
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Efficient Interaction-Aware Interval Analysis of
Neural Network Feedback Loops

Saber Jafarpour⇤, Member, IEEE , Akash Harapanahalli⇤, Graduate Student Member, IEEE , and Samuel
Coogan, Senior Member, IEEE

Abstract— In this paper, we propose a computationally
efficient framework for interval reachability of systems with
neural network controllers. Our approach leverages inclu-
sion functions for the open-loop system and the neural
network controller to embed the closed-loop system into
a larger-dimensional embedding system, where a single
trajectory over-approximates the original system’s behavior
under uncertainty. We propose two methods for construct-
ing closed-loop embedding systems, which account for
the interactions between the system and the controller in
different ways. The interconnection-based approach con-
siders the worst-case evolution of each coordinate sepa-
rately by substituting the neural network inclusion func-
tion into the open-loop inclusion function. The interaction-
based approach uses novel Jacobian-based inclusion func-
tions to capture the first-order interactions between the
open-loop system and the controller by leveraging state-
of-the-art neural network verifiers. Finally, we implement
our approach in a Python framework called ReachMM to
demonstrate its efficiency and scalability on benchmarks
and examples ranging to 200 state dimensions.

Index Terms— Reachability analysis, Inclusion functions,
Neural networks, Interconnected systems.

I. INTRODUCTION

Problem Description and Motivations: Recent advances in
machine learning are bringing learning algorithms into the
heart of safety-critical control systems, such as autonomous
vehicles, manufacturing sectors, and robotics. For control
systems, these learning algorithms often act in the closed-
loop setting, as direct feedback controllers [1] or motion plan-
ners [2]. Learning-based closed-loop controllers can improve
the performance of systems while reducing their computational
burden for online implementations as compared with more
traditional optimization-based approaches. However, despite
their impressive performance, learning models are known to
be overly sensitive to input disturbances [3]: a small input
perturbation can lead to comparatively large changes in their
output. This issue amplifies in feedback settings, as distur-
bances can accumulate in the closed-loop. As a result, ensuring

⇤ These authors contributed equally.
This work was supported in part by the National Science Foundation

under grants 1749357 and 2219755 and the Air Force Office of Scientific
Research under Grant FA9550-23-1-0303.

Saber Jafarpour is with Department of Electrical, Computer, and
Energy Engineering, University of Colorado Boulder, Boulder, Colorado,
USA (e-mail: saber.jafarpour@colorado.edu})

Akash Harapanahalli and Samuel Coogan are with School of Electri-
cal and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA, USA (e-mail: {aharapan, sam.coogan}@gatech.edu})

reliability of learning algorithms is an essential challenge in
their integration into safety-critical systems.

Typical learning architectures involve high-dimensional
nonlinear function approximators, such as neural networks,
necessitating special tools for their input-output analysis.
The machine learning and control community have made
significant progress in analyzing the safety of neural net-
works in isolation, including efficient and sound input-output
bounds, worst-case adversarial guarantees, and sampling-based
stochastic guarantees (cf. [4]). However, most of these existing
frameworks for standalone neural networks do not address the
unique challenges for closed-loop analysis—namely informa-
tion propagation, non-stationarity of the bounds, and complex
interactions between the system and the controller. In these
cases, it is essential to understand and capture the nature
of the interactions between the system and the neural net-
work. Recently, several frameworks have emerged for safety
verification of learning algorithms in the closed-loop. These
frameworks usually incorporate neural network verification
algorithms into the closed-loop safety analysis by studying
their interactions with the open-loop system. However, most of
these existing frameworks are either limited to a specific class
of systems or learning algorithms, or they impose significant
computational burdens, rendering them unsuitable for runtime
safety verification.

Literature Review: Safety verification of nonlinear dynam-
ical systems without learning-enabled systems is a classical
problem and is typically solved using reachability analysis
tools, although significant challenges remains even in this
setting. Reachability of nonlinear systems has been stud-
ied using optimization-based methods such as the Hamilton-
Jacobi approach [5] and the level set approach [6]. Several
computationally tractable approaches including the ellipsoidal
method [7] and the zonotope method [8] have been developed
for reachability analysis of dynamical systems. We refer to [9]
for a recent review of state-of-the-art reachability analysis
techniques. Interval analysis is a classical framework for
computing interval functional bounds [10] which has been
successfully used for reachability analysis of dynamical sys-
tems [11]–[13]. A closely-related body of literature is the
mixed monotone theory, which extends the classical monotone
system theory by separating the cooperative and competitive
effect of the dynamics [14], [15]. Recently, mixed monotone
theory has been used as an efficient framework for reachability
analysis of dynamical systems [16]–[19].

Rigorous verification of standalone neural networks has

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

been studied using abstract interpretation techniques such
as Reluplex [20] and Neurify [21], using interval bound
propagation methods [22], [23], and convex-relaxation ap-
proaches such as LipSDP [24] and CROWN [25] and its
variants [26]. The simplest method for studying reachability
of neural network controlled systems is via an input-output
approach: using existing techniques for estimating the output
of the neural network, the input-output approach performs
reachability analysis of the closed-loop system by substituting
the full output range of the neural network as the input set
of the open-loop system. Examples of this approach include
NNV [27], and simulation-guided interval analysis [28]. This
approach is generally computationally efficient and applicable
to general forms of neural networks and control systems, but it
can lead to overly-conservative estimates of reachable sets [29,
Section 2.1]. The reason for this over-conservatism is that
this approach essentially treats neural networks controllers as
adversaries and, thus, cannot capture the beneficial interactions
between the controller and the system. An alternative frame-
work is the functional approach, which is based on composing
function approximations of the system and the neural network
controller. Examples of this approach for linear systems in-
clude using linear programming in ReachLP [30], using semi-
definite programming in Reach-SDP [31], and using mixed
integer programming in [32]. For nonlinear systems, the func-
tional approach has been used in ReachNN [33], Sherlock [29],
Verisig 2.0 [34], POLAR [35] and JuliaReach [36], [37].
Functional methods are able to capture beneficial interactions
between the neural network controller and the system, but they
are often computationally burdensome and generally do not
scale well to large-scale systems.

Contributions: In this paper, we introduce a general and
computationally efficient framework for studying reachability
of continuous-time closed-loop systems with nonlinear dynam-
ics and neural networks controllers. First, we review the notion
of inclusion function from classical interval analysis to over-
approximate the input-output behavior of functions. Our first
minor result states that if an inclusion function is chosen to be
minimal, then it provides tighter over-approximations of the
output behavior than a Lipschitz bound of the function. For a
given function, we study different approaches for constructing
inclusion functions. In particular, we propose a novel Jacobian-
based cornered inclusion function, which is specially amenable
to analysis of closed-loop systems. We further show that
this class of inclusion functions plays a critical role in in-
tegrating the existing off-the-shelf neural network verification
algorithms into our framework.

Second, using the notion of inclusion functions, we develop
a general approach for interval analysis of continuous-time
dynamical systems. The key idea is to use the inclusion
functions to embed the original dynamical system into a
higher dimensional embedding system. Then trajectories of the
embedding system can be used to provide hyper-rectangular
over-approximation for reachable sets of the original system.
Our approach unifies and extends several existing approaches
for interval analysis of dynamical systems. Notably, our novel
proof technique, based on the classical monotone comparison
Lemma, allows for accuracy comparison between different

inclusion functions.
As the culminating contribution of this paper, we develop a

computationally efficient framework for reachability analysis
of nonlinear systems with neural network controllers. The key
in our framework is a careful combination of the inclusion
function for the open-loop system and the inclusion function
for the neural network controller to obtain an inclusion func-
tion for the closed-loop system. We propose two methods for
combining the open-loop inclusion function and the neural
network inclusion function. The second method, called the
interaction-based approach, constructs a closed-loop embed-
ding system using a Jacobian-based inclusion function for
the open-loop system and local affine bounds for the neural
network. Compared to the interconnection-based approach, the
interaction-based method completely captures the first order
interactions between the system and the neural network.

Finally, we implement our approach in a Python toolbox
called ReachMM and perform several numerical experiments
to show the efficiency and accuracy of our framework. For
several linear and nonlinear benchmarks, we show that our
method beats the state-of-the-art methods. Moreover, we study
scalability of our approach and compare it with the state-of-
the-art methods on a platoon of vehicles with up to 200 state
variables. Compared to our conference paper [38], this paper
provides a more general framework for interval reachability
using inclusion functions, introduces the interaction-based
approach to capture the first order interactions between the
system and the neural network controller, and includes a suite
of numerical experiments. We would like to highlight that, in
this paper, we focus on continuous-time dynamical systems.
However, with minor modifications, our framework can be
used to analyze reachability of discrete-time systems.

II. MATHEMATICAL PRELIMINARY AND NOTATIONS

For every two vectors v, w 2 Rn and every subset S ✓

{1, . . . , n}, we define the vector v[S:w] 2 Rn by
�
v[S:w]

�
j
=(

vj j 62 S

wj j 2 S.
. Given a matrix B 2 Rn⇥m, we denote the non-

negative part of B by [B]+ = max(B, 0) and the nonpositive
part of B by [B]� = min(B, 0). Given a square matrix
A 2 Rn⇥n the Metzler and non-Metzler part of A are
denoted by [A]M and [A]nM, respectively, where ([A]M)ij =(
Aij Aij � 0 or i = j

0 otherwise,
and [A]nM = A � [A]M. Given a

map g : Rn
! Rm, the `1-norm Lipschitz bound of g is the

smallest L 2 R�0 such that

kg(x)� g(y)k1 Lkx� yk1, for all x, y 2 Rn
.

