductive charging, video capture of experiments, and an above mounted
projector that allows users to project time-varying environmental projections onto the testbed
during experiments. Users may submit code to control the robots through MATLAB or Python
scripts, that are submitted through the Robotarium website.

The open-access nature of the lab presents unique challenges in terms of safety. Experi-
ments must remain as faithful as possible to the user specified behavior while being provably
safe, so as to prevent damage to the lab equipment. Offline verification of the user code would
be a prohibitively difficult and time consuming task for the operators of the lab, and would place
an unnecessary burden of correctness on its users. Consequently, an RTA solution to safety is
utilized, and user submitted algorithms are treated as black box functions that can be probed at
run time. Specifically, control barrier function based quadratic programs (explicit ASIF) are used
to prevent collisions between the various robots involved in an experiment. An explicit ASIF-
based approach is attractive in this case as it is minimally invasive to the desired inputs and
provides a smooth overriding behavior. Since the planning is conducted under a single-integrator

58

dynamics model, explicit identification of viable sets is fully-tractable problem offline.

Sidebar: Mixed Monotonicity for Efficient Reachability

A dynamical system, possibly subject to a nondeterministic disturbance input, is mixed
monotone when there exists a related decomposition function that separates the system dynamics
into cooperative and competitive state interactions. Mixed monotonicity applies to continuous-
time systems [206], [207], discrete-time systems [145], as well as systems with disturbances
[208], [209], and it generalizes the monotonicity property of dynamical systems for which
trajectories maintain a partial order over states [210], [211].

For an n-dimensional mixed monotone system with a disturbance input, it is possible to
construct a 2n-dimensional monotone embedding system from the decomposition function. This
enables one to apply the powerful theory of monotone dynamical systems to the embedding
system and can be used to compute useful properties of the initial system. In particular, such
approaches are useful for efficiently computing reachable sets and robustly forward invariant sets
for systems with disturbances, techniques which have been successfully demonstrated in online
safety applications [140]–[143].

A dynamical system

ẋ = F (x, w), (S1)

with state x 2 X ✓ Rn and disturbance w 2W ✓ Rm, is a mixed monotone system when there
exists a related decomposition function d : X ⇥W ⇥X ⇥W ! Rn so that for all x, bx 2 X and
all w, bw 2W the following hold:

• d(x, w, x, w) = F (x, w).
• @di

@xj
(x, w, bx, bw) � 0 for all i, j with i 6= j.

• @di
@bxj

(x, w, bx, bw) 0 for all i, j.
• @di

@wk
(x, w, bx, bw) � 0 and @di

@ bwk
(x, w, bx, bw) 0 for all i, k.

Large classes of systems have been shown to be mixed monotone, with decomposition functions
constructed from, e.g. , bounds on the systems Jacobian matrix [208] of domain specific
knowledge [212], [213]. In certain instances decomposition functions can also be computed
by solving an optimization problem [214].

An important feature of mixed monotone systems is that hyperrectangular over-
approximations of reachable sets can be efficiently computed using a single simulation of a related
2n dimensional embedding system constructed from the decomposition function. Assume X is

59

an extended hyperrectangle and W := [w,w] is a hyperrectangle. When (S1) is mixed monotone
with decomposition function d,

"
ẋ

ḃx

#
= E(x, bx) :=

"
d(x, w, bx, w)
d(bx, w, x, w)

#
(S2)

is the embedding system relative to d, and �E(t; a) denotes the state of (S2) reached at time
t � 0 when beginning at state a 2 X ⇥ X at time 0. For any hyperrectangular set of states
[x, x] ⇢ X the following is true: if �E(⌧ ; (x, x)) 2 X ⇥X for all 0 ⌧ t, then

R(t; [x, x]) ✓ [�E
1:n(t; (x, x)),�

E
n+1:2n(t; (x, x))]. (S3)

The results of (S3) provide an efficient procedure for over-approximating reachable sets for
systems with disturbances; in particular, a hyperrectangular over-approximation of R(t; [x, x]) is
computable from a single simulation of the embedding system (S2), where the bottom and top
corners of the approximation are the first n and last n coordinates of �E(t; (x, x)). This result
is demonstrated in the following numerical example.

Example: Consider the system
"
ẋ1

ẋ2

#
= F (x) =

"
x2
2 + 2

x1

#
(S4)

with state space X = R2. The system (S4) is mixed monotone with respect to the decomposition
function d : X ⇥X ! R2 given by

d1(x, bx) =

8
>>>>><

>>>>>:

x2
2 + 2 if x2 � max{0,�bx2},

bx2
2 + 2 if bx2 min{0,�x2},

2 if x2 0 bx2,

d2(x, bx) = x1.

(S5)

Reachable sets for (S4) are now approximated from a single simulation of the embedding system
(S2), as described in (S3). An example is shown in Figure S2 where R(1;X0) is approximated
for X0 = [�1/2, 1/2]2. ⌃

References

[1] Wikimedia Commons, “Auto-gcas saves f-16,” Website, https://upload.wikimedia.org/
wikipedia/commons/7/75/Auto-GCAS saves F-16.webm.

[2] A. Circular, “Ac 25.1309-1a, system design and analysis,” Washington, DC: Federal
Aviation Administration, 1988.

60

https://upload.wikimedia.org/wikipedia/commons/7/75/Auto-GCAS_saves_F-16.webm
https://upload.wikimedia.org/wikipedia/commons/7/75/Auto-GCAS_saves_F-16.webm

�1 0 1 2 3 4 5
�1

0

1

2

3

x1

x
2

((a))

�1 0 1 2 3 4 5
�1
0

1

2

3

4

5

x1

bx 1

((b))

Figure S2: Approximating reachable sets of (S4) from the set of initial conditions X0 =

[�1/2, 1/2] ⇥ [�1/2, 1/2]. (a) X0 is shown in red. RF (1;X0) is shown in green. The
hyperrectangular over-approximation of RF (1;X0), which is computed from the embedding
system (S2) as described in (S3), is shown in light green. (b) Visualization of the bounding
procedure from (S3). The trajectory of (S2) that yields Figure S2(a) is shown in blue, where �E

is projected to the x1, bx1 plane. The southeast cones corresponding to X0 and the hyperrectangular
over-approximation of RF (1;X0) are shown in red and green, respectively.

