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Abstract— In this note, we study incremental stability of mono-

tone dynamical systems with respect to polyhedral cones. Using

the half-space representation and the vertex representation, we

propose three equivalent conditions to certify monotonicity of a

dynamical system with respect to a polyhedral cone. We then

introduce the notion of gauge norm associated with a cone and

provide closed-from formulas for computing gauge norms associ-

ated with polyhedral cones. A key feature of gauge norms is that

contractivity of monotone systems with respect to them can be

efficiently characterized using simple inequalities. This result gen-

eralizes the well-known criteria for Hurwitzness of Metzler matrices

and provides a scalable approach to search for Lyapunov functions

of monotone systems with respect to polyhedral cones. Finally,

we study the applications of our results in transient stability of

dynamic flow networks and in scalable control design with safety

guarantees.

I. INTRODUCTION

Motivation and Problem Statement: Monotone systems are a
class of dynamical systems characterized by preserving a partial
ordering along their trajectories. The framework of monotone systems
has been successfully used to model complex systems in nature
such as biochemical cascade reactions [1] as well as engineered
system such as transportation networks [2]. It is known that monotone
systems exhibit highly ordered dynamical behaviors [3] that has
been used to establish stability of their interconnection [4], to
develop computationally efficient techniques for control synthesis and
design [5], [6] and to perform reachability analysis to ensure their
safety [7].

Contraction theory is a classical framework for studying dynamical
systems where stability is defined incrementally between two arbi-
trary trajectories. Contracting systems feature desirable transient and
asymptotic behaviors including i) forgetting their initial conditions,
ii) exponential convergence to a single trajectory, and iii) input-
to-state robustness with respect to disturbances and unmodelled
dynamics. While the study of contracting systems can be traced
back to the 1950s, many recent works have focused on infinitesimal
frameworks [8] and Finsler-Lyapunov frameworks [9] for analysis of
contracting systems.

A large body of the research in monotone system theory focuses
on cooperative systems, i.e., systems that are monotone with respect
to the positive orthant. It is well-known that cooperative systems
are amenable to efficient stability analysis using scalable Lyapunov
functions [10], a feature that can be used to develop computationally
efficient techniques for control design of large-scale cooperative sys-
tems. Several recent works have focused on existence and construc-
tion of separable Lyapunov functions for cooperative systems [11],
[12]. It turns out that, for cooperative systems, contractivity plays an
essential role in the design of separable Lyapunov functions. In [13]
contraction with respect to the `1- and `1-norm has been used to
establish existence of sum-separable and max-separable Lyapunov
function for cooperative systems. In [14] contraction theory with
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respect to a Riemannian metric has been used to study separable
Lyapunov functions for cooperative systems.

Monotonicity with respect to arbitrary cones accommodates a
significantly broader class of systems than cooperativity. For example,
for linear dynamical systems, it is known that if all the eigenvalues
of the system are real, then there exists a cone with respect to
which the system is monotone [15, Theorem 3.5]. For linear systems,
monotonicity with respect to arbitrary cones on Rn has been studies
in [16]. The paper [17] studies necessary and sufficient conditions
for positivity of a linear operator with respect to a polyhedral cone.
For nonlinear systems, a generalization of positivity with respect to
an arbitrary cone is presented in [18].

Nonetheless, many techniques developed for cooperative systems,
including those in [10], [11], [12], [13], [14], do not generalize easily
or at all to the broader class of monotone systems. In particular, the
connection between contraction theory and monotone system theory
with respect to arbitrary cones and the existence of scalable Lyapunov
functions for stability analysis of monotone systems with respect to
arbitrary cones is not well understood or studied. Exceptions are [19],
which considers searching for a polyhedral cone which makes a
nonlinear system monotone, and [20], which studies incremental
stability of monotone systems with respect to arbitrary or polyhedral
cones.

Contributions: In this note, we study monotonicity and contrac-
tivity of dynamical systems with respect to polyhedral cones. First,
given a polyhedral cone with a half-space and a vertex representation,
we provide three equivalent characterization of dynamical systems
that are monotone with respect to this polyhderal cone. Given a
proper cone and a vector in its interior, we introduce the notion of
the gauge and the dual gauge norms as natural metrics for studying
contractivity of monotone systems and provide closed-form formulas
for computing them. For monotone systems with respect to proper
polyhedral cones, we provide necessary and sufficient condition for
their contractivity with respect to both the gauge norm and the dual
gauge norm. Our conditions for contractivity with respect to the
gauge and dual gauge norms are generalizations of the closed-form
expressions for `1-norm and `1-norm contractivity of cooperative
systems. As the first application of our analysis, we study transient
behavior of edge flows in networks with nodal dynamics. We propose
necessary and sufficient conditions for monotonicity and contractivity
of the edge flows in interconnected networks. Finally, using our
results in this note, we propose a scalable control design scheme
for a nonlinear dynamical system constrained to be in a safe subset
of its state-space. We first approximate the safe set of the system
using a polytope. Then, we develop a linear program to design a
suitable feedback controller such that the closed-loop system avoids
the unsafe region. We show the efficiency of our approach using a
numerical experiment.

II. NOTATIONS AND MATHEMATICAL PRELIMINARY

Let L be a set with a relation �. Then � is a preorder if
(i) x � x, for every x 2 L;

(ii) x � y and y � z implies that x � z.
A preorder � is a partial order if it additionally satisfies
(iii) x � y and y � x implies that x = y;
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Let V be a finite-dimensional vector spaces and S ✓ V . The convex
hull of S is denoted by conv(S) and the interior of S is denoted by
int(S). The standard partial ordering  on Rn is defined as v  w if
vi  wi, for every i 2 {1, . . . , n}. A matrix A 2 Rn⇥n is Metzler
if all its off-diagonal elements are non-negative. The set of n ⇥ n

Metzler matrices are denoted by Mn ⇢ Rn⇥n. For a given matrix
A 2 Rn⇥m, we denote its Moore–Penrose inverse by A

† 2 Rm⇥n.
Given a vector ⌘ 2 Rn, we define the diagonal matrix diag(⌘) 2
Rn⇥n by diag(⌘)ii = ⌘i, for every i 2 {1, . . . , n}. For a vector
space V , we denote its dual with V

⇤ and the dual-pairing between
V and V

⇤ is denoted by h�, vi = �(v), for every � 2 V
⇤ and every

v 2 V . Given a norm k · k on the vector space V , the induced norm
on the dual space V

⇤ is defined by k�k = max{|h�, vi| | kvk  1}
and the dual norm on V is defined by kvkd = {|h�, vi| | k�k  1}.
Given a linear operator A : V ! V , the transpose of A is defined as
the operator AT : V ⇤ ! V

⇤ such that h�, Avi = hAT
�, vi, for every

� 2 V
⇤ and every v 2 V . Given a seminorm |||·||| on V , its kernel is

defined by Ker |||·||| = {x 2 V | |||v||| = 0}. The induced seminorm
of A is defined by |||A||| = sup{|||Ax||| | |||x||| = 1, x ? Ker |||·|||}
and the matrix semi-measure of A with respect to the seminorm |||·|||
is defined by µ|||·|||(A) = limh!0+

|||I+hA|||�1
h [21, Definition 4].