We denote the `1-norm Lipschitz constant of g by Lip1(g).
For a differentiable map g : Rn

! Rm, we denote its Jacobian
at point x 2 Rn by Dg(x). Consider the dynamical system

ẋ = f(x,w), for all t 2 R�0, (1)

where x 2 Rn is the state of the system and w 2 Rq is the
disturbance. Given a piecewise continuous disturbance t 7!

w(t) and an initial condition x0 2 Rn, the trajectory of (1)

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 3

starting from x0 is denoted by �f (t, x0, w(t)). Let X ✓ Rn

and W ✓ Rq , then the reachable set of (1) starting from the
initial set X and with the disturbance set W is defined by:

Rf (t,X ,W) =

(
�f (t, t0, x0, w), 8x0 2 X ,

w : R ! W piecewise cont.

)
(2)

The set X is robustly forward invariant if Rf (t,X ,W) ✓ X

for all t � 0. The system (1) is continuous-time monotone on
X ✓ Rn if, for every i 2 {1, . . . , n}, every x y 2 X with
xi = yi, and every u v, we have fi(x, u) fi(y, v). If a
dynamical system (1) is monotone on X and X is robustly
forward invariant, then its trajectories preserve the standard
partial order by time, i.e., for every two trajectories t 7! x(t)
and t 7! y(t) of the systems (1), if x(0) y(0), then x(t)
y(t) for all t 2 R�0 [39]. The southeast partial order SE

on R2n is defined by [xbx] SE

⇥
y

by
⇤

if and only if x y and
by bx. We also define T

2n
�0 = {[xbx] 2 R2n

| x bx} and
T

2n
0 = {[xbx] 2 R2n

| x � bx} and T
2n = T

2n
�0

S
T

2n
0 .

III. PROBLEM STATEMENT

We consider a system described by:

ẋ = f(x, u, w), t 2 R�0, (3)

where x 2 Rn is the state of the system, u 2 Rp is the
control input, and w 2 Rq is the disturbance. We assume that
f : Rn

⇥ Rp
⇥ Rq

! Rn is a parameterized vector field and
the state feedback is parameterized by a k-layer feed-forward
neural network controller N : Rn

! Rp defined by:

⇠
(0) = x

⇠
(i) = �

(i�1)(W (i�1)
⇠
(i�1) + b

(i�1)), i 2 {1, . . . , k}

u = W
(k)

⇠
(k)(x) + b

(k) := N(x), (4)

where ni is the number of neurons in the ith layer, W (i�1)
2

Rni⇥ni�1 is the weight matrix of the ith layer, b(i�1)
2 Rni is

the bias vector of the ith layer, ⇠(i)(y) 2 Rni is the ith layer
hidden variable, and �

(i�1) : Rni ! Rni is the ith layer diag-

onal activation function satisfying 0
�
(i�1)
j (x)��

(i�1)
j (y)

x�y
 1

for every j 2 {1, . . . , ni}. One can show that a large class of
activation functions including ReLU, leaky ReLU, sigmoid,
and tanh satisfies this condition (after a possible re-scaling of
their co-domain). With this neural network feedback controller,
the closed-loop system is given by:

ẋ = f(x(t), N(x(t)), w) := f
c(x(t), w). (5)

We assume that X0 ✓ Rn is the initial set of states for the
closed-loop system (5). This set can represent the uncertainties
in the starting state of the system or localization errors in
estimating the current state of the system. Moreover, we
assume that the disturbance w belongs to the set W ✓ Rn

representing the model uncertainty or exogenous disturbances
on the system. In this paper, we focus on the target-avoid
problem as defined below:

Target-Avoid Problem. Given a target set G ⇢ Rn, and an
unsafe set Sunsafe ⇢ Rn and a time interval [0, T], check if the

closed-loop system (5) reaches the target G at time T while
avoiding the unsafe region Sunsafe. Mathematically,

(i) Rfc(T,X0,W) ✓ G,
(ii) Rfc(t,X0,W)

T
Sunsafe = ;, for all t 2 [0, T].

The target-avoid problem is a classical and prevalent notion
of safety in many engineering applications, especially those
involving safety-critical systems [9]. Moreover, diverse ob-
jectives including multiagent coordination, complex planning
specified with formal languages and logics, and classical
control-theoretic criteria such as robust invariance and stability
can be achieved by concatenating and combining different
instantiations of the target-avoid problem.

In general, computing the exact reachable sets of the
closed-loop system (5) is not computationally tractable. Our
approach to solve the target-avoid safety problem is based
on constructing a computationally efficient over-approximation
Rfc(t,X0,W) of the reachable set of the closed-loop system.
Then, reaching the target is guaranteed by Rfc(T,X0,W) ✓
G and avoiding the unsafe region is guaranteed when
Rfc(t,X0,W)

T
Sunsafe = ;, for every t 2 [0, T].

IV. INTERVAL ANALYSIS AND INCLUSION FUNCTIONS

In this section, we develop a theoretical framework for
interval reachability analysis of arbitrary mappings. The key
element in our framework is the notion of inclusion function
from interval arithmetic [10], [40].

A. Inclusion Functions
Given a nonlinear input-output map g : Rn

! Rm and
an interval input, the inclusion function of g provides interval
bounds on the output of g.

Definition 1 (Inclusion function [10]). Given a map g : Rn
!

Rm, the function G =
h
G

G

i
: T 2n

�0 ! T
2m
�0 is

(i) an inclusion function for g if, for every x bx and every
z 2 [x, bx], we have

G(x, bx) g(z) G(x, bx). (6)

(ii) a [y, by]-localized inclusion function if (6) holds for every
[x, bx] ✓ [y, by] and every z 2 [x, bx].

Moreover, an inclusion function G for g is
(iii) monotone if, for every [xbx] SE

⇥
y

by
⇤
, we have

G(x, bx) SE G(y, by);
(iv) thin if, for every x 2 Rn, G(x, x) = G(x, x) = g(x);
(v) minimal if, for every x bx, the interval [G(x, bx),G(x, bx)]

is the smallest interval containing g([x, bx]).

Given a nonlinear map g : Rn
! Rm, one can show that

its minimal inclusion function Gmin =
h
Gmin

G
min

i
is given by:

Gmin
i

(x, bx) = inf
z2[x,bx]

gi(z), G
min
i

(x, bx) = sup
z2[x,bx]

gi(z), (7)

for every i 2 {1, . . . , n}. The next theorem shows that the min-
imal inclusion function provides sharper over-approximations
compared to Lipschitz bounds.

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Fig. 1. Left: npinterval is used to generate interval approximations
for a function g(x1, x2) = [(x1 + x2)2, 4 sin((x1 � x2)/4)]>

using two different natural inclusion functions. Blue: using the inclusion
functions for elementary functions x 7! x

2 and x 7! sin(x)
in [41, Appendix A, Table 1], Green: rewriting g(x1, x2) = [x2

2 +
2x1x2 + x

2
2, 4 sin(x1/4) cos(x2/4) � 4 cos(x1/4) sin(x2/4)]>

and obtaining a different natural inclusion function based on composition
of elementary inclusion functions in [41, Appendix A, Table 1]. The
approximations are generated using the initial set [�1, 1] ⇥ [�1, 1],
and 2000 uniformly sampled ouptuts are shown in red. Right: The same
function is analyzed, with the same two natural inclusion functions, but
the initial set is partitioned into 1024 uniform sections, and the union of
the interval approximations are shown.

Theorem 1 (Minimal inclusion functions). Consider the func-
tion g : Rn

! Rm and the mapping Gmin =
h
Gmin

G
min

i
defined

by (7). Then, for every x bx, we have

kGmin(x, bx)� G
min

(x, bx)k1 Lip1(g)kx� bxk1.

Proof. Let i 2 {1, . . . , k} be such that kG
min

(x, bx) �

Gmin(x, bx)k1 =
���G

min
i

(x, bx)� Gmin
i

(x, bx)
���. Note that since

g is continuous and the box [x, bx] is compact, there exist
⌘
⇤
, ⇠

⇤
2 [x, bx] such that

max
y2[x,bx]

gi(y) = gi(⌘
⇤), min

y2[x,bx]
gi(y) = gi(⇠

⇤).

This implies that kG
min

(x, bx) � Gmin(x, bx)k1 = |gi(⌘⇤) �
gi(⇠⇤)| kg(⇠⇤) � g(⌘⇤)k1 Lip1(g)k⇠⇤ � ⌘

⇤
k1

Lip1(g)kx� bxk1.

B. Designing Inclusion Functions
Given a function g, finding a suitable inclusion function for

g is a central problem in interval analysis. We review three
approaches for constructing inclusion functions.

Natural inclusion function: As we showed in the previous
section, the minimal inclusion function can be computed using
the optimization problem (7). However, for general functions,
solving this optimization problem is not tractable. One feasible
approach is to find the minimal inclusion function for a
handful of elementary functions for which the optimization
problem (7) is solvable. Then, for an arbitrary function, a
natural inclusion function can be obtained by expressing it
as a finite composition of operators and elementary func-
tions [10, Theorem 2] [41, Theorem 2]. Several software
packages exist for automatically computing natural inclu-
sions functions. In [41], we introduce the software package

npinterval1 that implements intervals as a native data type
within the Python toolbox numpy [42], yielding flexibility,
efficiency through vectorization across arrays, and canonical
constructions of natural inclusion functions. An example of
an inclusion function computed using npinterval [41] is
illustrated in Figure 1.