[3] Defense Acquisition University, “Verification,” https://www.dau.mil/glossary/pages/2860.aspx,
2018, accessed 14 November 2018.

[4] ——, “Validation,” https://www.dau.mil/glossary/pages/2852.aspx, 2018, accessed 14
November 2018.

[5] J. William R. Nichols and T. Scanlon, “DoD Developer’s Guidebook for Software
Assurance,” Carnegie Mellon University Software Engineering Institute, DoD Developer’s
Guidebook for Software Assurance, 12 2018.

[6] Federal Aviation Administration (FAA), “Standard airworthiness certification regulations:
Title 14, code of federal regulations,” Website, 10 2017, https://www.faa.gov/aircraft/air
cert/airworthiness certification/std awcert/std awcert regs/regs/.

[7] “MIL-HDBK-516C: Airworthiness Certification Criteria,” Department of Defense, Guid-
ance, 12 2014.

[8] “MIL-STD-882E: System Safety,” Department of Defense, Standard Practice, May 2012.
[9] “Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne

Systems and Equipment,” SAE International, Guidance, 1996.
[10] “Guidelines For Development Of Civil Aircraft and Systems,” SAE International, Guid-

ance, 2010.
[11] “Software Considerations in Airborne Systems and Equipment Certification,” RTCA Inc.,

Guidance, 2011.

61

https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert_regs/regs/
https://www.faa.gov/aircraft/air_cert/airworthiness_certification/std_awcert/std_awcert_regs/regs/

[12] “Design Assurance Guidance for Airborne Electronic Hardware,” RTCA Inc., Guidance,
2000.

[13] “Formal Methods Supplement to DO-178C and DO-278A,” RTCA Inc., Guidance, 2011.
[14] C. Hu, Z. Wang, Y. Qin, Y. Huang, J. Wang, and R. Wang, “Lane keeping control of

autonomous vehicles with prescribed performance considering the rollover prevention and
input saturation,” IEEE Transactions on Intelligent Transportation Systems, 2019.

[15] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness guarantees for
the composition of lane keeping and adaptive cruise control,” IEEE Transactions on
Automation Science and Engineering, vol. 15, no. 3, pp. 1216–1229, 2017.

[16] T. Gurriet, S. Finet, G. Boeris, A. Duburcq, A. Hereid, O. Harib, M. Masselin, J. Grizzle,
and A. D. Ames, “Towards restoring locomotion for paraplegics: Realizing dynamically
stable walking on exoskeletons,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2804–2811.

[17] O. Harib, A. Hereid, A. Agrawal, T. Gurriet, S. Finet, G. Boeris, A. Duburcq, M. E.
Mungai, M. Masselin, A. D. Ames et al., “Feedback control of an exoskeleton for
paraplegics: Toward robustly stable, hands-free dynamic walking,” IEEE Control Systems
Magazine, vol. 38, no. 6, pp. 61–87, 2018.

[18] O. Sanni, M. Mote, D. Delahaye, M. Gariel, T. Khamvilai, E. Feron, and S. Saber,
“Ariadne: A common-sense thread for enabling provable safety in air mobility systems with
unreliable components,” 2021. [Online]. Available: http://hdl.handle.net/10754/666807

[19] E. Squires, P. Pierpaoli, and M. Egerstedt, “Constructive barrier certificates with appli-
cations to fixed-wing aircraft collision avoidance,” in 2018 IEEE Conference on Control
Technology and Applications (CCTA). IEEE, 2018, pp. 1656–1661.

[20] E. Squires, P. Pierpaoli, R. Konda, S. Coogan, and M. Egerstedt, “Composition of
safety constraints with applications to decentralized fixed-wing collision avoidance,” arXiv
preprint arXiv:1906.03771, 2019.

[21] E. Squires, R. Konda, P. Pierpaoli, S. Coogan, and M. Egerstedt, “Safety with limited
range sensing constraints for fixed wing aircraft,” arXiv preprint arXiv:2010.10883, 2020.

[22] T. Schouwenaars, M. Valenti, E. Feron, and J. How, “Implementation and flight test results
of milp-based uav guidance,” in 2005 IEEE Aerospace Conference. IEEE, 2005, pp. 1–13.

[23] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2006.

[24] C. Hanson, “Capability description for nasa’s f/a-18 tn 853 as a testbed for the integrated
resilient aircraft control project,” 2009.

[25] L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers for teams of
quadrotors using differential flatness,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 3293–3298.

62

http://hdl.handle.net/10754/666807

[26] A. Singletary, T. Gurriet, P. Nilsson, and A. D. Ames, “Safety-critical rapid aerial
exploration of unknown environments,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 10 270–10 276.

[27] M. Mote, C. W. Hays, A. R. Collins, E. Feron, and K. L. Hobbs, “Natural motion-based
trajectories for automatic spacecraft collision avoidance during proximity operations,” in
IEEE Aerospace, 2021.

[28] A. Singletary, P. Nilsson, T. Gurriet, and A. D. Ames, “Online active safety for robotic
manipulators,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 173–178.

[29] E. Wong, J. D. Schierman, T. Schlapkohl, and A. Chicatelli, “Towards run-time assurance
of advanced propulsion algorithms,” in 50th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference, 2014, p. 3636.

[30] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient
smt solver for verifying deep neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 97–117.

[31] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, and
T. T. Johnson, “Nnv: The neural network verification tool for deep neural networks and
learning-enabled cyber-physical systems,” in International Conference on Computer Aided
Verification. Springer, 2020, pp. 3–17.

[32] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson, “Improved geometric path enumeration
for verifying relu neural networks,” in International Conference on Computer Aided
Verification. Springer, 2020, pp. 66–96.

[33] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz, “Simplifying neural
networks using formal verification,” in NASA Formal Methods Symposium. Springer,
2020, pp. 85–93.

[34] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,”
Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.

[35] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu, “Safe
reinforcement learning via shielding,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[36] R. Alur, Principles of Cyber-Physical Systems. Cambridge, MA: The MIT Press, 2015.
[37] J. C. Knight, “Safety critical systems: Challenges and directions,” in Proceedings of the

24th International Conference on Software Engineering, 2002, pp. 547–550.
[38] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems. Princeton

University Press, 2012.
[39] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer

Science & Business Media, 2009.

63

[40] N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety. MIT press,
2011.