A set S is absorbent in the vector space V , if for every v 2 V , there
exists r > 0 such that cv 2 S, for every c such that |c|  r [22,
Definition 4.1.2].

A. Cones, positive operators, and Metzler operators

For V a real vector space, a non-empty subset K ✓ V is a cone
if (i) |�|K ✓ K, for every � 2 R, (ii) K is closed in V , and (iii)
K is convex, i.e., K +K ✓ K. A cone K ✓ V is called pointed if
K \ (�K) = {0} and is called proper if int(K) 6= ;. Given a cone
K ✓ V , the preorder �K on V is given by

x �K y () y � x 2 K.

If K ✓ V is a pointed cone, then the preorder �K is a partial order.
For every x �K y, the interval [x, y]K is defined by

[x, y]K = {z 2 V | x �K z �K y}.

For S ✓ V , the polar set S⇤ ✓ V
⇤ is

S
⇤ = {� 2 V

⇤ | h�, xi � 0, for all x 2 S}.

For the special case when S = K, the polar set K⇤ is again a cone
and is usually denoted by the dual cone of K. Moreover, if the cone
K is proper and pointed then the dual cone K

⇤ is proper and pointed.
Given a cone K ✓ V , the linear operator A : V ! V is called

(i) K-positive if AK ✓ K;
(ii) K-Metzler if, for every � 2 K

⇤ and every v 2 K such that
h�, vi = 0, we have h�, Avi � 0.

In the literature, K-Metzler matrices are sometimes referred to as
cross-positive matrices [16] or K-cooperative matrices [23]. It is
known that A is K-positive if and only if A

T is K
⇤-positive [15,

Theorem 2.24].

III. POLYHEDRAL CONES

In this section, we study a special class of cones on Rn called
polyhedral cones. A cone K is polyhedral if

K = {x 2 Rn | h�i, xi � 0, 8 i 2 {1, . . . ,m}} (1)

where �i : Rn ! R is a linear functional for every i 2 {1, . . . ,m}.
Given a polyhedral cone K ✓ Rn, there exist two matrices H 2

Rm⇥n and V 2 Rn⇥m such that K has the following equivalent
representations [24, Theorem 1.2]:

K = {x 2 Rn | Hx � 0m}, (2)
K = {V x 2 Rn | x � 0m}. (3)

The representation (2) is called a half-space representation (H-rep) of
the cone K and the matrix H is called the representation matrix for
the cone K. The representation (3) is called a vertex representation
(V -rep) of the cone K and the matrix V is called the generating
matrix for the cone K [24]. The H-rep and V -rep of a polyhedral
cone are not unique in general. Given a polyhedral cone K 2 Rn

with an H-rep as in equation (2) and a V -rep as in equation (3), the
pair (H,V ) is called a representation for the polyhedral cone K. It
is known that computational complexity of any polyhedral operation
can be different based on whether we use the H-rep or the V -rep for
the cone K [24]. Several algorithms exists for transforming H-rep
to V -rep and vice versa, including Fourier-Motzkin elimination [24]
and the double description method [25].

One can use a representation (H,V ) of the polyhedral cone K to
find the closed-form expressions for the preorders �K and �K⇤ .

Lemma 3.1 (H-rep and V -rep of cones): Let K ⇢ Rn be a cone.
The following statements are equivalent:

(i) K is a polyhedral cone with representation (H,V );
(ii) K

⇤ is a polyhedral cone with representation (V T
, H

T);
Additionally if statement (i) holds, then, for every v, w 2 Rn, the
following statements are equivalent:
(iii) v �K w;
(iv) Hv  Hw.
Additionally, the following statements are equivalent:
(v) v �K⇤ w;

(vi) V
T
v  V

T
w.

Proof: Regarding the equivalence (i) () (ii), note that

K
⇤ = {y 2 Rn | yTx � 0 8x s.t. Hx � 0}
= {HT

z | z � 0m},

where the first equality holds by the definition of the dual cone K
⇤

and the second equality holds by Farkas’ lemma [24, Proposition
1.8]. This means that if K is a polyhedral cone with a representation
(H,V ), then K

⇤ is a polyhedral cone with a generating matrix H
T.

The fact that V T is a representation matrix for K
⇤ follows from a

similar argument for K⇤⇤ and the fact that K = K
⇤⇤ for cones [17].

Regarding (iii) () (iv), first assume that v �K w. Therefore
0n �K w � v and by definition of the cone K, we have h�i, w �
vi � 0, which implies that H(w � v) � 0m. Now assume that
Hv  Hw. This implies that, for every i 2 {1, . . . ,m}, we have
h�i, v � wi � 0. By definition of K, this means that v �K w.
Regarding (v) () (vi), v �K⇤ w if and only if

h⇠, v � wi  0, for all ⇠ 2 K.

Using the V -rep of the cone K, we get ⇠ 2 K if and only if there
exists ⌘ � 0n such that ⇠ = V ⌘. As a result,

hV ⌘, v � wi = h⌘, V T(v � w)i  0, for all ⌘ 2 R�0.

This means v �K⇤ w if and only if V T(w � v) � 0m.

IV. GAUGE AND DUAL GAUGE NORM

In this section, we consider a vector space V with a pointed
proper cone K and we introduce the notion of gauge and dual gauge
norms to define a metric structure on the vector space. Moreover,
we introduce the gauge matrix measure associated to a gauge norm.
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As we will see later, the gauge norm and the gauge matrix measure
play an important role in contraction theory of K-monotone systems.
Given a vector e 2 int(K), the gauge function (also called the
Minkowski functional) k ·ke,K : V ! R�0 of the interval [�e, e]K
is defined as follows [26]:

kvke,K = inf{� 2 R�0 | v 2 �[�e, e]K}. (4)

Similarly, given a vector e⇤ 2 int(K⇤), the dual gauge function
k · kd

e⇤,K⇤ : V ! R�0 of the interval [�e⇤, e⇤]K⇤ is defined as
follows:

kvkd
e⇤,K⇤ = max{|h⌘, vi| | ⌘ 2 [�e⇤, e⇤]K⇤}. (5)

It is known that the gauge function defined in (4) and the dual
gauge function defined in (5) are norms.