Jacobian-based inclusion functions: Given a continuously
differentiable function g : Rn

! Rm, one can use upper
and lower bounds on the Jacobian of g to construct inclusion
functions for g. These inclusion functions are often derived
from the Taylor expansion of the function g around a certain
point. Most commonly, this point is taken as the midpoint
of an interval, leading to, in particular, the centered inclu-
sion function [10, §2.4.3] and the mixed-centered inclusion
function [10, §2.4.4]. In the next theorem, we develop a
Jacobian-based inclusion function obtained by linearization
around corners of an interval. As demonstrated in the sequel,
such cornered inclusion functions turn out to be particularly
amenable to analysis of closed-loop control systems.

Proposition 1 (Jacobian-based cornered inclusion function).
Given a continuously differentiable function g : Rn

! Rm

such that Dg(z) 2 [J [x,bx], J [x,bx]], for every z 2 [x, bx]. The
function Gjac : T 2n

�0 ! T
2m
�0 defined by

Gjac(x, bx) =

�[J [x,bx]]

� [J [x,bx]]
�

�[J [x,bx]]
+ [J [x,bx]]

+

�
x

bx

�
+

g(x)
g(x)

�

is a inclusion function for g.

Proof. Since g is continuously differentiable, for every z 2

[x, bx], we have g(z) = g(x)+
R 1
0 Dg(tz+(1� t)x)(z�x)dt.

Thus, for every x 2 [x, bx],

g(z) g(x) + J [x,bx](z � x)

= g(x) + [J [x,bx]]
+(z � x) + [J [x,bx]]

�(z � x)

 g(x) + [J [x,bx]]
+(bx� x) = G

jac
(x, bx)

where the first inequality holds because z�x � 0n, the second
equality holds by J [x,bx] = [J [x,bx]]

+ + [J [x,bx]]
�, and the last

inequality holds because z � x bx � x and z � x � 0n.
Similarly, one can show that, for every z 2 [x, bx], g(z) �

g(x)+[J [x,bx]]
�(bx�x) = Gjac(x, bx), completing the proof.

Remark 1. (The role of corner points) The proof of Propo-
sition 1 is based on Taylor expansion of g around the corner
point x. The proposition extends straightforwardly to the Tay-
lor expansion of g around other corner points, i.e., around any
point y such that yi 2 {xi, bxi}, resulting in different inclusion
functions. Both the Jacobian-based cornered inclusion function
(Proposition 1) and the Jacobian-based centered inclusion
function [10, §2.4] are obtained using the Taylor expansion
of the original function. In general, they are not comparable
(cf. Example 1 and Table I). However, for functions that are
monotone in their entries, the Jacobian-based cornered inclu-
sion function will lead to the minimal inclusion function while

1The code for npinterval is available at https://github.com/
gtfactslab/npinterval

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 5

Fig. 2. Pictorial comparison between the minimal (equation (7)),
the Jacobian-based centered ([10, §2.4.3]), and the Jacobian-based
cornered (Proposition 1) inclusion functions for f(x) = x

2 and
f(x) = x

3 on the interval [�1, 1]. Note that, for the monotone function
f(x) = x

3, the intersection of the two Jacobian-based cornered
inclusion functions (shown by blue and red dashed lines) leads to the
minimal inclusion function.

the Jacobian-based centered inclusion function is often non-
minimal. Figure 2 provides a pictorial comparison between the
minimal, the centered, and the cornered inclusion functions.

The accuracy of the Jacobian-based cornered inclusion func-
tion can be improved at a cost of a slightly more complicated
formulation using mixed differentiation in the same way that
the Jacobian-based centered inclusion function is improved
with the mixed-centered inclusion function [10, §2.4.4]. The
idea is to use a step-by-step differentiation of the function with
respect to each variable.

Proposition 2 (Mixed Jacobian-based cornered inclusion func-
tion). Given a continuously differentiable function g : Rn

!

Rm such that Dg(z) 2 [J [x,bx], J [x,bx]], for every z 2 [x, bx].
The function Gjac�m : T 2n

�0 ! T
2m
�0 defined by

Gjac�m(x, bx) =

�[M]� [M]�

�[M]+ [M]+

�
x

bx

�
+

g(x)
g(x)

�

is an inclusion function for g, where the ith columns of M

and M are defined by

M
i
= (J [x,bx[Ri:x]]

)i, M i = (J [x,bx[Ri:x]])i,

with Ri = {i+1, . . . , n}, for every i 2 {1, . . . , n}. Moreover,
for every x z bx, we have

Gjac(x, bx) Gjac�m(x, bx), G
jac�m

(x, bx) G
jac

(x, bx).

Proof. Since g is continuously differentiable, for every z 2

[x, bx], we have g(z[R1:x]) = g(x) +
R 1
0 Dx1g(tz[R1:x] + (1 �

t)x)(z1 � x1)dt. Thus, for every x 2 [x, bx], g(z[R1:x])

g(x) + J [x,bx[R1:x]](z1 � x1) g(x) + [J [x,bx[R1:x]]]
+(bx1 � x1).

where the first inequality holds because z1 � x1 � 0n and
the second inequality holds because z1 � x1 bx1 � x1 and
z1 � x1 � 0n. By successively applying the above procedure
on g(z[R1:x]), one can show that g(z) G

jac�m
(x, bx).

Similarly, one can show that g(z) � Gjac�m(x, bx) and
thus Gjac�m is an inclusion function for g. Finally, one can
show that J [x,bx] M and M J [x,bx]. This implies that
�[M]�x + [M]�bx �[J [x,bx]

�
x + [J [x,bx]

�bx. As a result

Gjac(x, bx) Gjac�m(x, bx). Similarly, one can show that
G
jac�m

(x, bx) G
jac

(x, bx).

Example 1 (Cornered inclusion functions). Consider the
function f : R2

! R2 defined by f(x1, x2) =
(x1 + x2)2

x1 + x2 + 2x1x2

�
. We compute the natural inclusion func-

tion, the (mixed) Jacobian-based cornered inclusion function,
and the (mixed) Jacobian-based centered inclusion function
for f on the interval [�0.1, 0.1] ⇥ [�0.1, 0.1]. The results
are shown in Table (I), for runtimes averaged over 10 000
runs. We observe that the output interval estimated by the
mixed Jacobian-based centered (cornered) is tighter than the
interval obtained from the Jacobian-based centered (cornered)
inclusion function. This observation is consistent with the
comparison between mixed and non-mixed Jacobian-based
cornered inclusion functions in Proposition 2. However, there
is generally no ranking between other methods, as each can
perform better in different scenarios.

Method Output Interval Runtime (s)
Natural [0, 0.04]⇥ [�0.22, 0.22] 1.93⇥ 10�6

Centered [�0.08, 0.08]⇥ [�0.24, 0.24] 1.64⇥ 10�5

Mixed Centered [�0.06, 0.06]⇥ [�0.22, 0.22] 8.38⇥ 10�5

Cornered [�0.12, 0.16]⇥ [�0.18, 0.22] 6.24⇥ 10�5

Mixed Cornered [�0.08, 0.08]⇥ [�0.18, 0.22] 2.28⇥ 10�4

TABLE I
COMPARISON OF INCLUSION FUNCTION METHODS.

Decomposition-based inclusion functions: Another approach
for constructing inclusion functions is by decomposing the
function into the sum of increasing and decreasing parts [15],
[43]. This separation is often realized using a decomposition
function.

Definition 2 (Decomposition function). Given a function g :
Rn

! Rm, a decomposition function for g is a map d : T 2n
!

Rm that satisfies
(a) g(x) = d(x, x), for every x 2 Rn;
(b) d(x, y) d(bx, y), for every y 2 Rn and every x bx;
(c) d(x, by) d(x, y), for every x 2 Rn and every y by.

One can show that every continuous function has at least
one decomposition function. Given a map g : Rn

! Rm, we
define the tight decomposition function for g as the mapping
d
tight : T 2n

! R2m given by

d
tight
i

(x, bx) =
(
minz2[x,bx] gi(z) x bx
maxz2[bx,x] gi(z) bx x

(8)

for every i 2 {1, . . . , n}. In general, the decomposition
function for function g is not unique. The next theorem, whose
proof is straightforward, shows how to construct inclusion
functions from decomposition functions.

Proposition 3 (Decomposition-based inclusion functions).
Consider a map g : Rn

! Rm with a function d : T 2n
! Rm.

Then, the map Gd : T 2n
! R2m defined by

Gd(x, bx) =
h
d(x,bx)
d(bx,x)

i
, for all x bx,

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

is a thin monotone inclusion function for g if and only if d is
a decomposition function for g. Moreover, Gd is the minimal
inclusion function (7) if and only if d is the tight decomposition
function (8).

Remark 2 (Comparison with the literature). For a vector field
f : Rn

! Rn, the decomposition function has already been
studied in mixed monotone theory (cf. [44], [16, Definition
2], [45, Definition 4], and [46]). Definition 2 extends this
classical notion to arbitrary functions.

One can combine two inclusion functions to obtain another
inclusion function with tighter estimates for the output of the
original function.