[41] J. D. Schierman, M. D. DeVore, N. D. Richards, N. Gandhi, J. K. Cooper, K. R. Horneman,
S. Stoller, and S. Smolka, “Runtime assurance framework development for highly adaptive
flight control systems,” Barron Associates, Inc. Charlottesville, Tech. Rep., 2015.

[42] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability theory: new directions. Springer
Science & Business Media, 2011.

[43] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier certifi-
cates,” in International Workshop on Hybrid Systems: Computation and Control. Springer,
2004, pp. 477–492.

[44] J. Anderson and A. Papachristodoulou, “Advances in computational lyapunov analysis us-
ing sum-of-squares programming,” Discrete & Continuous Dynamical Systems-B, vol. 20,
no. 8, p. 2361, 2015.

[45] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic
safety verification using barrier certificates,” IEEE Transactions on Automatic Control,
vol. 52, no. 8, pp. 1415–1428, 2007.

[46] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games,” IEEE Transactions on
automatic control, vol. 50, no. 7, pp. 947–957, 2005.

[47] J. H. Gillula, S. Kaynama, and C. J. Tomlin, “Sampling-based approximation of the
viability kernel for high-dimensional linear sampled-data systems,” in Proceedings of the
17th international conference on Hybrid systems: computation and control, 2014, pp.
173–182.

[48] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target sets and target
tubes,” Automatica, vol. 7, no. 2, pp. 233–247, 1971.

[49] T. Gurriet, “Applied safety critical control,” Ph.D. dissertation, California Institute of
Technology, 2020.

[50] I. Mitchell, “A summary of recent progress on efficient parametric approximations of
viability and discriminating kernels.” in SNR@ CAV, 2015, pp. 23–31.

[51] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[52] M. Nagumo, “Über die lage der integralkurven gewöhnlicher differentialgleichungen,”
Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 24, pp. 551–
559, 1942.

[53] T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D. Ames, “A scalable
safety critical control framework for nonlinear systems,” IEEE Access, vol. 8, pp. 187 249–
187 275, 2020.

64

[54] T. Gurriet, M. Mote, A. Singletary, E. Feron, and A. D. Ames, “A scalable controlled set
invariance framework with practical safety guarantees,” in 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE, 2019, pp. 2046–2053.

[55] D. Mayne, “An apologia for stabilising terminal conditions in model predictive control,”
International Journal of Control, vol. 86, no. 11, pp. 2090–2095, 2013.

[56] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for high-speed navigation,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp.
5759–5765.

[57] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path planning with implicit
safety guarantees,” in Proceedings of the 2004 American control conference, vol. 6. IEEE,
2004, pp. 5576–5581.

[58] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Natural motion-based trajectories
for automatic spacecraft proximity operation collision avoidance,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 68–73, 2015.

[59] W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,”
Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 1960.

[60] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing controllers for cyber-
physical systems,” in International Conference on Cyber-physical systems, ser. ICCPS,
2011.

[61] D. E. Swihart, A. F. Barfield, E. M. Griffin, R. C. Lehmann, S. C. Whitcomb, B. Flynn,
M. A. Skoog, and K. E. Prosser, “Automatic ground collision avoidance system design,
integration, & flight test,” IEEE Aerospace and Electronic Systems Magazine, vol. 26,
no. 5, pp. 4–11, 2011.

[62] E. M. Griffin, R. M. Turner, S. C. Whitcomb, D. E. Swihart, J. M. Bier, K. L. Hobbs,
and A. C. Burns, “Automatic ground collision avoidance system design for pre-block 40
f-16 configurations,” in Asia-Pacific International Symposium on Aerospace Technology,
2012.

[63] M. Aiello, J. Berryman, J. Grohs, and J. Schierman, “Run-time assurance for advanced
flight-critical control systems,” in AIAA Guidance, Navigation, and Control Conference,
2010, p. 8041.

[64] A. Burns, K. Hobbs, J. Bier, and S. Whitcomb, “Advanced capabilities for the analog
flight control f-16,” in NATO Sensors and Electronics Technology Panel 168 Symposium,
2012.

[65] N. Minoiu Enache, S. Mammar, M. Netto, and B. Lusetti, “Driver steering assistance for
lane-departure avoidance based on hybrid automata and composite lyapunov function,”
IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 28–39, 2010.

[66] K. L. Hobbs, “Elicitation and formal specification of run time assurance requirements

65

for aerospace collision avoidance systems,” Ph.D. dissertation, Georgia Institute of
Technology, 2020.

[67] M. Abate, E. Feron, and S. Coogan, “Monitor-based runtime assurance for temporal logic
specifications,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp.
1997–2002.

[68] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic management: A
study in multiagent hybrid systems,” IEEE Transactions on Automatic Control, vol. 43,
no. 4, pp. 509–521, 1998.

[69] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach to controller design
for hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949–970, 2000.

[70] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict resolution manoeu-
vres,” IEEE Transactions on Intelligent Transportation Systems, vol. 2, no. 2, pp. 110–120,
2001.

[71] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation for quadrotors
with limited onboard sensing,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 1484–1491.

[72] J. H. Gillula, G. M. Hoffmann, H. Huang, M. P. Vitus, and C. J. Tomlin, “Applications
of hybrid reachability analysis to robotic aerial vehicles,” The International Journal of
Robotics Research, vol. 30, no. 3, pp. 335–354, 2011.

[73] G. M. Hoffmann and C. J. Tomlin, “Decentralized cooperative collision avoidance for
acceleration constrained vehicles,” in 2008 47th IEEE Conference on Decision and
Control. IEEE, 2008, pp. 4357–4363.

[74] C.-F. Lin, J.-C. Juang, and K.-R. Li, “Active collision avoidance system for steering control
of autonomous vehicles,” IET Intelligent Transport Systems, vol. 8, no. 6, pp. 550–557,
2014.

[75] V. Muthukumaran, R. G. Sanfelice, and G. H. Elkaim, “A hybrid control strategy for
autonomous navigation while avoiding multiple obstacles at unknown locations,” in 2019
IEEE 15th International Conference on Automation Science and Engineering (CASE).
IEEE, 2019, pp. 1042–1047.

[76] D. Phan, J. Yang, R. Grosu, S. A. Smolka, and S. D. Stoller, “Collision avoidance for
mobile robots with limited sensing and limited information about moving obstacles,”
Formal Methods in System Design, vol. 51, no. 1, pp. 62–86, 2017.