Proposition 4.1 (Gauge and dual gauge norms): Let V be a finite
dimensional vector space and K ✓ V be a proper cone. For every
e 2 int(K) and e⇤ 2 int(K⇤), the following statements hold:

(i) the gauge function k · ke,K is a seminorm on V ;
Additionally, if K ✓ V is pointed, then
(ii) the gauge function k · ke,K is a norm on V ;

(iii) the dual gauge function k · kd
e⇤,K⇤ is a norm on V ;

Proof: Regarding part (i), we first show that int([�e, e]K) is
a neighborhood of the origin 0. Since e 2 int(K) and addition is a
continuous function on V , we get that 0 2 int(S) where S = {x 2
Rn | � e �K x}. Similarly, we have �e 2 int(�K). This implies
that 0 2 int(S0) where S

0 = {x 2 Rn | x �K e}. As a result,
we get 0 2 int(S) \ int(S0) = int(S \ S

0) = int([�e, e]K). This
means that int([�e, e]K) is a neighborhood of the origin. Moreover,
every neighborhood of the origin is absorbent in the vector space
V [22, Theorem 4.3.6(b)]. Therefore, by [22, Theorem 5.3.1] the
gauge function k · ke,K is a seminorm on V . Regarding part (ii), we
prove that K does not contain a non-trivial vector subspace. Suppose
that W is a vector subspace of V and W ✓ K. Then �W ✓ �K

and since W is a vector subspace, we have �W = W ✓ K. As
a result W ✓ K \ (�K). This implies that W = {0}. Now we
can use [22, Exercise 5.105(d)], to show that the gauge functional
k · ke,K is a norm on V . Regarding part (iii), note that by part (ii),
one can define the norm k · ke⇤,K⇤ on V

⇤ by

k�ke⇤,K⇤ = inf{� � 0 | � 2 �[�e⇤, e⇤]K⇤}.

Then we have

kvkd
e⇤,K⇤ = max{|h⌘, vi| | ⌘ 2 [�e⇤, e⇤]K⇤}

= max{|h⌘, vi| | k⌘ke⇤,K⇤  1}.

Thus, k · kd
e⇤,K⇤ is the dual norm to k · ke⇤,K⇤ on V .

For a polyhedral cone K ✓ Rn with a representation (H,V ), there
exists closed-form expressions for the gauge and the dual gauge norm.

Lemma 4.2 (Formula for the gauge seminorms): Suppose that
K ⇢ Rn is a proper polyhedral cone with a representation (H,V )
and e 2 int(K) and e⇤ 2 int(K⇤). Then

(i) kxke,K = kdiag(He)�1
Hxk1.

Additionally, if K ⇢ Rn is a pointed cone, then
(ii) kxkd

e⇤,K⇤ = kdiag(V Te⇤)V †
xk1.

Proof: Regarding part (i), note that, by definition of the gauge
norm, we have kvke,K = inf{� | � �e �K v �K �e}. Since
e 2 int(K), we get that He > 0m [27, Proposition 1.1]. Using
Lemma 3.1, we get

kvke,K = inf{� | � �He  Hv  �He}.

Multiplying the above inequalities by the positive diagonal matrix
diag(He)�1, we get

kvke,K = inf{� | � �1m  diag(He)�1
Hv  �1m}

= inf{� | kdiag(He)�1
Hvk1  �} = kdiag(He)�1

Hvk1.

Regarding part (ii), note that

kvkd
e⇤,K⇤ = max{|h⇠, vi| | � e⇤ �K⇤ ⇠ �K⇤ e⇤}.

Using Lemma 3.1, we get

kvkd
e⇤,K⇤ = max{|h⇠, vi| | � V

Te⇤  V
T
⇠  V

Te⇤}.

Since e⇤ 2 int(K⇤), we have V
Te⇤ > 0 [27, Proposition 1.1].

Multiplying the above inequalities by the positive diagonal matrix
diag(V Te⇤)�1, we get

kvkd
e⇤,K⇤ = max{|h⇠, vi| | � 1m  diag(V Te⇤)�1

V
T
⇠  1m}.

Since K is pointed, the matrices H,V 2 Rn⇥m are full row-rank.
Moreover, since K is proper, we have int(K) 6= ; and therefore
n  m. As a result, we get (V T)†V T = In and (V T)† = (V †)T.
This implies that

|h⇠, vi| = |h(V †)TV T
⇠, vi| = |hV T

⇠, V
†
vi|

= |hdiag(V Te⇤)�1
V

T
⇠, diag(V Te⇤)V †

vi|.

As a result, kvkd
e⇤,K⇤ = max{|h⌘, diag(V Te⇤)V †

vi| | k⌘k1 
1} = kdiag(V Te⇤)V †

vk1, where the last equality holds because
the `1-norm is the dual of the `1-norm on Rm.
Given a proper polyhedral cone K ✓ Rn and e 2 int(K), the matrix
semi-measure associated to the gauge seminorm k · ke,K is denoted
by µe,K . Note that µe,K is a matrix measure if and only if K is
pointed. Now, we present two examples of polyhedral cones and their
associated gauge and dual gauge norms.

Standard Euclidean cone: The set of all non-negative vectors
Rn
�0 is a pointed proper cone in Rn with a non-empty interior. The

partial order associated with Rn
�0 is the standard component-wise

order on Rn, i.e., x  y if we have xi  yi, for every i 2 {1, . . . , n}.
For e = 1n, the gauge norm k · k1n,Rn

�0
is the standard `1-norm

on Rn. It can be shown that K⇤ = Rn
�0 and, by choosing e⇤ = 1n,

the dual gauge norm k · kd
1n,Rn

�0
is the standard `1-norm on Rn;

1-norm cone: For every S ✓ {2, 3, . . . , n}, we define the linear
functional �S : Rn ! R as follows:

�S(v) = v1 +
X

j2S

vj �
X

k 62S[{1}
vk

and we define K ✓ Rn as the pointed proper polyhedral cone
generated by {�S} for every S ✓ {2, 3, . . . , n}, i.e.,

K = {x 2 Rn | h�S , xi � 0, S ✓ {2, 3, . . . , n}}.

By choosing e = (1 0 · · · 0)T 2 Rn, we get kvke,K = kvk1.

V. MONOTONE SYSTEM ON POLYHEDRAL CONES

In this section, we study monotonicity of a control system with
respect to polyhedral cones. Consider the dynamical system

ẋ = f(x, u), (6)

where x 2 Rn is the system state and u 2 Rp is the control input.
We assume that K ⇢ Rn is a cone.