Proposition 4 (Intersection of inclusion functions). Given a
map g : Rn

! Rm with two inclusion functions G1 =
h
G1

G1

i
:

T
2n
�0 ! T

2m
�0 and G2 =

h
G2

G2

i
: T

2n
�0 ! T

2m
�0 . Define the

mapping G1 ^ G2 =
h
G1^G2

G1^G2

i
: T 2n

�0 ! T
2m
�0 by

[G1 ^ G2](x, bx) = max{G1(x, bx),G2(x, bx)},
[G1 ^ G2](x, bx) = min{G1(x, bx),G2(x, bx)}.

Then G1 ^ G2 is an inclusion function for g and it provides
over-approximations of the output of g which are tighter than
both G1 and G2.

Proof. Note that both G1 and G2 are inclusion func-
tions for g. Thus, for every x z bx, we have
G1(x, bx) g(z) and G2(x, bx) g(z). This implies that
max{G1(x, bx),G2(x, bx)} = [G1^G2](x, bx) g(z). Similarly,
one can show that g(z) [G1 ^ G2](x, bx).

C. Convergence of inclusion functions

We now define the convergence rate of an inclusion function
which can be used to capture the accuracy of the interval
estimations.

Definition 3 (Convergence rate of inclusion functions). Con-
sider the mapping g : Rn

! Rm with an inclusion function
G =

h
G

G

i
: T 2n

�0 ! T
2m
�0 . The rate of convergence of G is the

largest ↵ 2 R�0 [{1} such that

kG(x, bx)� G(x, bx)k1 � max
z,y2[x,bx]

kg(z)� g(y)k1

 �kbx� xk
↵

1 (9)

for some � 2 R�0 and for every x bx.

Roughly speaking, the rate of convergence of an inclusion
function G shows how accurately it estimates the range of
the original function g. Indeed, for the minimal inclusion
function, the interval [G(x, bx),G(x, bx)] is the tightest interval
containing g([x, bx]). Thus the left hand side of inequality (9)
is always zero and the rate of convergence of the minimal
inclusion function is ↵ = 1. It is shown that, in general,
the convergence rate of the natural inclusion functions is
↵ = 1 [40, Lemma 4.1] and the convergence rate of the
Jacobian-based inclusion functions are ↵ = 2 [10, §2.4.5].

D. Inclusion functions for Neural Networks
Given a neural network N of the form (4) and any interval

[y, by] ✓ Rn, as described in the sequel, our framework
proposes using existing neural network verification algorithms
to construct a [y, by]-localized inclusion function of the form
N[y,by] =

h
N[y,by]

N[y,by]

i
: T 2n

�0 ! T
2p
�0 for N satisfying

N[y,by](x, bx) N(x) N[y,by](x, bx), (10)

for any x 2 [x, bx] ✓ [y, by]. A large number of the existing
neural network verification algorithms can provide bounds of
the form (10) for the output of the neural networks, including
CROWN [25], LipSDP [24], and IBP [23]. In particular,
some neural network verification algorithms can provide affine
[y, by]-localized inclusion functions for N . Examples of these
neural network verification algorithms include CROWN and its
variants [25]. Given an interval [y, by], these algorithms provide
a tuple (C,C, d, d) defining affine upper and lower bounds for
the output of the neural network

C(y, by)x+ d(y, by) N(x) C(y, by)x+ d(y, by), (11)

for every x 2 [y, by]. Using these linear bounds, we can
construct the affine [y, by]-localized inclusion function for N :

N[y,by](x, bx) = [C(y, by)]+x+ [C(y, by)]�bx+ d(y, by),
N[y,by](x, bx) = [C(y, by)]+bx+ [C(y, by)]�x+ d(y, by)

(12)

for any [x, bx] ✓ [y, by].

Remark 3.
(i) (Computational complexity): the computational complex-

ity of finding the [y, by]-localized inclusion function
N[y,by] =

h
N[y,by]

N[y,by]

i
depends on the neural network ver-

ification algorithm. For instance, for a neural network
with k-layer and M neurons per layer, the computational
complexity of CROWN [25] in finding the bounds of the
form (10) is O(k2M3).

(ii) (Inclusion function): Since the [y, by]-localized inclusion
function N[y,by] =

h
N[y,by]

N[y,by]

i
can be obtained for every

[y, by], we can define an inclusion function N =
h
N

N

i
for

the neural network N by N(x, bx) = N[x,bx](x, bx), for all
x bx.

V. INTERVAL REACHABILITY OF DYNAMICAL SYSTEMS

In this section, we study reachability of the dynamical
system (1) using interval analysis. Our key idea is to embed
the original dynamical system (1) into an embedding system
on R2n and use trajectories of the embedding system to study
the propagation of the state bounds with time. Our main goal
is to use the notion of inclusion function (cf. Definition 1) to
design embedding systems for dynamical systems. Consider
the dynamical system (1) with an inclusion function F =

h
F

F

i
:

T
2n
�0 ⇥T

2q
�0 ! T

2n
�0 for f . We define the associated embedding

system on R2n:

ẋi = F
i
(x, bx[i:x], w, bw),

ḃxi = Fi(x[i:bx], bx,w, bw), (13)

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 7

for every i 2 {1, . . . , n}. For instance, using the minimal
inclusion function Fmin =

h
Fmin

F
min

i
for f , the associated

embedding system is given by:

ẋi = min
z2[x,bx], zi=xi,

u2[w, bw]

fi(z, u),

ḃxi = max
z2[x,bx], zi=bxi,

u2[w, bw]

fi(z, u), (14)

for every i 2 {1, . . . , n}. Given the disturbance set W =
[w,w] and the initial set X0 = [x0, x0], one can use a
single trajectory of the embedding system (13) to obtain over-
approximations of reachable sets of the system (1). Moreover,
the embedding system obtained from the minimal inclusion
function (i.e., the dynamical system (14)) provides the best
reachable set over-approximations at any time t � 0, compared
to any other embedding system constructed using an inclusion
function for vector field f in the dynamical system (1).

Proposition 5 (Reachability using embedding systems). Con-
sider the dynamical system (1) with the disturbance set [w,w]
and the initial set X0 = [x0, x0]. Suppose that F =

h
F

F

i
is an

inclusion function for f , and t 7!

h
x(t)
x(t)

i
and t 7!

h
x
min(t)

x
min(t)

i

are the trajectories of embedding systems (13) and (14),
starting from

⇥
x0
x0

⇤
with fixed disturbance [wbw] = [w

w
]. Then,

for every t 2 R�0, we have

Rf (t, [x0, x0], [w,w]) ✓ [xmin(t), xmin(t)] ✓ [x(t), x(t)].

Proof. We first show that the dynamical system (14) is a
monotone dynamical system with respect to the southeast
partial order SE. Let [xbx] SE

⇥
y

by
⇤

be such that xi = yi

and let [wbw] SE [vbv]. Then, we have [y, by] ✓ [x, bx] and
[v, bv] ✓ [w, bw], and we can compute

Fmin
i

(x, bx,w, bw) = min
z2[x,bx], zi=xi,

u2[w, bw]

fi(z, u)

 min
z2[y,by], zi=yi,

u2[v,bv]

fi(z, u) = Fmin
i

(y, by, v, bv),

for every i 2 {1, . . . , n}. Similarly, let [xbx] SE

⇥
y

by
⇤

be
such that bxi = byi and let [wbw] SE [vbv]. Then, we have
[y, by] ✓ [x, bx] and [v, bv] ✓ [w, bw], and similar reasoning
implies F

min
i

(y, by, v, bv) F
min
i

(x, bx,w, bw), for every i 2

{1, . . . , n}. As a result, the embedding system (14) is mono-
tone with respect to SE. Let x0 2 [x0, x0] and u 2 [w,w]
and t 7! xu(t) be the trajectory of the system (1) starting
from x0 with disturbance u. Note that t 7!

h
xu(t)
xu(t)

i
is a

solution of the embedding system (14) with the initial con-
dition [x0

x0] and the disturbance [uu]. Moreover, we know that⇥
x0
x0

⇤
SE [x0

x0] and [w
w
] SE [uu]. Therefore, by monotonicity

of the embedding system (14) with respect to SE, we geth
x
min(t)

x
min(t)

i
SE

h
xu(t)
xu(t)

i
, for every t 2 R�0. This implies

that Rf (t, [x0, x0], [w,w]) ✓ [xmin(t), xmin(t)], for every
t 2 R�0. On the other hand, Fmin is the minimal inclusion
function for f and therefore, for every x bx and every
w bw, we have

h
F(x,bx,w, bw)

F(x,bx,w, bw)

i
SE

h
Fmin(x,bx,w, bw)

F
min

(x,bx,w, bw)

i
. Thus,

for every i 2 {1, . . . , n}, every x bx, and every w bw,

F
i
(x, bx[i:x], w, bw) min

z2[x,bx], zi=xi,

⇠2[w, bw]

fi(z, ⇠),

Fi(x[i:bx], bx,w, bw) � max
z2[x,bx], zi=bxi,

⇠2[w, bw]

fi(z, ⇠).

Now, we can use the classical monotone comparison
Lemma [47, Theorem 3.8.1] to obtain

h
x(t)
x(t)

i
SE

h
x
min(t)

x
min(t)

i
,

for every t 2 R�0. This implies that [xmin(t), xmin(t)] ✓

[x(t), x(t)], for every t 2 R�0, and completes the proof.

Remark 4.
(i) It is straightforward to extend Proposition 5 to the case

when the mapping F is a [y, by] ⇥ Rq-localized inclusion
function for f . In this setting, the results of Proposition 5
hold as long as we have [x(t), x(t)] ✓ [y, by].