[77] T. Gurriet, M. Tucker, A. Duburcq, G. Boeris, and A. D. Ames, “Towards variable
assistance for lower body exoskeletons,” IEEE Robotics and Automation Letters, vol. 5,
no. 1, pp. 266–273, 2019.

[78] Q. Nguyen and K. Sreenath, “Safety-critical control for dynamical bipedal walking with
precise footstep placement,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 147–154, 2015.

66

[79] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d dynamic walking
on stepping stones with control barrier functions,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, 2016, pp. 827–834.

[80] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a
framework for realizable safety critical control through active set invariance,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). IEEE,
2018, pp. 98–106.

[81] W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for
mechanical systems: Theory and application to robotic grasping,” IEEE Transactions on
Control Systems Technology, 2019.

[82] Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multi-robot
operations with limited actuation: a control barrier function approach,” IEEE Control
Systems Letters, vol. 5, no. 1, pp. 127–132, 2020.

[83] D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “Safe, remote-access swarm robotics research on the robotarium,” arXiv
preprint arXiv:1604.00640, 2016.

[84] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt,
“The robotarium: A remotely accessible swarm robotics research testbed,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 1699–
1706.

[85] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerstedt,
“The robotarium: Globally impactful opportunities, challenges, and lessons learned in
remote-access, distributed control of multirobot systems,” IEEE Control Systems Maga-
zine, vol. 40, no. 1, pp. 26–44, 2020.

[86] S. Wilson, P. Glotfelter, S. Mayya, G. Notomista, Y. Emam, X. Cai, and M. Egerstedt, “The
robotarium: Automation of a remotely accessible, multi-robot testbed,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2922–2929, 2021.

[87] Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control barrier functions:
Formulation and comparative study,” arXiv preprint arXiv:2104.11332, 2021.

[88] A. Isaly, B. C. Allen, R. G. Sanfelice, and W. E. Dixon, “Zeroing control barrier functions
for safe volitional pedaling in a motorized cycle,” IFAC-PapersOnLine, vol. 53, no. 5, pp.
218–223, 2020.

[89] C. M. Holloway, Understanding the Overarching Properties. National Aeronautics and
Space Administration, Langley Research Center, 2019.

[90] K. L. Hobbs, J. Davis, L. Wagner, and E. M. Feron, “Formal specification and analysis of
spacecraft collision avoidance run time assurance requirements,” in 2021 IEEE Aerospace
Conference. IEEE, 2021, pp. 1–19.

67

[91] D. Swihart, A. Barfield, E. Griffin, R. Lehmann, S. Whitcomb, M. Skoog, B. Flynn,
and K. Prosser, “Design, integration and flight test of an autonomous ground collision
avoidance system,” Gyroscopy and Navigation, vol. 2, no. 2, pp. 84–91, 2011.

[92] J. B. Lyons, N. T. Ho, W. E. Fergueson, G. G. Sadler, S. D. Cals, C. E. Richardson, and
M. A. Wilkins, “Trust of an automatic ground collision avoidance technology: A fighter
pilot perspective,” Military Psychology, vol. 28, no. 4, pp. 271–277, 2016.

[93] W. A. Olson, “Airborne collision avoidance system x,” Massachusetts Institute of Tech-
nology, Lincoln Laboratory, Tech. Rep., 2015.

[94] J. D. Lee and K. A. See, “Trust in automation: Designing for appropriate reliance,” Human
Factors, vol. 46, no. 1, pp. 50–80, 2004.

[95] R. Turner, R. Lehmann, J. Wadley, D. Kidd, D. Swihart, J. Bier, and K. Hobbs,
“Automatic aircraft collision avoidance algorithm design for fighter aircraft,” in Asia-
Pacific International Symposium on Aerospace Technology, 2012.

[96] M. A. Skoog, K. Prosser, and L. Hook, “Ground collision avoidance system (iGCAS),” 4
2017, uS Patent 9,633,567.

[97] P. Sorokowski, M. Skoog, S. Burrows, and S. Thomas, “Small UAV automatic ground
collision avoidance system design considerations and flight test results,” 2015.

[98] J. D. Carpenter, “Simulation and piloted simulator study of an automatic ground collision
avoidance system for performance limited aircraft,” Air Force Institute of Technology,
Wright-Patterson AFB, OH, Tech. Rep., 2019.

[99] A. W. Suplisson, “Optimal Recovery Trajectories for Automatic Ground Collision Avoid-
ance Systems (Auto GCAS),” Air Force Institute of Technology, Tech. Rep., 2015.

[100] A. Burns, D. Harper, A. F. Barfield, S. Whitcomb, and B. Jurusik, “Auto gcas for analog
flight control system,” in 2011 IEEE/AIAA 30th Digital Avionics Systems Conference.
IEEE, 2011, pp. 8C5–1.

[101] P. Madhavan and D. A. Wiegmann, “Similarities and differences between human–human
and human–automation trust: an integrative review,” Theoretical Issues in Ergonomics
Science, vol. 8, no. 4, pp. 277–301, 2007.

[102] N. T. Ho, G. G. Sadler, L. C. Hoffmann, J. B. Lyons, and W. W. Johnson, “Trust of a
military automated system in an operational context,” Military Psychology, vol. 29, no. 6,
pp. 524–541, 2017.

[103] K. A. Hoff and M. Bashir, “Trust in automation: Integrating empirical evidence on factors
that influence trust,” Human Factors, vol. 57, no. 3, pp. 407–434, 2015.

[104] J. Milton and J. C. Arnold, Introduction to Probability and Statistics. The McGraw-Hill
Companies, Inc, New York, NY, 2003.

[105] L. Sha, R. Rajkumar, and M. Gagliardl, “A software architecture for dependable and

68

evolvable industrial computing systems.” Carnegie-Mellon University Software Engineer-
ing Institute, Pittsburgh, PA, Tech. Rep., 1995.

[106] J. G. Rivera, A. A. Danylyszyn, C. B. Weinstock, L. R. Sha, and M. J. Gagliardi, “An
architectural description of the simplex architecture.” Carnegie-Mellon University Software
Engineering Institute, Pittsburgh, PA, Tech. Rep., 1996.