Definition 5.1 (Monotone systems): Consider the control sys-
tem (6) with a cone K ✓ Rn. Then the system (6) is K-monotone
if, for every x0 �K y0 and every u 2 Rp, we have

xu(t) �K yu(t), for every t 2 R�0,
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where t 7! xu(t) and t 7! yu(t) are trajectories of (6) with constant
input u starting from x0 and y0, respectively.
One can show that the control system (6) is K-monotone if and only
if for every x �K y, every � 2 K

⇤ satisfying h�, xi = h�, yi, and
every every u 2 Rp, we have [23, Theorem 3.2]

h�, f(x, u)i  h�, f(y, u)i.

When the map x 7! f(x, u) is continuously differentiable, one
can show that the control system (6) is K-monotone if and only
if Dxf(x, u) is K-Metzler, for every (x, u) 2 Rn ⇥ Rp [23,
Theorem 3.5]. Now, we state the following useful lemma regarding
the connection between the K-Metzler and K-positive operators1.

Lemma 5.2: Let A : Rn ! Rn be a linear operator and K ⇢ Rn

be a polyhedral cone. The following statements are equivalent:
(i) A is K-Metzler,

(ii) there exists h
⇤
> 0 such that In + hA is K-positive for every

h 2 [0, h⇤],
(iii) there exists ↵

⇤
> 0 such that A+↵

⇤
In is K-positive for every

↵
⇤ � ↵.

Proof: Regarding (ii) =) (i), since In + hA is K-positive,
for every � 2 K

⇤ and every x 2 K such that h�, xi = 0, we have
(In+hA)x 2 K. This implies that 0  h�, (In+hA)xi = hh�, Axi.
Since h > 0, we have h�, Axi � 0 and thus A is K-monotone.
Regarding (i) =) (iii), suppose that K is a polyhedral cone with
generating linear functionals {�i}mi=1. Since the dual pairing is linear
in its arguments, it suffices to show there exists ↵

⇤
> 0 such that

h�i, (A + ↵In)xi � 0 for every ↵ � ↵
⇤, every i 2 {1, . . . ,m},

and every x 2 K with kxk2 = 1. Thus, for a given x 2 K with
kxk2 = 1, we have

h�i, (A+ ↵In)xi = ↵h�i, xi+ h�i, Axi.

Now, if h�i, xi = 0, then h�i, (A + ↵In)xi = h�i, Axi � 0
where the last inequality holds by K-monotonicity of A. On the
other hand, if h�i, xi 6= 0, then by choosing ↵

⇤
x,i >

�h�i,Axi
h�i,xi

,
we have h�i, (A + ↵In)xi > 0, for every ↵ � ↵

⇤
x,i. Since this

inequality is strict, there exists a neighborhood Nx,i of x such that,
for every y 2 Nx,i, we have h�i, (A+↵

⇤
x,i)yi > 0. Note that the set

S = {x 2 K | kxk2 = 1} is compact in Rn and {Nx,i}x2S is an
open cover of S. Thus, there exists a finite subcover {Nxj ,i}

N
j=1 for

S. Thus, by choosing ↵
⇤ = maxi2{1,...,m} maxj2{1,...,n} ↵

⇤
xj ,i

,
we get h�i, (A + ↵

⇤
In)xi > 0, for every x 2 S, and every i 2

{1, . . . ,m}. This completes the proof. Regarding the equivalence (i)
() (iii), note that, by part (ii), A is K-Metzler if and only if
A + ↵In is K-positive, for every ↵ � ↵

⇤
> 0. This implies that

A is K-Metzler if and only if In + 1
↵A is K-positive, for every

↵ � ↵
⇤. Thus, A is K-Metzler if and only if In+hA is K-positive

for some h
⇤
> 0 and every h 2 [0, h⇤].

Our first result provides three equivalent characterizations for the
control system (6) to be K-monotone with respect to a polyhedral
cone K with a representation (H,V ).

Theorem 5.3 (Characterization of monotonicity): Consider the
control system (6) with continuously differentiable f . Let K ✓ Rn

be a polyhedral cone with a representation (H,V ). Then the
following statements are equivalent:

(i) the dynamical system (6) is K-monotone;
(ii) there exists ↵ : Rn ⇥ Rp ! R such that

H(Dxf(x, u)� ↵(x, u)In)V � 0m⇥m, (7)

1We note that, for a pointed and proper cone K, a proof for this Lemma
can be find in [16, Theorem 8]. Unfortunately, the proof in [16] does not
generalize to the cones that are not proper or pointed.

for every (x, u) 2 Rn ⇥ Rp;
(iii) there exists P : Rn ⇥ Rp ! Mm such that

HDxf(x, u) = P (x, u)H, (8)

for every (x, u) 2 Rn ⇥ Rp;
(iv) there exists Q : Rn ! Mm such that

Dxf(x, u)V = V Q(x, u), (9)

for every (x, u) 2 Rn ⇥ Rp.

Proof: First note that, using Lemma 5.2, the control system (6)
is K-monotone if and only if there exists ↵ : Rn⇥Rp ! R�0 such
that Dxf(x, u)+↵(x, u)In is K-positive for every (x, u) 2 Rn⇥Rp.
Regarding (i) () (ii), the result then follows from [17, Theorem
4.1] and Lemma 3.1. Regarding (i) () (iii), we denote the ith row
of the matrix H by hi, for every i 2 {1, . . . ,m}. By Lemma 3.1,
the control system (6) is K-monotone if and only if there exists
↵ : Rn ⇥ Rp ! R�0 such that, for every (x, u) 2 Rn ⇥ Rp and
every i 2 {1, . . . ,m}, we have h

T
i (Dxf(x, u) + ↵(x, u)In)v � 0

for every Hv � 0m. Now, using Farkas’s Lemma [24, Proposition
1.8], the control system (6) is K-monotone if and only if there exists
⌘i � 0m such that hTi (Dxf(x, u) +↵(x, u)In) = ⌘

T
i H . Therefore,

the control system (6) is K-monotone if and only if there exists
↵ : Rn⇥Rp ! R�0 such that, for every (x, u) 2 Rn⇥Rp, we have
H

T
Dxf(x, u) = (Q(x, u) � ↵(x, u))H , for some positive matrix

Q(x, u) � 0m⇥m. As a result, the control system (6) is K-monotone
if and only if, for every (x, u) 2 Rn⇥Rp, we have H

T
Dxf(x, u) =

P (x, u)H , for some Metzler matrix P (x, u) 2 Rm⇥m.
Regarding (i) () (iv), the control system (6) is K-monotone if

and only if, for every (x, u) 2 Rn ⇥ Rp and every ⌘ 2 Rm
�0, there

exists ⇠ 2 Rm
�0 such that (Dxf(x, u)+↵(x, u)In)V ⌘ = V ⇠. In turn,

the last statement is equivalent to the following sentence: for every
(x, u) 2 Rn ⇥ Rp, (Dxf(x, u) + ↵(x, u)In)V = V P (x, u), for
some positive matrix P (x, u) � 0m⇥m. The result then follows by
defining the Metzler matrix Q(x, u) 2 Mm by Q(x, u) = P (x, u)�
↵(x, u), for every (x, u) 2 Rn ⇥ Rp.