(ii) Proposition 5 can be considered as a generalization
of [48, Proposition 6] and [18, Proposition 1]. Indeed, in
the special case that F is a decomposition-based inclusion
function constructed from the decomposition function d,
one can recover the embedding system

ẋi = d(x, bx[i:x], w, bw),
ḃxi = d(bx, x[i:bx], bw,w)

for every i 2 {1, . . . , n}. This embedding system is
identical to [48, Equation (7)] and [18, Equation (3)]. We
highlight that this extension is crucial for our framework
as the inclusion functions we obtain for learning-based
components are neither thin nor decomposition-based.

(iii) Proposition 5 can alternatively be proved using [12,
Theorem 2]. However, our proof of Proposition 5 is
different in that it uses monotone system theory [49], [50]
and classical monotone comparison Lemma [47, Theorem
3.8.1]. Indeed, compared to [12, Theorem 2], our proof
techniques allow to compare accuracy of different over-
approximations of reachable sets.

(iv) For the dynamical system (1) with locally Lipschitz
vector field f , the minimal inclusion function for f as
defined in equation (7) exists. Therefore, the reachability
framework from Proposition 5 is applicable to locally
Lipschitz nonlinear systems, regardless of monotonicity
of the original dynamics.

We now study the accuracy of the over-approximations
provided in Proposition 5 using the notion of convergence rate
of embedding systems.

Definition 4 (Convergence rate of embedding systems). Con-
sider the dynamical system (1) with the embedding sys-
tem (13). Then the convergence rate of the embedding sys-
tem (13) is the largest value of ↵ 2 R�0 [{1} such that

kx(t)� x(t)k1 � max
y,z2[x0,x0]

k�f (t, y)� �f (t, z)k1

 M(t)kx0 � x0k
↵

1

for some M : R�0 ! R�0 and for t 7!

h
x(t)
x(t)

i
being the

trajectory of the embedding system (13) starting from any⇥
x0
x0

⇤
with fixed disturbance [wbw] = 02n.

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Definition 4 raises an important question: what is the
connection between the convergence rate of the embedding
system (13) and the convergence rate of its associated in-
clusion function F (as in Definition 3)? In the special case
when f is a discrete-time monotone vector field, one can
choose the inclusion function F(x, x) =

h
f(x)
f(x)

i
for f . In this

case, it can be shown that the convergence rate of both the
embedding system and the inclusion function are the same and
equal to ↵ = 1. Given a Lipschitz and monotone inclusion
function F for f , one can show that the convergence rate of
the embedding system (13) satisfies ↵ � 1 [40, Theorem 4.1].
However, in general, the inclusion function F does not reveal
more information about the convergence rate of the embedding
system (13). Even when the convergent rate of the inclusion
function F is ↵ = 1, i.e., the embedding system is given by
equations (14), one might get a convergence rate of ↵ = 1 for
the embedding system. Thus, even the reachable set estimates
from the embedding system associated to the minimal inclu-
sion function can incur over-approximation errors proportional
to the size of uncertainty set.

VI. INTERVAL REACHABILITY OF LEARNING-BASED
SYSTEMS

In this section, we develop a computationally efficient
framework for studying reachability of neural network con-
trolled systems. The key idea of our approach is to employ
the framework of Section V and to capture the interactions be-
tween the open-loop system and the neural network controller
using a suitable closed-loop embedding system. However,
finding a closed-loop embedding system (or, equivalently,
computing an inclusion function for the closed-loop vector
field) using the approaches in Section IV is often not tractable,
as the neural networks can have a large number of parameters.
Instead, we propose to use a compositional approach based
on an inclusion function for the open-loop dynamics and
an inclusion function for the neural network controller. We
develop two different approaches for designing the closed-loop
inclusion function from the open-loop vector field f and the
localized inclusion function of the neural network.

First, we propose an interconnection-based approach where
the key idea is to consider the closed-loop embedding system
as the feedback interconnection of the open-loop embed-
ding system and the neural network inclusion function. This
method, as elaborated below, can capture some of the stabiliz-
ing effects of the neural network controller by approximating
the input-output behavior of the neural network separately
on the faces of a hyperrectangle. Thus, we consider this
approach a semi-input-output approach. The advantages of the
interconnection-based approach are its computational speed
and that it is amenable to any open-loop inclusion function.

Second, we propose an interaction-based approach where
the key idea is to use the Jacobian-based cornered inclusion
function (developed in Proposition 1) to more fully capture
the interaction between the neural network controller and
the system. The advantages of this approach are reduced
conservatism compared to the interconnection-based inclusion
function while retaining much of the computational efficien-
cies of interval reachability analysis.

Our methods are applicable to general nonlinear systems
with neural network controllers. Nonetheless, the essence of
our approaches, and their advantages over a naive input-output
approach, are evident even in the simple setting of a linear
system with a linear feedback controller, as shown in the
following illustrative example.

Example 2 (Invariant intervals). Consider the control system
ẋ = Ax + Bu where x 2 R2 and A =

⇥�2 1
1 �2

⇤
and

B = [01]. Note that A is Hurwitz so the origin is the
globally asymptotically stable equilibrium point of the open-
loop system when u ⌘ 0. Consider a state feedback controller
u = ⇡(x) = Kx = k1x1 + k2x2 with k1 = k2 = �3
designed to, e.g., achieve faster convergence to the origin. As a
special case of reachability analysis, our goal is to characterize
forward invariant intervals of the closed-loop system around
the origin. We compare three different approaches for finding
invariant intervals.

Naive input-output approach: this approach decouples the
system from the controller and only uses knowledge of the
output range of the controller. In particular, this approach seeks
an interval S = [�⇠, ⇠], ⇠ 2 R2

�0 such that S is robustly
forward invariant for the open loop system under any u 2

⇡(S). However, such a robustly forward invariant set does
not exist. By contradiction, suppose S = [�⇠, ⇠] is forward
invariant and consider the point x =

⇥
0
⇠2

⇤
on the boundary of

this set and pick u = ⇡(�x) = 3⇠2 2 ⇡(S), for which ẋ2 =
�2⇠2 + u = ⇠2 > 0 and the resulting trajectory immediately
leaves S. Despite the stability of the open-loop system and
the stabilizing effect of the controller, this approach fails to
capture the stability of the closed-loop system.

Interconnection-based approach: this approach also decou-
ples the system from the controller and only assumes knowl-
edge of the output of the controller to characterize forward
invariant intervals S = [�⇠, ⇠], for some ⇠ 2 R2

�0. However,
it considers the interconnection between the system and the
controller on the edges of the interval S. Let S�

1 , S
+
1 , S

�
2 , S

+
2

denote the edges of S defined by S
±
i

= {x 2 S | xi =
±⇠i} for i 2 {1, 2}. Then a sufficient condition for forward
invariance of S is that ẋi � 0 for every x 2 S

�
i

, and ẋi 0
for every x 2 S

+
i

. Note that, if ⇠1/⇠2 �
1
2 , then we have

ẋ1 0 on S
+
1 and we have ẋ1 � 0 on S

�
1 . On S

+
2 , we

have ẋ2 2 [�⇠1, ⇠1] � 2⇠2 + u and u 2 �3[�⇠1, ⇠1] � 3⇠2.
This implies that ẋ2 2 4[�⇠1, ⇠1] � 5⇠2, and, therefore, we
need ⇠1/⇠2

5
4 for ẋ2 0. A similar condition is required

to ensure ẋ2 � 0 on S
�
2 . This implies that, using this

interconnection-based approach, we certify S = [�⇠, ⇠] is
forward invariant for any ⇠ 2 R2

>0 satisfying 1
2 ⇠1/⇠2

5
4 .

Interaction-based approach: this approach uses the knowl-
edge of the controller functional dependency ⇡(x) = Kx

and the open-loop dynamics to obtain the closed-loop system
ẋ = (A+BK)x =

⇥�2 1
�2 �5

⇤
x. One can show that the interval

S = [�⇠, ⇠] is forward invariant for this closed-loop system
for any ⇠ 2 R2

�0 satisfying 1
2 ⇠1/⇠2

5
2 .

Now, we develop a mathematical framework for reachability
analysis of the learning-based closed-loop system (5). Given
an open-loop system of the form (1), we use approaches
developed in Section IV-B to construct an inclusion function

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 9

Fo =
h
Fo

F
o

i
: T 2n

�0 ⇥ T
2p
�0 ⇥ T

2q
�0 ! T

2n
�0 for the open-loop

vector field f . We also assume that we have access to a neural
network inclusion function N as developed in Section IV-D.
We construct two classes of inclusion functions for the closed-
loop vector field f

c in (5).

A. Interconnection-based approach
In the first approach, which we refer to as interconnection-

based approach, we obtain the closed-loop inclusion function
from a feedback interconnection of the open-loop embedding
system and the neural network inclusion function.

Theorem 2 (Closed-loop interconnection-based inclusion
function). Consider the open-loop system (3) with an inclusion
function Fo and a neural network controller of the form (4)
with a [y, by]-localized inclusion function N[y,by] =

h
N[y,by]

N[y,by]

i
.

Then, the map Fcon
[y,by] : T

2n
�0 ⇥ T

2q
�0 ! T

2n
�0 defined by

Fcon
[y,by](x, bx,w, bw) = Fo(x, bx, ⇠, b⇠, w, bw)

F
con
[y,by](x, bx,w, bw) = F

o
(x, bx, ⌘, b⌘, w, bw) (15)

is a [y, by]⇥Rq-localized inclusion function for the closed-loop
vector field f

c, where

⇠ = N[y,by](x, bx), b⇠ = N[y,by](x, bx),
⌘ = N[y,by](x, bx), b⌘ = N[y,by](x, bx).