[107] C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from google chrome,”
Commun. ACM., vol. 52, pp. 45–49, 2009.

[108] “Standard Practice for Methods to Safely Bound Flight Behavior of Unmanned Aircraft
Systems Containing Complex Functions,” ASTM International, Standard, 2017.

[109] J. D. Schierman, M. D. DeVore, N. D. Richards, and M. A. Clark, “Runtime assurance for
autonomous aerospace systems,” Journal of Guidance, Control, and Dynamics, vol. 43,
no. 12, pp. 2205–2217, 2020.

[110] S. E. Jones, A. K. Petry, C. A. Eger, R. M. Turner, E. M. Griffin et al., “Automatic inte-
grated collision avoidance system,” in 17th Australian International Aerospace Congress:
AIAC 2017. Engineers Australia, Royal Aeronautical Society, 2017, p. 13.

[111] R. M. Turner, A. J. Albert, E. M. Griffin, A. C. Burns, F. Barfield, K. L. Price et al.,
“Automatic collision avoidance technology,” in AIAC18: 18th Australian International
Aerospace Congress (2019): HUMS-11th Defence Science and Technology (DST) In-
ternational Conference on Health and Usage Monitoring (HUMS 2019): ISSFD-27th
International Symposium on Space Flight Dynamics (ISSFD). Engineers Australia, Royal
Aeronautical Society., 2019, p. 495.

[112] M. A. Skoog, L. R. Hook, and W. Ryan, “Leveraging astm industry standard f3269-17
for providing safe operations of a highly autonomous aircraft,” in 2020 IEEE Aerospace
Conference. IEEE, 2020, pp. 1–7.

[113] B. Eller, P. Stanfill, R. Turner, S. Whitcomb, D. Swihart, A. Burns, and K. Hobbs, “Test
and evaluation of a modified f-16 analog flight control computer,” in AIAA Infotech@
Aerospace Conference, 2013, p. 4726.

[114] J. Wadley, S. Jones, D. Stoner, E. Griffin, D. Swihart, K. Hobbs, A. Burns, and J. Bier,
“Development of an automatic aircraft collision avoidance system for fighter aircraft,” in
AIAA Infotech@ Aerospace Conference, 2013, p. 4727.

[115] S. Bak and K. Hobbs, “Efficient n-to-n collision detection for space debris using 4d aabb
trees,” arXiv preprint arXiv:1901.10475, 2019.

[116] K. Hobbs, P. Heidlauf, A. Collins, and S. Bak, “Space debris collision detection using
reachability,” in 5th International Workshop on Applied Verification of Continuous and
Hybrid Systems, ser. EPiC Series in Computing. EasyChair, 2018.

[117] L. R. Hook, M. Clark, D. Sizoo, M. A. Skoog, and J. Brady, “Certification strategies
using run-time safety assurance for part 23 autopilot systems,” in 2016 IEEE Aerospace

69

Conference. IEEE, 2016, pp. 1–10.
[118] “Standard Practice for Methods to Safely Bound Behavior of Aircraft Systems Containing

Complex Functions Using Run-Time Assurance,” ASTM International, Standard, 2021.
[119] U. Mehmood, S. Bak, S. A. Smolka, and S. D. Stoller, “Safe cps from unsafe controllers,”

arXiv preprint arXiv:2102.12981, 2021.
[120] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control

barrier functions: Theory and applications,” in 2019 18th European Control Conference
(ECC). IEEE, 2019, pp. 3420–3431.

[121] J. Aubin, “Viability theory. modern birkhäuser classics,” 2009.
[122] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based

quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control,
vol. 62, no. 8, pp. 3861–3876, Aug 2017.

[123] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions
for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015.

[124] S. Prajna, “Barrier certificates for nonlinear model validation,” Automatica, vol. 42, no. 1,
pp. 117–126, 2006.

[125] M. Maghenem and R. G. Sanfelice, “Multiple barrier function certificates for weak forward
invariance in hybrid inclusions,” in 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 6319–6324.

[126] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic
programs with application to adaptive cruise control,” in 53rd IEEE Conference on
Decision and Control. IEEE, 2014, pp. 6271–6278.

[127] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions with applications
to multi-robot systems,” IEEE control systems letters, vol. 1, no. 2, pp. 310–315, 2017.

[128] A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-critical control
of discrete systems with application to bipedal robot navigation.” in Robotics: Science
and Systems, 2017.

[129] C. Santoyo, M. Dutreix, and S. Coogan, “A barrier function approach to
finite-time stochastic system verification and control,” Automatica, vol. 125, p.
109439, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0005109820306415

[130] M. Srinivasan, S. Coogan, and M. Egerstedt, “Control of multi-agent systems with finite
time control barrier certificates and temporal logic,” in 2018 IEEE Conference on Decision
and Control (CDC), 2018, pp. 1991–1996.

[131] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic
tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.

[132] G. Yang, C. Belta, and R. Tron, “Continuous-time signal temporal logic planning with

70

https://www.sciencedirect.com/science/article/pii/S0005109820306415
https://www.sciencedirect.com/science/article/pii/S0005109820306415

control barrier functions,” in 2020 American Control Conference (ACC). IEEE, 2020,
pp. 4612–4618.

[133] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high
relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC).
IEEE, 2016, pp. 322–328.

[134] X. Tan, W. Shaw Cortez, and D. V. Dimarogonas, “High-order barrier functions: Robust-
ness, safety and performance-critical control,” IEEE Transactions on Automatic Control,
pp. 1–1, 2021.

[135] W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,”
in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 474–479.

[136] H. Seywald and R. Kumar, “Desensitized optimal trajectories,” Analytical Mechanics
Associates Rept, pp. 03–16, 2003.

[137] M. Mote, M. Egerstedt, E. Feron, A. Bylard, and M. Pavone, “Collision-inclusive trajectory
optimization for free-flying spacecraft,” Journal of Guidance, Control, and Dynamics, pp.
1–12, 2020.

[138] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle River,
NJ, 1998, vol. 104.

[139] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo, C. Atkeson, D. Fox,
K. Goldberg, J. Leonard et al., “Sim2real in robotics and automation: Applications and
challenges,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2,
pp. 398–400, 2021.

[140] M. Abate and S. Coogan, “Enforcing safety at runtime for systems with disturbances,” in
2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 2038–2043.