Remark 5.4: The following remarks are in order.
(i) In [20, Theorem 4.3], the equivalence of K-monotonicty of the

system (6) and condition (8) is shown for proper pointed cones.
However, Theorem 5.3 holds for general polyhedral cones K

without assuming that K is proper or pointed.
(ii) One can compare the conditions (7), (8), and (9) in terms of

their computational complexity. Checking K-monotonicity using
Theorem 5.3(ii) requires knowledge of both H-rep and the V -
rep of the polyhedral cone K but one only needs to solve
condition (7) for a scalar ↵(x, u) 2 R. On the other hand,
checking K-monotonicity using the Theorem 5.3(iii) (resp.
Theorem 5.3(iv)) only requires the knowledge of the H-rep
(resp. V -rep) of the polyhedral cone K but one needs to solve
condition (8) (resp. condition (9)) for an m⇥m Metzler matrix
P (x, u) 2 Mn (resp. Q(x, u) 2 Mm).

We study contractivity of K-monotone systems with respect to the
gauge and dual gauge norms. First, we present a characterization of
the gauge and dual guage matrix measures for K-Metzler operators.

Theorem 5.5 (Characterization of the gauge matrix measures):
Consider a proper polyhedral cone K ✓ Rn with a representation
(H,V ) and with e 2 int(K) and e⇤ 2 int(K⇤). Suppose that
A : V ! V is a K-Metzler linear operator. The following statements
are equivalent:

(i) µe,K(A)  c,
(ii) Ae �K ce,

(iii) HAe  cHe.
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Additionally, if K is pointed, the following statements are equivalent:
(iv) µ

d
e⇤,K⇤(A)  c,

(v) A
Te⇤ �K⇤ ce⇤,

(vi) V
T
A
Te⇤  cV

Te⇤.

Proof: Regarding (i) =) (ii), let ✏ > 0 and note that by
definition of the matrix measure, we have

lim
h!0+

k(In + hA)eke,K � 1

h
 lim

h!0+

supv 6=0
k(In+hA)vke,K

kvk � 1

h

= lim
h!0+

kIn + hAke,K � 1

h
= µe,K(A)  c < c+ ✏.

Note that the function h 7! k(In+hA)eke,K�1
h is a weakly increasing

function on [0,1). This implies that there exists h
⇤

> 0 such
that k(In+hA)eke,K�1

h < c + ✏ for every h 2 [0, h⇤]. Since the
LHS of this inequality is independent of ✏, we can deduce that
k(In+hA)eke,K�1

h  c for every h 2 [0, h⇤]. As a result, we get
k(In + hA)eke,K  1 + ch, for every h 2 [0, h⇤]. Using the
definition of the gauge norm, for every h 2 [0, h⇤],

�(1 + ch)e �K (In + hA)e �K (1 + ch)e.

This means that Ae �K ce.
Regarding (ii) =) (i), suppose that v 2 Rn is such that

kvke,K = �. This means that � is the smallest positive number such
that ��e �K v �K �e. Note that by Theorem 5.2, there exists
h
⇤
> 0 such that In + hA is K-positive for every h 2 [0, h⇤]. As a

result, for every h 2 [0, h⇤], we have 0n �K (In+hA)(�e�v) and
this implies that (In+hA)v �K �(In+hA)e, for every h 2 [0, h⇤].
Similarly, one can show that ��(In + hA)e �K (In + hA)v, for
every h 2 [0, h⇤]. Thus, for every h 2 [0, h⇤],

��(1 + ch)e �K ��(In + hA))e �K (In + hA)v

�K �(In + hA)e �K �(1 + ch).

This means that, for every h 2 [0, h⇤], we have

k(In + hA)vke,K  kvke,K(1 + ch).

Using the definition of the matrix measure, we get µe,K(A)  c.
Regarding part (ii) () (iii), the result follows from Lemma 3.1.
Regarding (iv) =) (v), for every v 2 K such that kvkd

e⇤,K⇤ = 1,
using the definition of the dual gauge norm, it is easy to show that
he⇤, vi = 1. This implies that

lim
h!0+

k(In + hA)vkd
e⇤,K⇤ � 1

h

 lim
h!0+

supw 6=0
k(In+hA)wkde⇤,K⇤

kwkd
e⇤,K⇤

� 1

h

= lim
h!0+

kIn + hAkd
e⇤,K⇤ � 1

h
= µ

d
e⇤,K⇤(A)  c.

Therefore, we have k(In + hA)vkd
e⇤,K⇤  1 + ch and thus, by

definition of the dual gauge norm,

�1� ch  he⇤, (In + hA)vi  1 + ch.

As a result, for every v 2 K, such that kvkd
e⇤,K⇤ = 1,

�1� ch  h(In + hA
T)e⇤, vi  1 + ch.

Using the fact that he⇤, vi = 1, we get

�che⇤, vi  hATe⇤, vi  che⇤, vi.

Note that the inequalities hold for every v 2 K satisfying
kvkd

e⇤,K⇤ = 1. Therefore, by definition of the preorder �K⇤ , we
get ATe⇤ �K⇤ ce⇤.

Regarding (v) =) (iv), suppose that � is such that �e⇤ �K⇤

� �K⇤ e⇤. Since A is K-Metzler, by Lemma 5.2, there exists h⇤ > 0
such that In + hA is K-positive for every h 2 [0, h⇤]. Therefore,
using [15, Theorem 2.24], the operator In + hA

T is K
⇤-positive,

for every h 2 [0, h⇤]. As a result, for every h 2 [0, h⇤], we have
0n �K⇤ (In+hA

T)(e⇤��) and this implies that (In+hA
T)� �K⇤

(In + hA
T)e⇤, for every h 2 [0, h⇤]. Similarly, one can show that

�(In + hA
T)e⇤ �K⇤ (In + hA

T)�, for every h 2 [0, h⇤]. This
implies that, for every h 2 [0, h⇤],

�(1 + ch)e⇤ �K⇤ �(In + hA
T)e⇤ �K⇤ (In + hA

T)�

�K⇤ (In + hA
T)e⇤ �K⇤ (1 + ch)e⇤.