Proof. Let z 2 [x, bx] ✓ [y, by] and v 2 [w, bw]. Since
N[y,by] =

h
N[y,by]

N[y,by]

i
is a [y, by]-localized inclusion function for the

neural network controller N , we have N[y,by](x, bx) N(z)
N[y,by](x, bx). Therefore, we can compute Fcon

[y,by](x, bx,w, bw) =

Fo(x, bx, ⇠, b⇠, w, bw) f(z,N(z), v) = f
c(z, v), where the

second inequality holds because Fo is an inclusion function
for the open-loop vector field f . Similarly, one can show
that F

con
[y,by](x, bx,w, bw) � f

c(z, v). This implies that Fcon
[y,by] is

a [y, by]-localized inclusion function for f c.

B. Interaction-based approach
The second approach, which we refer to as interaction-

based approach, uses a Jacobian-based cornered inclusion
function for the open-loop system and an affine neural network
bound to capture the first order interaction between the neural
network controller and the system.

Theorem 3 (Closed-loop interaction-based inclusion func-
tion). Consider the closed-loop system (5) and assume the
open-loop vector field f is continuously differentiable and
the neural network controller (4) satisfies affine bounds of
the form (11) on the interval [y, by]. Assume that, for every
z 2 [x, bx] ✓ [y, by], every ⇠ 2 [u, bu], and every ⌘ 2 [w, bw],

Dzf(z, ⇠, ⌘) 2 [J [x,bx], J [x,bx]],

D⇠f(z, ⇠, ⌘) 2 [J [u,bu], J [u,bu]],

D⌘f(z, ⇠, ⌘) 2 [J [w, bw], J [w, bw]]. (16)

Then, the map Fact
[y,by] : T

2n
�0 ⇥ T

2q
�0 ! T

2n
�0 defined by

Fact
[y,by](x, bx,w, bw) =

[H]+�J [x,bx] [H]�

[H]��J [x,bx] [H]+

�
[xbx] + L [wbw] +Q, (17)

is a [y, by]⇥Rq-localized inclusion function for the closed-loop
vector field f

c, where

H = J [x,bx] + [J [u,bu]]
+
C(y, by) + [J [u,bu]]

�
C(y, by)

H = J [x,bx] + [J [u,bu]]
+
C(y, by) + [J [u,bu]]

�
C(y, by),

L =

�[J [w, bw]]

� [J [w, bw]]
�

�[J [w, bw]]
+ [J [w, bw]]

+

�
,

Q =

�J [u,bu]u+[J [u,bu]]

+
d(y,by)+[J [u,bu]]

�
d(y,by)+f(x,u,w)

�J [u,bu]u+[J [u,bu]]
+
d(y,by)+[J [u,bu]]

�
d(y,by)+f(x,u,w)

�
.

Proof. Let z 2 [x, bx] and ⌘ 2 [w, bw]. Since f is continuously
differentiable, the fundamental theorem of Calculus gives

f
c(z, ⌘) = f(z,N(z), ⌘) = f(x, u, w) +M(z, u, w)(z � x)

+ P (z, u, w)(N(z)� u) +R(z, ⌘, w)(⌘ � w),

where M(z, u, w) =
R 1
0 Dxf(⌧z + (1 � ⌧)x, u, w)d⌧ ,

P (z, u, w) =
R 1
0 Duf(z, ⌧N(z) + (1 � ⌧)u,w)d⌧ , and

R(z, ⌘, w) =
R 1
0 Dwf(z,N(z), ⌧⌘ + (1 � ⌧)w)d⌧ . Using the

bounds (16), we get M(z, u, w) � J [x,bx], P (z, u, w) � J [u,bu],
and R(z, ⌘, w) � J [w, bw]. Moreover, we have N(z)� u � 0p.
Therefore, using the affine bounds (11) for the neural network,
P (z, u, w)(N(z) � u) � [P (z, u, w)]+(C(y, by)z + d(y, by) �
u)+[P (z, u, w)]�(C(y, by)z+d(y, by)�u). Using the fact that
z � x � 0n and ⌘ � w � 0q , we have

f
c(z, ⌘) � f(x, u, w) +M(z, u, w)(z � x)

+ [P (z, u, w)]+(C(y, by)z + d(y, by)� u)

+ [P (z, u, w)]�(C(y, by)z + d(y, by)� u)

+R(z, ⌘, w)(⌘ � w)

� Hz � J [x,bx]x+ J [w, bw]⌘ � J [w, bw]w

+ [J [w, bw]]
+
d(y, by) + [J [w, bw]]

�
d(y, by) + f(x, u, w),

where the second inequality follows from the Jacobian bounds.
Now, we note that x z bx and w ⌘ bw and
therefore Hz � [H]+x+ [H]+bx and J [w, bw]⌘ � [J [w, bw]]

+
w+

[J [w, bw]]
� bw. As a result, we get

f
c(z, ⌘) � [H]+x+ [H]�bx� J [x,bx]x� [J [w, bw]]

�
w

+ [J [w, bw]]
� bw + [J [w, bw]]

+
d(y, by) + [J [w, bw]]

�
d(y, by)

+ f(x, u, w).

This implies that f c(z, ⌘) � Fcon
[y,by](x, bx,w, bw). Similarly, one

can show that f c(z, ⌘) F
con
[y,by](x, bx,w, bw).

Remark 5.
(i) (Jacobian-based cornered inclusion function): Theorem 3

provides a localized inclusion function for the closed-
loop vector field f

c using the Jacobian-based cornered
inclusion function (as in Proposition 1) for the corner
point (x, u, w). First, one can obtain different but similar
localized inclusion functions using Taylor expansion of
f around other corner points such as (bx, u, w), (bx, bu,w),
etc. Our numerical results show that, in some cases,
considering a few corner points and combining the re-
sulting localized inclusion functions using Proposition 4
significantly reduces conservatism at low computational

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

expense. Second, as it is clear from the proof of Theo-
rem 3, the Jacobian-based cornered inclusion function is
particularly well-suited for integrating the neural network
bounds into the closed-loop inclusion function and for
studying the interaction between the system and the
neural network controller.

(ii) (Mixed Jacobian-based inclusion functions): Theorem 3
uses the Jacobian-based cornered inclusion function (as in
Proposition 1) for the open-loop vector field f . Alterna-
tively, one can use the mixed Jacobian-based cornered
inclusion function (as in Proposition 2) for the open-
loop vector f and obtain a different class of inclu-
sion functions for f

c. This class of closed-loop inclu-
sion functions can be obtained from (17) by replacing
J [x,bx], J [x,bx], J [u,bu], J [u,bu], J [w, bw], and J [w, bw] with their
counterparts M [x,bx],M [x,bx],M [u,bu],M [u,bu],M [w, bw], and
M [w, bw] as defined in Proposition 2 and is demonstrated in
the numerical experiments below. Our numerical results
show that, in most cases, mixed Jacobian-based cornered
inclusion functions significantly reduces the conservatism
of the over-approximation as compared to their non-
mixed counterparts.

(iii) (Comparison): The interconnection-based approach pro-
vides a general and computationally efficient framework
for constructing closed-loop inclusion functions. This
approach can be applied using any inclusion function
for the open-loop system and any inclusion function of
the form (10) for the neural network. The computational
efficiency of the interconnection-based approach is a
direct consequence of its compositional structure. On the
other hand, the interaction-based approach fully captures
the first-order interaction between the system and the
neural networks using a Jacobian-based decomposition.
However, this approach requires affine bounds of the
form (11) for the neural network and Jacobian bounds
of the form (16) for the open-loop system. As a result,
computing the closed-loop inclusion functions using the
interaction-based approach is generally more computa-
tionally expensive.

When the open-loop system (3) is linear, one can signifi-
cantly simplify the expression for the closed-loop inclusion
functions obtained from the interconnection-based and the
interaction-based approaches.

Corollary 1 (Linear open-loop systems). Consider the closed-
loop system (5) and assume that the open-loop vector field f

is linear with the form f(x, u, w) = Ax + Bu +Dw, where
A 2 Rn⇥n, B 2 Rn⇥p and D 2 Rn⇥q . Then the following
statements hold:

(i) using the minimal inclusion function for the open-loop
vector field f and affine neural network inclusion func-
tions of the form (12), the closed-loop inclusion function
Fcon
[y,by] defined in (15) is given by:

Fcon
[y,by] =

[A]++[[B]+C+[B]�C]+ [A]�+[[B]+C+[B]�C]�

[A]�+[[B]+C+[B]�C]� [A]++[[B]+C+[B]�C]+

�
[xbx]

+
h
[D]+ [D]�

[D]� [D]+

i
[wbw] +

h
[B]+d+[B]�d

[B]�d+[B]+d

i
. (18)

(ii) the inclusion function Fact
[y,by] defined in (17) is given by

Fact
[y,by] =

h
[A+B

+
C+B

�
C]+ [A+B

+
C+B

�
C]�

[A+B
+
C+B

�
C]� [A+B

+
C+B

�
C]+

i
[xbx]

+
h
[D]+ [D]�

[D]� [D]+

i
[wbw] +

h
[B]+d+[B]�d

[B]�d+[B]+d

i
. (19)

Proof. Regarding part (i), it is easy to see that the minimal
inclusion function of the linear open-loop vector field f is

Fo(x, bx, u, bu,w, bw) =
h
[A]+ [A]�

[A]� [A]+

i
[xbx] +

h
[B]+ [B]�

[B]� [B]+

i
[ubu]

+
h
[D]+ [D]�

[D]� [D]+

i
[wbw] .