[141] M. Abate, M. Mote, E. Feron, and S. Coogan, “Verification and runtime assurance
for dynamical systems with uncertainty,” in Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3447928.3456656

[142] C. Llanes, M. Abate, and S. Coogan, “Safety from in-the-loop reachability for cyber-
physical systems,” in 2021 Workshop on Computation-Aware Algorithmic Design for
Cyber-Physical Systems (CAADCPS). CPS-IoT week, 2021.

[143] ——, “Safety from fast, in-the-loop reachability with application to UAVs,” 2021, in
submission.

[144] S. Coogan, M. Arcak, and A. A. Kurzhanskiy, “Mixed monotonicity of partial first-in-
first-out traffic flow models,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), 2016, pp. 7611–7616.

71

https://doi.org/10.1145/3447928.3456656

[145] H. L. Smith, “The discrete dynamics of monotonically decomposable maps,” Journal of
Mathematical Biology, vol. 53, no. 4, p. 747, 2006.

[146] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M. Consiglio, and J. Chamber-
lain, “Daidalus: detect and avoid alerting logic for unmanned systems,” in 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC). IEEE, 2015, pp. 5A1–1.

[147] C. Baier, J. Katoen, and K. Larsen, Principles of Model Checking. MIT Press, 2008.
[148] K. Y. Rozier, “Specification: The biggest bottleneck in formal methods and autonomy,” in

Working Conference on Verified Software: Theories, Tools, and Experiments. Springer,
2016, pp. 8–26.

[149] R. Avram, X. Zhang, J. A. Muse, and M. Clark, “Nonlinear adaptive control of quadrotor
UAVs with run-time safety assurance,” in AIAA Guidance, Navigation, and Control
Conference, 2017, p. 1896.

[150] M. Bodson, J. Lehoczky, R. Rajkumar, L. Sha, and J. Stephan, “Analytic redundancy
for software fault-tolerance in hard real-time systems,” in Foundations of Dependable
Computing. Springer, 1994, pp. 183–212.

[151] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time systems,” in 1996
IEEE Aerospace Applications Conference. Proceedings, vol. 1. IEEE, 1998, pp. 335–346.

[152] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture for safe online
control system upgrades,” in Proceedings of the 1998 American Control Conference. ACC
(IEEE Cat. No. 98CH36207), vol. 6. IEEE, 1998, pp. 3504–3508.

[153] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4, pp. 20–28,
2001.

[154] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The system-
level simplex architecture for improved real-time embedded system safety,” in 2009 15th
IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE, 2009,
pp. 99–107.

[155] S. Bak, A. Greer, and S. Mitra, “Hybrid cyberphysical system verification with simplex
using discrete abstractions,” in 2010 16th IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 2010, pp. 143–152.

[156] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
Theoretical computer science, vol. 138, no. 1, pp. 3–34, 1995.

[157] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of timed i/o automata,”
Synthesis Lectures on Distributed Computing Theory, vol. 1, no. 1, pp. 1–137, 2010.

[158] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2007.

[159] L. R. Hook, M. Skoog, M. Garland, W. Ryan, D. Sizoo, and J. VanHoudt, “Initial

72

considerations of a multi-layered run time assurance approach to enable unpiloted aircraft,”
in 2018 IEEE Aerospace Conference. IEEE, 2018, pp. 1–11.

[160] K. H. Gross, “Evaluation of verification approaches applied to nonlinear system control,”
Master’s thesis, Air Force Institute of Technology, 3 2016.

[161] K. L. Hobbs, I. Perez, A. Fifarek, and E. M. Feron, “Formal verification of system states
for spacecraft automatic maneuvering,” in AIAA Scitech 2019 Forum, 2019, p. 1187.

[162] I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “A
monitoring and checking framework for run-time correctness assurance,” 1998.

[163] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime assurance based
on formal specifications,” Departmental Papers (CIS), p. 294, 1999.

[164] C. Torens and F.-M. Adolf, “Formal requirements and model-checking for V&V automa-
tion of a RPAS mission management system,” in AIAA Infotech @ Aerospace, Kissimmee,
FL, 1 2015, pp. 1–13.

[165] M. Wooldridge, “Agents and software engineering,” AI* IA Notizie, vol. 11, no. 3, pp.
31–37, 1998.

[166] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the
ACM, vol. 12, no. 10, pp. 576–580, 1969.

[167] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-proving,”
Communications of the ACM, vol. 5, no. 7, pp. 394–397, 1962.

[168] P. Cousot and R. Cousot, “Abstract interpretation frameworks,” Journal of logic and
computation, vol. 2, no. 4, pp. 511–547, 1992.

[169] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and applica-
tions,” Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[170] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons
using branching time temporal logic,” in Workshop on Logic of Programs. Springer,
1981, pp. 52–71.

[171] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255–299, 1990.

[172] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,”
in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems.
Springer, 2004, pp. 152–166.

[173] K. Gross, J. Hoffman, M. Clark, E. Swenson, R. Cobb, M. Whalen, and L. Wagner,
“Evaluation of formal methods tools applied to a 6u cubesat attitude control system,” in
AIAA SPACE 2015 Conference and Exposition, 2015, p. 4529.

[174] K. H. Gross, M. A. Clark, J. A. Hoffman, E. D. Swenson, and A. W. Fifarek, “Run-time
assurance and formal methods analysis applied to nonlinear system control,” Journal of
Aerospace Information Systems, vol. 14, no. 4, pp. 232–246, 2017.

73

[175] K. H. Gross, M. Clark, J. A. Hoffman, A. Fifarek, K. Rattan, E. Swenson, M. Whalen,
and L. Wagner, “Formally verified run time assurance architecture of a 6U cubesat attitude
control system,” in AIAA Infotech@ Aerospace, 2016, p. 0222.

[176] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer, U. Topcu, and
C. Wang, “Shield synthesis,” Formal Methods in System Design, vol. 51, no. 2, pp. 332–
361, 2017.

[177] C. S. Păsăreanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer,
“Learning to divide and conquer: applying the l* algorithm to automate assume-guarantee
reasoning,” Formal Methods in System Design, vol. 32, no. 3, pp. 175–205, 2008.