Therefore, for every �e⇤ �K⇤ � �K⇤ e⇤, we get

k(In + hA)vke⇤,K⇤ = max |h�, (In + hA)vi|
= max |h(In + hA

T)�, vi|  (1 + ch)kvkd
e⇤,K⇤

where the last equality holds by definition of the gauge norm
kvkd

e⇤,K⇤ . Using the definition of the matrix measure, we get
µ

d
e⇤,K⇤(A)  c. Regarding (v) () (vi), the result follows from

Lemma 3.1.
Remark 5.6 (Comparison with the literature): For Metzler matri-

ces, the closed-form expression for the `1-norm and the `1-norm
matrix measures can be simplified as shown in [13, Equations (4)
and (5)]. Theorem 5.5 can be considered as a generalization of these
formulas for matrix measures of K-Metzler matrices with respect to
the gauge norms and the dual gauge norms.

Now, we can state our main result which characterizes contractivity
of a K-monotone system with respect to the gauge norm. Note that,
if the polyhedral cone K is pointed, then a similar result can be
obtained for contractivity of the K-monotone system with respect to
the dual gauge norm. We omit this result for brevity of presentation.

Theorem 5.7 (Semi-contraction for the gauge seminorm):
Consider the control system (6). Let K ✓ Rn be a proper
polyhedral cone with a representation (H,V ). Let e 2 int(K),
c 2 R, and k · kU be a norm on Rp. Suppose that the control
system (6) is K-monotone and Dxf(x, u)Ker(H) ✓ Ker(H), for
every (x, u) 2 Rn ⇥ Rp. The following statements are equivalent:

(i) HDxf(x, u)e  �cHe, for every (x, u) 2 Rn ⇥ Rp;
(ii) any two trajectories xu(t), yu(t) with the same continuous input

signal u : R�0 ! Rp satisfy:

kxu(t)� yu(t)ke,K  e
�ctkxu(0)� yu(0)ke,K .

(iii) any two trajectories xu(t), yv(t) with different continuous input
signals u, v : R�0 ! Rp satisfy:

kxu(t)� yv(t)ke,K  e
�ctkxu(0)� yv(0)ke,K

+
`(1� e

�ct)
c

sup
⌧2[0,t]

ku(⌧)� v(⌧)kU ,

where ` = supx,u2Rn⇥Rp sup⌘2Rp
kDuf(x,u)⌘ke,K

k⌘kU
. Moreover, if

the cone K is pointed, condition (i) holds for some c > 0, and
u 2 Rp is a constant input signal, then
(iv) the system (6) has a unique globally exponentially stable equi-

librium point x⇤ 2 Rn;
(v) the functions

V1(x) =k[He]�1
H(x� x

⇤)k1,

V2(x) =k[He]�1
Hf(x, u)k1.
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are global Lyapunov functions for (6).

Proof: Regarding (i) () (ii), first note that the control
system (6) is K-monotone and thus Dxf(x, u) is K-Metzler for
every (x, u) 2 Rn ⇥ Rp. Now, using Theorem 5.5, the condition
in part (i) is equivalent to µe,K(Dxf(x, u))  �c, for every
(x, u) 2 Rn ⇥ Rp. The result then follows from [28, Theorem 59].
Regarding (i) =) (iii), by Lemma 4.2(i), for every x 2 Rn, we have
kxke,K = kdiag(He)�1

Hxk1. The result is then straightforward
by replacing the norms in the proof of [28, Theorem 37(ii)] by the
seminorm x 7! kdiag(He)�1

Hxk1. Regarding parts (iv) and (v),
we note that if K a is proper pointed cone, by Proposition 4.1, the
gauge function k · ke,K is a norm. The results then follow by [29,
Theorem 3.8].

Remark 5.8 (Comparison with the literature): The following re-
marks are in order.

(i) Theorem 5.7 can be considered as a generalization of [13,
Theorem 2] to K-monotone systems for a polyhedral cone K.
Additionally, Theorem 5.7 provides an incremental input-to-state
robustness bound for contractive K-monotone systems.

(ii) In [20, Theorem 4.5], a sufficient condition for exponential
incremental stability of a K-monotone system is proposed based
upon embedding the system into a higher dimensional space.
In comparison, our Theorem 5.7 presents a necessary and
sufficient condition for contractivity of K-monotone systems
with respect to the gauge norm k · ke,K . It is worth mentioning
that exponential incremental stability is a weaker condition than
conractivity with respect to any norm. However, it can be shown
that the condition in [20, Theorem 4.5] is stronger than the
condition presented in Theorem 5.7(i).

(iii) Given a polyhedral cone K ✓ Rn, the sufficient condition
for exponential incremental stability in [20, Theorem 4.5] re-
quires searching for a vector v 2 Rm and a Metzler matrix
P 2 Rm⇥m. However, the condition in Theorem 5.7(i) only
requires searching for one scalar, i.e., ↵ 2 R. Thus, in cases
when the polyhedral cone K is given, the sufficient condition
in Theorem 5.7(i) is computationally more efficient than the
condition in [20, Theorem 4.5].

(iv) For a control system on Rn with a globally stable equilibrium
point x

⇤, the search for a quadratic Lypaunov function of the
form V (x) = (x�x

⇤)TP (x�x
⇤) requires solving for n(n�1)

2
entries of the positive definite matrix P . In this context, Theo-
rem 5.7(i) provides a scalable approach to construct two global
polygonal Lyapunov functions for the K-monotone system by
searching for n components of the vector e 2 int(K).

VI. APPLICATIONS

In this section, we present two applications of our framework for
analysis and design of systems. In the first application, we investigate
the dynamic behaviors of the edge flow in interconnected networks.
In the second application, we develop a computationally efficient
approach for control design with safety guarantees.

A. Monotone edge flows in dynamic networks
Consider a network of interconnected compartments, where the

state of the compartment i is described by xi 2 R, for every i 2
{1, . . . , n}. The interconnection of the compartments is described by
a connected undirected graph G = (V, E), where V = {1, . . . , n} is
the node set and E ✓ V ⇥ V is the edge set. The dynamics of the
network is given by

ẋ = f(x) (10)

where x = (x1, . . . , xn)
T and f(x) = (f1(x), . . . , fn(x))

T. We
assume that the vector field f satisfies the following translation-
invariance law:

f(x+ c1n) = f(x), for every x 2 Rn
, c 2 R. (11)

For every edge e = (i, j) 2 E , the edge flow from compartment i to
compartment j is defined by xi � xj . Given an edge orientation for
the graph G, the vector of the flows is given by B

T
x 2 Rm, where

B 2 Rn⇥m is the incidence matrix of the graph G associated to the
given edge orientation. For many real-world interconnected systems,
including power grids and traffic networks, edge flows correspond
to physical quantities and play a crucial role in safety and security
analysis of networks. In this section, we study the evolution of the
edge flows in the dynamic flow network (10). We start our analysis
of the flow dynamics (10) by defining the set

IE := {v 2 Rn | vi 6= vj , for every (i, j) 2 E}.