One can then replace the above minimal inclusion function and
the affine bounds (12) into equation (15) and use Theorem 2
to obtain the result. Regarding part (ii), we use the bounds
J [x,bx] = J [x,bx] = A, J [u,bu] = J [u,bu] = B, and J [w, bw] =
J [w, bw] = D in Theorem 3. Thus, using the notation of
Theorem 3, we compute

H = A+ [B]+C(y, by) + [B]�C(y, by),
H = A+ [B]+C(y, by) + [B]�C(y, by),

L =
h
�[D]� [D]�

�[D]+ [D]+

i
, Q =

h
Ax+Dw+[B]+d(y,by)+[B]�d(y,by)
Ax+Dw+[B]+d(y,by)+[B]�d(y,by)

i
.

The result then follows by replacing the above terms into
equation (17) and using Theorem 3.

Remark 6 (The role of interactions). The closed-form ex-
pressions (18) and (19) demonstrate the difference between
the interconnection-based and the interaction-based approach.
In both cases, one can interpret the term A as the effect
of open-loop dynamics and the terms B

+
C + B

�
C and

B
+
C+B

�
C as the effect of the neural network controller. The

interconnection-based approach considers the interconnection
of the cooperative and competitive effect of the open-loop
system and the neural network controller, separately. This
leads to the terms [A]±+[B+

C+B
�
C]± and [A]±+[B+

C+
B

�
C]±. The interaction-based approach instead considers

the interaction between the open-loop system and the neural
network controller via the terms A + B

+
C + B

�
C and

A + B
+
C + B

�
C and then the cooperative and competitive

effect of these interactions are separated.

C. Interval Reachability of Closed-loop Systems
Our culminating conclusion is that, by using the

interconnection-based and the interaction-based inclusion
functions, we obtain computationally efficient over-
approximations of reachable sets of the closed-loop system.

Theorem 4 (Reachability of closed-loop system). Let c 2

{con, act}, the disturbance set W = [w,w], and the initial
set X0 = [x0, x0]. For the closed-loop dynamical system (5)
with t 7!

h
x
c(t)

x
c(t)

i
being the trajectory of the embedding system

ẋi =
⇣
Fc
[x,bx](x, bx[i:x], w, w)

⌘

i

,

ḃxi =
⇣
F
c
[x,bx](x[i:bx], bx,w,w)

⌘

i

, (20)

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 11

for every i 2 {1, . . . , n}, starting from
⇥
x0
x0

⇤
, the following

statements hold, for every t � 0:
(i) Rfc(t, [x0, x0], [w,w]) ✓ [xc(t), xc(t)];

(ii) moreover, if the open-loop system (3) is linear, then

[xact(t), xact(t)] ✓ [xcon(t), xcon(t)].

Proof. Regarding part (i), using Theorem 2 and Theorem 3, we
show that Fcon

[y,by] and Fact
[y,by] are [y, by]⇥ Rq-localized inclusion

functions for the closed-loop vector field f
c. Thus, one can

use the localized version of Proposition 5 (see Remark 4(i))
with y = x and by = bx to obtain the result. Regarding
part (ii), for linear open-loop systems, using Theorem 1,
the embedding system associated to the interconnection-based
inclusion function has the following form:

d

dt
[xbx] =

h
[A]M+[B+

C+B
�
C]M [A]nM+[B+

C+B
�
C]nM

[A]nM+[B+
C+B

�
C]nM [A]M+[B+

C+B
�
C]M

i
[xbx]

+
h
[D]+ [D]�

[D]� [D]+

i
[wbw] +

h
[B]+d+[B]�d

[B]�d+[B]+d

i

= Fcon(x, bx,w, bw), (21)

and the embedding system associated to the interaction-based
inclusion function has the following form:

d

dt
[xbx] =

h
[A+[B]+C+[B]�C]M [A+[B]+C+[B]�C]nM

[A+[B]+C+[B]�C]nM [A+[B]+C+[B]�C]M

i
[xbx]

+
h
[D]+ [D]�

[D]� [D]+

i
[wbw] +

h
[B]+d+[B]�d

[B]�d+[B]+d

i

= Fact(x, bx,w, bw). (22)

It is easy to check that both embedding systems (21) and (22)
are continuous-time monotone. Moreover, we have
⇥
A+ [B]+C + [B]�C

⇤M
 [A]M +

⇥
[B]+C + [B]�C

⇤M
,

⇥
A+ [B]+C + [B]�C

⇤nM
� [A]nM +

⇥
[B]+C + [B]�C

⇤nM
.

Therefore, for every x bx, we have
⇥
A+ [B]+C + [B]�C

⇤M
x+

⇥
A+ [B]+C + [B]�C

⇤nM bx
� ([A]M + [[B]+C + [B]�C]M)x

+ ([A]nM + [[B]+C + [B]�C]nM)bx.

This implies that, Fcon(x, bx,w, bw) SE Fact(x, bx,w, bw), for
every x bx and every w bw. Now, we can use the classical
monotone comparison Lemma [47, Theorem 3.8.1] to obtainh
x
con(t)

x
con(t)

i
SE

h
x
act(t)

x
act(t)

i
for every t 2 R�0. As a result, we get

[xact(t), xact(t)] ✓ [xcon(t), xcon(t)], for every t 2 R�0.

Remark 7. The interval reachability framework developed in
Sections V and VI has the following unique features.

(i) (Computational efficiency): from a computational per-
spective, the framework presented in Theorem 4 consists
of two main ingredients: (i) the neural network verifica-
tion algorithm for computing the inclusion function for
the neural network (either in the form (10) or in the
form (12)), and (ii) integration of a single trajectory of
the embedding system (13). Part (i) includes querying
the neural network verification once per integration step
and its runtime depends on the computational complex-
ity of the associated algorithm. The runtime of part
(ii) depends on the integration method and the form

of the open-loop decomposition function F. Since our
approach only requires integration of one trajectory of
the embedding system, it is generally computationally
efficient. In Section VII-D, we use a vehicle platooning
example to demonstrate our approach’s scalability to large
dimensions where existing functional approaches suffer.

(ii) (Nonlinearity of the dynamics): For linear open-loop
systems, a straightforward computation shows that The-
orem 4 with c = act coincides with [30, Lemma IV.3]
with p = 1 and q = 1. Our interaction-aware inclusion
function generalizes this efficient approach to locally
Lipschitz nonlinear systems.

(iii) (Flexibility of neural network verifiers): The functional
approaches from POLAR [35] and JuliaReach [36] are
designed with specific neural network bounding algo-
rithms. On the other hand, our framework can substi-
tute arbitrary neural network interval verifiers for the
interconnection-based approach, and functional linear
bounds for the interaction-based approach.

VII. NUMERICAL EXPERIMENTS

We demonstrate the effectiveness of our reachability anal-
ysis, implemented as an open-source Python toolbox called
ReachMM2, using numerical experiments3 for (i) a nonlinear
bicycle model, (ii) the linear double integrator, (iii) several
existing benchmarks in the literature, and (iv) a platoon of
double integrator vehicles moving in a plane. We first briefly
mention several algorithmic techniques that are implemented
in the ReachMM toolbox and are used in several examples
below to broaden the applicability and to improve the accuracy
of our reachable set over-approximations.

Partitioning: The computational efficiency of our method
makes it well-suited for partitioning to reduce compounding
over-approximation error caused by the wrapping effect [10,
Section 2.2.4]. In Section VII-B, we apply the partitioning
methods proposed in [38], [51] to improve accuracy.

Redundant Variable Refinement: We accommodate a tech-
nique introduced in [13] to refine interval over-approximations
of reachable sets using redundant state variables of the form
y = Ax+b for some A 2 Rm⇥n and b 2 Rm. By augmenting
the dynamical system (5) with the additional dynamics ẏ =
Aẋ, we create a new dynamical system with the new states
z = [xy] 2 Rn+m and the affine constraints Mz = b where
M =

⇥
�A Im

⇤
2 Rm⇥(n+m). Following [13], we use the

interval bounds on z to improve the accuracy of the interval
bounds on x. We apply this technique in Section VII-C for
the TORA benchmark.

Zero-order hold control: In some applications, we wish to
explicitly account for the practical restriction that the control
u(t) = N(x(t)) cannot be continuously updated and, instead,
the control must be implemented via, e.g., a zero-order hold
strategy between sampling instances. It is straightforward
to extend the interconnection-based approach to be able to

2https://github.com/gtfactslab/ReachMM_TAC2023
3All the experiments are performed using an AMD Ryzen 5 5600X CPU

and 32 GB of RAM. Unless otherwise specified, runtimes are averaged over
100 runs, with mean and standard deviations reported.

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

capture the zero-order hold policy [51]. Adopting the zero-
order hold policy in the interaction-based approach requires
over-bounding the error and we omit this calculation for the
sake of brevity. We refer to our code for details of this
adaptation. We use this framework in Section VII-C.

Implementation: Our current implementation for all ex-
amples is in standard Python. For the interconnection-based
approach, the inclusion function for the open-loop system is
the natural inclusion functions computed using our package
npinterval [41]. For neural networks, the affine inclusion
functions are obtained from CROWN [25] and computed
using autoLiRPA [52]. Further performance improvements
of ReachMM are likely possible by, e.g., implementing as
compiled code, and are subject of ongoing and future work.