[178] D. A. Peled, Software Reliability Methods. Springer Science & Business Media, 2013.
[179] K. H. Gross, A. W. Fifarek, and J. A. Hoffman, “Incremental formal methods based design

approach demonstrated on a coupled tanks control system,” in Proceedings of the 2016
IEEE 17th International Symposium on High Assurance Systems Engineering (HASE).
IEEE Computer Society, 2016, pp. 181–188.

[180] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. Heimdahl, and S. Rayadurgam,
“Your” what” is my” how”: Iteration and hierarchy in system design,” IEEE software,
vol. 30, no. 2, pp. 54–60, 2012.

[181] T. A. Henzinger, M. Minea, and V. Prabhu, “Assume-guarantee reasoning for hierarchical
hybrid systems,” in International Workshop on Hybrid Systems: Computation and Control.
Springer, 2001, pp. 275–290.

[182] J. D. Schierman, D. Neal, E. Wong, and A. K. Chicatelli, “Runtime assurance protection
for advanced turbofan engine control,” in 2018 AIAA Guidance, Navigation, and Control
Conference, 2018, p. 1112.

[183] M. Clark, X. Koutsoukos, J. Porter, R. Kumar, G. Pappas, O. Sokolsky, I. Lee, and L. Pike,
“A study on run time assurance for complex cyber physical systems,” Air Force Research
Laboratory Aerospace Systems Directorate, Tech. Rep., 2013.

[184] K. Hobbs, J. Davis, L. Wagner, and E. Feron, “Formal specification and analysis of
spacecraft collision avoidance run time assurance requirements,” in 2021 IEEE Aerospace
Conference, vol. 1. IEEE, 2021, pp. 1–16.

[185] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press,
2018.

[186] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp.
484–489, 2016.

[187] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without human knowledge,”

74

Nature, vol. 550, no. 7676, pp. 354–359, 2017.
[188] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.

Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grandmaster level in starcraft ii using
multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[189] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train
your robot with deep reinforcement learning: lessons we have learned,” The International
Journal of Robotics Research, p. 0278364920987859.

[190] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without error: Towards safe
reinforcement learning via human intervention,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2018, pp. 2067–2069.

[191] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learning,” Journal
of Machine Learning Research, vol. 3, no. Dec, pp. 803–832, 2002.

[192] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A lyapunov-based
approach to safe reinforcement learning,” in Advances in Neural Information Processing
Systems, 2018, pp. 8092–8101.

[193] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3387–3395.

[194] A. Murugesan, M. Moghadamfalahi, and A. Chattopadhyay, “Formal methods assisted
training of safe reinforcement learning agents,” in NASA Formal Methods Symposium.
Springer, 2019, pp. 333–340.

[195] N. Fulton and A. Platzer, “Safe reinforcement learning via formal methods: Toward safe
control through proof and learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018, pp. 6485–6492.

[196] S. Cristello, Ariadne’s Thread: The Needle, The Haystack, The Thread // Arts
Club of Chicago, 2018 (accessed December 7, 2020). [Online]. Available: https:
//theseenjournal.org/ariadnes-thread/

[197] N. M. Jensen, Philosophy in labyrinths, (accessed December 7, 2020). [Online].
Available: http://www.lavigne.dk/labyrinth/e1a phil.htm

[198] A. Stieger, Myth and Creativity: Ariadne’s Thread and a Path Through the Labyrinth,
2014 (accessed December 7, 2020). [Online]. Available: https://www.creativitypost.com/
article/myth and creativity ariadnes thread and a path through the labyrinth

[199] Contes de Perrault / Le Petit Poucet, (accessed November 9, 2020). [Online]. Available:
https://fr.wikisource.org/wiki/Contes de Perrault (%C3%A9d. 1902)/Le Petit Poucet

[200] I. Opie and Peter, “The classic fairy tales,” Oxford University Press, p. 21, 1974.
[201] J. Flowers and P. Shalgar, The incredible killer tree that

75

https://theseenjournal.org/ariadnes-thread/
https://theseenjournal.org/ariadnes-thread/
http://www.lavigne.dk/labyrinth/e1a_phil.htm
https://www.creativitypost.com/article/myth_and_creativity_ariadnes_thread_and_a_path_through_the_labyrinth
https://www.creativitypost.com/article/myth_and_creativity_ariadnes_thread_and_a_path_through_the_labyrinth
https://fr.wikisource.org/wiki/Contes_de_Perrault_(%C3%A9d._1902)/Le_Petit_Poucet

broadcasts an SOS to its neighbours., 2015 (accessed Decem-
ber 7, 2020). [Online]. Available: https://uk.blastingnews.com/world/2015/10/
the-incredible-killer-tree-that-broadcasts-an-sos-to-its-neighbours-00610971.html

[202] R. G. Pisano and T. I. Storer, “Burrows and feeding of the norway rat,”
Journal of Mammalogy, vol. 29, no. 4, pp. 374–383, 1948. [Online]. Available:
http://www.jstor.org/stable/1375126

[203] R. M. Sapolsky, “Stress in the wild,” Scientific American, vol. 262, no. 1, pp. 116–123,
1990.

[204] K. Wiegers and J. Beatty, Software requirements. Pearson Education, 2013.
[205] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and command governors for

systems with constraints: A survey on theory and applications,” Automatica, vol. 75, pp.
306–328, 2017.

[206] S. Coogan, “Mixed monotonicity for reachability and safety in dynamical systems,” in
2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 5074–5085.

[207] G. Enciso, H. Smith, and E. Sontag, “Nonmonotone systems decomposable into
monotone systems with negative feedback,” Journal of Differential Equations, vol. 224,
no. 1, pp. 205 – 227, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002203960500210X

[208] P.-J. Meyer, A. Devonport, and M. Arcak, “Tira: Toolbox for interval reachability
analysis,” in Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, 2019, pp. 224–229.

[209] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone systems,” in
Proceedings of the 18th International Conference on Hybrid Systems: Computation and
Control, 2015, pp. 58–67.

[210] H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems, ser. Mathematical surveys and monographs. American
Mathematical Society, 2008. [Online]. Available: https://books.google.com/books?id=
vOfNAwAAQBAJ

[211] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 10, pp. 1684–1698, Oct 2003.

[212] M. Abate and S. Coogan, “Computing robustly forward invariant sets for mixed-monotone
systems,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 4553–
4559.

[213] S. Coogan and M. Arcak, “Stability of traffic flow networks with a polytree topology,”
Automatica, vol. 66, pp. 246–253, 2016.