Given v 2 IE , one can assign an edge orientation to the graph
G = (V, E) such that if Bv 2 Rn⇥m is the incidence matrix of G

associated to this edge orientation, we have B
T
v v > 0m. For every

v 2 IE , we define the cone K
v
G ⇢ Rn by

K
v
G = {x 2 Rn | BT

v x � 0}. (12)

By definition of the incidence matrix Bv we have B
T
v v > 0m. This

implies that v 2 int(KG). Therefore K
v
G is a proper cone. However,

K
v
G is not a pointed cone. This is because B

T
v 1n = 0m and thus

span{1n} 2 K
v
G \ (�K

v
G). The next theorem provides a necessary

and sufficient condition for monotonicity and contractivity of edge
flows in dynamic flow networks.

Theorem 6.1 (Monotonicity of edge flows): Consider the dynamic
flow network (10) over an undirected connected graph G = (V, E)
and let v 2 IE . The following statements are equivalent:

(i) for every x 2 Rn, there exists P (x) 2 Mm such that

B
T
v Dxf(x) = P (x)BT

v ;

(ii) for every two trajectories x(t), y(t) of the system (10) satisfying
B

T
v x(0)  B

T
v y(0), we have

B
T
v x(t)  B

T
v y(t), for every t 2 R�0.

Additionally, if condition (i) holds, c 2 R, and e 2 int(Kv
G), then

the following statements are equivalent:
(iii) B

T
v Dxf(x)e  �cB

T
v e, for every x 2 Rn.

(iv) for every two trajectories x(t), y(t) of the system (10),
��diag(BT

v e)
�1�

B
T
v x(t)�B

T
v y(t)

���
1

 e
�ct��diag(BT

v e)
�1�

B
T
v x(0)�B

T
v y(0)

���
1,

for every t 2 R�0.

Proof: The equivalence (i) () (ii) follows from Theo-
rem 5.3(ii) and Lemma 3.1 applied to the cone K

v
G. Regarding the

equivalence (iii) () (iv), first note that by translation-invariance
law (11), we have Dxf(x)1n = 0n. On the other hand, the graph G

is connected and thus Ker(BT
v ) = span(1n). As a result, we have

Dxf(x)Ker(BT
v ) = {0n} ⇢ Ker(BT

v ). The result then follows from
Theorem 5.7 and Lemma 4.2(i).

Example 6.2 (Edge flows in averaging systems): Let G = (V, E)
be a network with an undirected connected graph shown in Figure 1
and consider the following continuous-time averaging system on G:

ẋ = �Lx, (13)
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Fig. 1: The structure of the graph G in Example 6.2

where L =

"
2 �1 �1 0
�1 2 �1 0
�1 �1 3 �1
0 0 �1 1

#
is the Laplacian matrix of G. Let v =

(0, 1, 2, 3)T 2 IE . Then one can see that Bv =

"
1 0 1 0
�1 1 0 0
0 �1 �1 1
0 0 0 �1

#

and Bv is the incidence matrix of G associated with the orientation
shown in Figure 1. We note that L = BvB

T
v . One can check that

�B
T
v L =

"�3 3 0 0
0 �3 4 �1
�3 0 4 �1
1 1 �4 2

#
=

"�3 0 0 0
0 �3 0 1
0 0 �3 1
0 1 1 �2

#
B

T
v .

Since

"�3 0 0 0
0 �3 0 1
0 0 �3 1
0 1 1 �2

#
2 M4, by Theorem 6.1, the edge flows

of the averaging system (13) are monotone. Moreover, one can
pick e = (1.5, 1.4, 1, 0.1)T and check that B

T
v e =

(0.1, 0.4, 0.5, 0.9)T > 04. Thus, e 2 int(K) and, we have

�B
T
v Le =

"�0.3
�0.3
�0.6
�0.9

#
 �3

4
B

T
v e.

Therefore, by Theorem (6.1), the edge flows of the averaging sys-
tems (13) are contracting with rate c = 3

4 . Alternatively, one can
define the edge flow variable z = B

T
v x to get the edge flow dynamics:

ż = B
T
v ẋ = �B

T
v Bvz = �LEz =

"�2 1 �1 0
1 �2 �1 0
�1 �1 �2 1
0 1 1 �2

#
z. (14)

The matrix LE = B
T
v Bv is called the edge Laplacian of G. It is

interesting to note that the edge Laplacian matrix LE is not Metzler
and �max(�LE ) = 0. Thus, one cannot deduce monotonicity or
contractivity of the edge flows using the edge flow dynamics (14).

B. Scalable control design with safety guarantees
Monotone system theory has been successfully used for scalable

control design in cooperative systems [5] and in systems with
rectangular safety constraints [30]. However, in many applications,
due to the nature of the problem, estimating the safe set using hyper-
rectangles can either make the control design infeasible or can lead to
overly-conservative results. In this subsection, we develop a scalable
approach for state feedback design with safety guarantees, where
we under-approximate the safe set using polytopes. Consider the
following control system:

ẋ = f(x) +Bu+ Cw (15)

where x 2 Rn is the state of the system, u 2 Rp is the control input,
and w 2 Rq is the vector of disturbance. We assume that B 2 Rn⇥p

and C 2 Rn⇥q and the disturbance is bounded, i.e., there exists
w  w such that w  w(t)  w, for every t 2 R�0. We assume
that the origin 0n is a (possibly unstable) equilibrium point of f and
there exist a finite family of matrices {Ai}ki=1 such that

Dxf(x) 2 conv{A1, . . . , Ak}, for every x 2 Rn
.

We assume that there exists a safe region in the state space denoted
by X ⇢ Rn. The goal is to design a state feedback controller u = Fx

for the control system (15) such that the closed-loop system avoids
the unsafe region in the state-space, for any bounded disturbances
w(t) 2 [w,w]. We also assume that these exists a polytope P ✓ Rn

defined by

P = {x 2 Rn | h  Hx  h},

where h  h 2 Rm are such that the safe set X can be under-
approximated by P , i.e., we have P ✓ X . Using the polytope P ,
one can define a polyhedral cone K ✓ Rn with the following H-rep:

K = {x 2 Rn | Hx � 0m}. (16)

Let V 2 Rn⇥m be a generating matrix for the cone K, i.e., K

has a V -rep given by K = {V x | x 2 Rm
�0}. Indeed, using the

cone K, the polytope P can be described by the interval [⌘, ⌘]K ,
where ⌘, ⌘ 2 Rn is such that H⌘ = h and H⌘ = h. We introduce
the following linear programming feasibility problem with unknown
parameters F and ↵:

H(Ai +BF + ↵In)V � 0n⇥n, 8i 2 {1, . . . , k}
H(f(⌘) +BF⌘) + (HC)+w + (HC)�w  0m,

H(f(⌘) +BF⌘) + (HC)+w + (HC)�w � 0m. (17)

Theorem 6.3 (Control design via linear programming): Consider
dynamical system (15) with the polyhedral cone K 2 Rn defined
in (16). Suppose that linear programming (17) is feasible with
a solution (F ⇤

,↵
⇤). By choosing the state feedback controller

u = F
⇤
x, we obtain the closed-loop system

ẋ = f(x) +BF
⇤
x+ Cw. (18)

Then the polytope P is a forward invariant set for the system (18) for
any disturbance t 7! w(t) such that w(t) 2 [w,w] for all t 2 R�0.