[214] M. Abate, M. Dutreix, and S. Coogan, “Tight decomposition functions for continuous-

76

https://uk.blastingnews.com/world/2015/10/the-incredible-killer-tree-that-broadcasts-an-sos-to-its-neighbours-00610971.html
https://uk.blastingnews.com/world/2015/10/the-incredible-killer-tree-that-broadcasts-an-sos-to-its-neighbours-00610971.html
http://www.jstor.org/stable/1375126
http://www.sciencedirect.com/science/article/pii/S002203960500210X
http://www.sciencedirect.com/science/article/pii/S002203960500210X
https://books.google.com/books?id=vOfNAwAAQBAJ
https://books.google.com/books?id=vOfNAwAAQBAJ

time mixed-monotone systems with disturbances,” IEEE Control Systems Letters, vol. 5,
no. 1, pp. 139–144, 2021.

Author Biographies

Kerianne Hobbs is the Safe Autonomy Lead at the Autonomy Capability
Team (ACT3) at the Air Force Research Laboratory. There she investigates
rigorous specification, analysis, and bounding techniques to enable certification
of autonomous and learning controllers for aircraft and spacecraft applications.
Her previous experience includes work in automatic collision avoidance at
AFRL from 2011-2014, and Autonomy Verification and Validation research

from 2012-2020. Kerianne has a BS in Aerospace Engineering from Embry-Riddle Aeronautical
University, an MS in Astronautical Engineering from the Air Force Institute of Technology, and
a Ph.D. in Aerospace Engineering from the Georgia Institute of Technology.

Mark L. Mote is a co-founder of Pytheia. He received his Ph.D. in Robotics
from the Georgia Institute of Technology in 2021, and his B.S. and M.S.
degrees in Aerospace Engineering from the Georgia Institute of Technology in
2015 and 2018. His current research interests are in safe autonomy, perception,
optimization, trajectory planning, and run time assurance for safety-critical
systems.

77

Matthew C. L. Abate (Student Member, IEEE) received a B.A. degree
in engineering sciences and a B.E degree in mechanical engineering from
Dartmouth College, Hanover, NH, USA, in 2017. He received a M.S. degree in
Mechanical Engineering from Georgia Tech, Atlanta, GA, USA, in 2018, and a
M.S. degree in Electrical and Computer Engineering from the same institution
in 2020. He is currently pursuing a Ph.D. degree in Robotics at Georgia Tech,

supervised by Dr.’s Samuel Coogan and Eric Feron. His research interest is in the area of safety
and verification for uncertain dynamical systems.

Sam Coogan is assistant professor at Georgia Tech in the School of Electrical
and Computer Engineering and the School of Civil and Environmental Engi-
neering. Prior to joining Georgia Tech in 2017, he was an assistant professor in
the Electrical Engineering Department at UCLA. He received the B.S. degree
in Electrical Engineering from Georgia Tech and the M.S. and Ph.D. degrees in
Electrical Engineering from the University of California, Berkeley. His research

is in the area of dynamical systems and autonomy and focuses on developing scalable tools for
verification and control of networked, cyber-physical systems with an emphasis on transportation
systems. He received the Donald P Eckman Award from the American Automatic Control Council
in 2020, a Young Investigator Award from the Air Force Office of Scientific Research in 2019, a
CAREER award from NSF in 2018, and the Outstanding Paper Award for the IEEE Transactions
on Control of Network Systems in 2017.

78

Eric Feron is professor of Electrical, Computer, and Mechanical Engineering at
King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
Eric Feron’s interests are with aerospace systems, ranging from aircraft to space
systems, with an emphasis on robotic autonomy and artificial intelligence. Prior
to his KAUST appointment, Eric Feron was a professor of Aeronautics and
Astronautics at the Massachusetts Institute of Technology (MIT) and a professor

of Aerospace Engineering at the Georgia Institute of Technology (Georgia Tech), United States.
Eric Feron also works on occasion with the Ecole Nationale de l’Aviation Civile (ENAC) and
the Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-Supaéro), France, where he was
born.

79

	Run Time Assurance for Safety-Critical Cyber-Physical Systems
	The Run Time Assurance Architecture
	Modelling Cyber-Physical Systems
	Admissible Control of Cyber-Physical Systems
	Safety and Invariance of Cyber-Physical Systems
	Identifying Safe Sets
	Implicit and Explicit Definitions of the Safe Set
	Identifying Safe Backup Sets

	Properties of Run Time Assurance Systems
	Implicit and Explicit RTA Approaches
	Zero-Order and First-Order Methods
	Latched and Unlatched Implementations
	Properties and Systems Engineering Considerations for Run Time Assurance Design
	Innocuity
	Viability
	Nuisance Freedom
	Run Time Assurance Integrity Monitoring

	Human Interaction with Run Time Assurance Systems
	Variable Risk Tolerance and an ``Off Switch"
	Transparency and Trust
	Missed Detections and False Alarms

	The Simplex Architecture
	Variations on Simplex
	Simplex RTA Safety Monitor Approaches
	Simplex RTA as a Near-Term Certification Path
	Provably Safe RTA with Black Box Backup Controllers
	Canonical Algorithms
	Explicit Simplex Filter
	Implicit Simplex Filter

	Active Set Invariance Filtering
	Barrier Constraints from an Explicitly Defined Safe Set
	Barrier Constraints from an Implicitly Defined Safe Set
	Additional Design Considerations

	Discussion and Comparison of Approaches on Double Integrator System
	Assurance in the Presence of Uncertainty
	Explicit Run Time Assurance for Uncertain Systems
	Implicit Active Set Invariance for Uncertain Systems

	Verification of Run Time Assurance Algorithms and Architectures
	Formal Specification and Analysis of RTA System Requirements, Architecture and Design
	Compositional Verification

	Conclusions
	Run Time Assurance
	RTA Aliases
	Shielded Learning
	The Case for Plan B
	Safety, Reliability, and Security
	To RTA or not to RTA? That is the Question
	Reference and Command Governors
	The Robotarium: An RTA Enabled Remote-Access Swarm Robotics Testbed
	Mixed Monotonicity for Efficient Reachability
	References
	Author Biographies
	Biographies
	Kerianne Hobbs
	Mark L. Mote
	Matthew C. L. Abate
	Sam Coogan
	Eric Feron