Proof: Consider the closed-loop system (18). First, by the
linear programming (17), F

⇤ 2 Rn⇥p satisfies H(Ai + BF
⇤ +

↵
⇤
In)V � 0m⇥m, for every i 2 {1, . . . , k}. This implies that

H(Dxf(x) + BF
⇤ + ↵

⇤
In)V � 0m⇥m, for every x 2 Rn.

Therefore, by Theorem 5.3(ii), the closed-loop system (18) is K-
monotone. Thus, for every disturbance t 7! w(t) with w(t) 2 [w,w],

H(f(⌘) +BF
⇤
⌘ + Cw(t))

 H(f(⌘) +BF
⇤
⌘) + (HC)+w + (HC)�w  0m

where the first inequality holds because w(t) 2 [w,w] and the second
inequality holds by the linear programming (17). Therefore, by [3,
Proposition 2.1], the trajectory of the closed-loop system starting
from ⌘ is non-increasing with respect to the preorder �K . This means
that {x 2 Rn | x �K ⌘} is invariant for the closed-loop system (18).
Similarly, one can use the constraint H(f(⌘) +BF

⇤
⌘ + Cw(t)) �

0m to show that {x 2 Rn | ⌘ �K x} is an invariant set for the
closed-loop system (18). As a result, {x 2 Rn | ⌘ �K x �K ⌘} =
[⌘, ⌘]K = P is an invariant set for the closed-loop system (18).

Example 6.4 (Feedback Controller for Inverted Pendulum):
Consider the inverted pendulum with the following dynamics:

ẋ1 = x2,

ẋ2 =
g

`
sin(x1) + u+ w, (19)

where x1 and x2 are the angular position and the angular velocity
of the pendulum, u 2 R is the control input, and w 2 R is the
disturbance. In this example g is the gravitational constant and ` is the
length of the pendulum. We assume that g

` = 1 and the disturbance is
a time-varying unknown signal with w(t) 2 [�0.2, 0.2], for every t 2
R�0. The safe set is given by X = {(x1, x2) 2 R2 | �⇡

10  x1 
⇡
10} and is shown in blue in Figure 2. First, note that x1 = x2 = 0 is
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Fig. 2: The safe set X (blue) and its under-approximation by the
polytope P (red).

an unstable equilibrium point for the inverted pendulum (19) without
any input or disturbances. Second, for the inverted pendulum (19),
there exists no controller that can make a rectangular neighborhood
of 02 forward invariant. This can be proved as follows: consider a
rectangular neighborhood of 02 and assume that x1 = � > 0 is
an edge of this rectangle. Since the neighborhood contains 02, there
are points on this edge such that x2 > 0. This implies that on this
edge, we have ẋ1 = x2 > 0. Thus, this rectangular set cannot be
forward invariant for the system (19). Now, we consider the under-
approximation of the safe set X by the polytope P as shown in red
in Figure (2) and described by

P = {(x1, x2)
T 2 R2 | � ⇡

10

⇥
1
1

⇤


⇥
1 0.2
1 0

⇤ ⇥ x1
x2

⇤
 ⇡

10

⇥
1
1

⇤
}.

One can define the cone K = {(x1, x2)
T 2 R2 |

⇥
1 0.2
1 0

⇤ ⇥ x1
x2

⇤
�

02} and check that it has the following V -rep: K =
{
⇥

0 1
5 �5

⇤ ⇥ x1
x2

⇤
| (x1, x2)

T 2 R2
�0}. Additionally, one can solve⇥

1 0.2
1 0

⇤
⌘ = �

⇥
1 0.2
1 0

⇤
⌘ = ⇡

10

⇥
1
1

⇤
to obtain ⌘ = �⌘ = [ ⇡10 , 0]T.

Moreover, the Jacobian of the inverted pendulum at (x1, x2)
T is

given by
h

0 1
g
` cos(x1) 0

i
and, for every x1 2 R,

h
0 1

g
` cos(x1) 0

i
2 conv

n
A1 :=

h
0 1
g
` 0

i
, A2 :=

h
0 1

g
` cos( ⇡

10 ) 0

io
.

The optimal solution of the linear program (17) is given by
(F ⇤

,↵
⇤) = (

⇥
1.6203
5.1338

⇤
, 20). Thus, by applying the feedback con-

troller u = �1.6203x1 � 5.1338x2, one can show (using Theo-
rem 6.3) that the polytope P is forward invariant for any disturbance
in the interval [�0.2, 0.2].

VII. CONCLUSIONS

We characterize monotonicity of a control system with respect to
a polyhedral cone using the half-space representation and the vertex
representation of the cone. We use the notion of gauge norm as a key
element for connecting contraction theory with monotone theory on
cones. We provide computationally efficient necessary and sufficient
conditions for contractivity of monotone control systems with respect
to the gauge norms.

REFERENCES

[1] E. D. Sontag, “Monotone and near-monotone biochemical networks,”
Systems and Synthetic Biology, vol. 1, no. 2, pp. 59–87, 2007.

[2] G. Como, E. Lovisari, and K. Savla, “Throughput optimality and over-
load behavior of dynamical flow networks under monotone distributed
routing,” IEEE Transactions on Control of Network Systems, vol. 2, no. 1,
pp. 57–67, 2015.

[3] H. L. Smith, Monotone Dynamical Systems: An Introduction to the
Theory of Competitive and Cooperative Systems, ser. Mathematical
Surveys and Monographs. American Mathematical Society, 1995,
no. 41.

[4] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.

[5] A. Rantzer, “Scalable control of positive systems,” European Journal of
Control, vol. 24, pp. 72–80, 2015.

[6] Y. Ebihara, D. Peaucelle, and D. Arzelier, “Analysis and synthesis
of interconnected positive systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 2, pp. 652–667, 2017.

[7] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone
systems,” in Hybrid Systems: Computation and Control, Apr. 2015, pp.
58–67.

[8] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[9] F. Forni and R. Sepulchre, “A differential Lyapunov framework for
contraction analysis,” vol. 59, no. 3, pp. 614–628, 2014.

[10] G. Dirr, H. Ito, A. Rantzer, and B. S. Rüffer, “Separable Lyapunov
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