A. Nonlinear bicycle model

In the first experiment, we compare the interconnection-
based and the interaction-based approach. Consider the non-
linear dynamics of a bicycle adopted from [53]:

ṗx = v cos(�+ �(u2)) �̇ =
v

`r
sin(�(u2))

ṗy = v sin(�+ �(u2)) v̇ = u1 (23)

where [px, py]> 2 R2 is the displacement of the center of mass
in the x � y plane, � 2 [�⇡,⇡) is the heading angle in the
plane, and v 2 R�0 is the speed of the center of mass. Control
input u1 is the applied force, input u2 is the angle of the front
wheel, and �(u2) = arctan

⇣
`f

`f+`r
tan(u2)

⌘
is the slip slide

angle where the parameter `f (`r) is the distance between the
center of mass and the front (rear) wheel. In this example,
for the sake of simplicity, we set `f = `r = 1. Let x =
[px, py,�, v]> and u = [u1, u2]>. We apply the neural network
controller (4 ⇥ 100 ⇥ 100 ⇥ 2, ReLU activations) defined in
[38], which was trained to mimic an MPC that stabilizes the
vehicle to the origin while avoiding a circular obstacle centered
at (4, 4) with a radius of 2. The dynamics are simulated using
Euler integration with a step size of 0.125. In Figure 3, we
compare the accuracy and runtime of different reachability
approaches for the bicycle model.

Discussion: Figure 3 shows that the naive input-output
approach is the fastest approach with low accuracy of over-
approximation. Using the interconnection-based approach with
Fcon improves the accuracy with a slight increase in the
runtime. In comparison, the interaction-based approach with
the Jacobian-based cornered inclusion function Fact is notably
slower due to the computation of Jacobian bounds (16) in
this approach. Over short time horizons, the interaction-based
approach is more accurate, however, its accuracy deteriorates
for longer horizons, which can be attributed to the decrease
in accuracy of the Jacobian bounds (16). As has been shown
in Proposition 4, the accuracy of the intersection Fcon

^ Fact

is better than both Fcon and Fact. Finally, using the mixed
Jacobian-based cornered inclusion function (cf. Remark 5(ii))
significantly improves the accuracy of the interaction-based
approach with little effect on its runtime.

Fig. 3. Accuracy and runtime comparison between different reachability
approaches for the bicycle model (23) from the initial set [7.95, 8.05]⇥
[6.95, 7.05] ⇥ [�2⇡/3 � 0.01,�2⇡/3 + 0.01] ⇥ [1.99, 2.01] for
the period t 2 [0, 1.5]: (a) a naive input-output approach combining
the natural inclusion function for the open-loop dynamics and the
affine inclusion function for the neural network, (b) the interconnection-
based approach with the closed-loop inclusion function Fcon defined
in (15) constructed from the natural inclusion function for the open
loop dynamics and affine inclusion function for the neural network, (c)
the interaction-based approach with Jacobian-based cornered inclusion
function Fact defined in (17), (d) the intersection of the interconnection-
based inclusion and interaction-based approach Fcon ^ Fact, (e)
the interaction-based approach with mixed states Jacobian-based cor-
nered inclusion function defined in (17) and Remark 5(ii), and (f) the
interaction-based approach with mixed states and control Jacobian-
based cornered inclusion function defined (17) and Remark 5(ii). The
blue boxes are hyper-rectangular over-approximation of reachable sets,
100 simulated trajectories of the system are shown in red, and the
salmon colored region represents a circular obstacle.

B. Double Integrator Model
In the second experiment, we focus on reachability of

linear open-loop systems with neural network controllers. We
study the accuracy and efficiency of the interaction-based
approach (19) for the double integrator benchmark system

x(t+ 1) =

1 1
0 1

�
x(t) +

0.5
1

�
u(t). (24)

For this example, we use the discrete-time version of our
framework as derived in [51, Section VII.B]. We apply the
neural network controller (2⇥ 10⇥ 5⇥ 1, ReLU activations)
defined in [30]. We consider the interaction-based approach
with the closed-loop inclusion function Fact defined in (19),
with the contraction-guided adaptive partitioning algorithm
in [51] to improve its accuracy. Additionally, we compare our
proposed ReachMM to state-of-the-art algorithms for linear
discrete-time systems: ReachLP [30] with uniform partitioning
(ReachLP-Unif) and greedy simulation guided partitioning
(ReachLP-GSG), and ReachLipBnB [54] (branch-and-bound
using LipSDP [24]). Each algorithm is run with two different
sets of hyper-parameters, aiming to compare their perfor-
mances across various regimes. The setup for ReachMM is
(", Dp, DN)4; ReachLP-Unif is # initial partitions, ReachLP-
GSG is # of total propogator calls, ReachLipBnB is ". The

4Dp defines the depth of the partition tree, DN defines how the depth of
the partitions on the neural network, and " describes the width at which to
adaptively partition an interval. See [51] for the full details.

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 13

Fig. 4. The over-approximated reachable sets of the closed-loop double
integrator model (24) are compared for three different algorithms on two
different runtime regimes, for the initial set [2.5, 3]⇥[�0.25, 0.25] and
final time T = 5. The experiment setup and performances are reported
in Table II. 200 true trajectories are shown in red. The horizontal axis is
x1 and the vertical axis is x2.

results are illustrated in Figure 4 and the runtime comparisons
are provided in Table II.

Method Setup Runtime (s) Area
ReachMM (0.1, 3, 1) 0.103± 0.003 6.2 · 10�2

(0.05, 6, 2) 1.762± 0.026 9.9 · 10�3

ReachLP-Unif 4 0.212± 0.002 1.5 · 10�1

16 3.149± 0.004 1.0 · 10�2

ReachLP-GSG 55 0.913± 0.031 5.3 · 10�1

205 2.164± 0.042 8.8 · 10�2

ReachLipBnB 0.1 0.956± 0.067 5.4 · 10�1

0.001 3.681± 0.100 1.2 · 10�2

TABLE II
PERFORMANCE OF THEOREM 3 FOR THE DISCRETE-TIME DOUBLE

INTEGRATOR MODEL.

Discussion: Figure 4 and Table II show that, when the
open-loop system is linear, our interaction-based approach
(Corollary 1(ii)) combined with a suitable partitioning scheme
beats state-of-the-art approaches in both accuracy and runtime.

C. ARCH-COMP Benchmarks
In the third experiment, we analyze three of the benchmarks

from ARCH-COMP22 [55].
Adaptive Cruise Control (ACC): We consider the Adaptive

Cruise Control benchmark from [55, Equation (1)]. The neural
network controller (5 ⇥ 20 ⇥ 20 ⇥ 20 ⇥ 20 ⇥ 20 ⇥ 1, ReLU
activations) with the input (xlead � xego, vlead � vego, alead �

aego, vset, Tgap)> 2 R5 is applied with a zero-order holding of
0.1 seconds [55]. Our goal is to verify that from the initial set
X0 = [90, 110]⇥[32, 32.2]⇥[0, 0]⇥[10, 11]⇥[30, 30.2]⇥[0, 0],
the collision specification

xlead � xego � Ddefault + Tgapxego

is never violated in the next 5 seconds, where Ddefault = 10
and Tgap = 1.4s. To verify the specification, we define Drel =
xlead � xego and Dsafe = Ddefault + Tgapxego and ensure that
Drel �Dsafe � 0 for the given time horizon.

We consider the interconnection-based approach with the
closed-loop inclusion function Fcon defined in (15) constructed
from the natural inclusion function for open-loop system and
an affine inclusion function for the neural network. We use this

Fig. 5. The interval estimates of the safety specifications for the
Adaptive Cruise Control benchmark obtained from the inclusion function
Fcon. The upper bound and lower bound on Drel are shown in blue and
the upper and lower bounds on Dsafe are shown in red. Our approach
ensures that Dred � Dsafe for t 2 [0, 5].

interconnection-based inclusion function and Euler integration
with a step-size of 0.01 to compute upper and lower bounds
on the states of the system starting from the initial set X0.
These bounds are then used to obtain upper and lower bounds
on Drel and Dsafe. The results are shown in Figure 5 and
the comparison between the runtime of our approach with
POLAR [35] and JuliaReach [36] is provided in Table III.

2D Spacecraft Docking: We consider the 2D spacecraft
docking model [55, Equation (13)]. The neural network con-
troller (4 ⇥ 4 ⇥ 256 ⇥ 256 ⇥ 4 ⇥ 2, tanh activations) with a
zero-order holding of 1 second [55]. The goal is to verify that
given an initial state set, the safety specification

(ṡ2
x
+ ṡ

2
x
)

1
2 0.2 + 2n(s2

x
+ s

2
y
)

1
2 (25)

is never violated in the next 40 seconds. We define HL =
(ṡ2

x
+ ṡ

2
x
)

1
2 and HR = 0.2 + 2n(s2

x
+ s

2
y
)

1
2 and our goal is to

check that HL HR for the next 40 seconds.
We consider the interconnection-based approach with the

closed-loop inclusion function Fcon defined in (15) constructed
from the natural inclusion function for the open-loop system
and an affine inclusion function for the neural network. We use
the closed-loop inclusion function Fcon and Euler integration
with a step-size 0.1 to obtain upper and lower bounds on the
states of the system starting from four different initial sets
X

i

0 for i 2 {0, 1, 2, 3} as shown in Figure 6. These bounds
are then used to provide upper and lower bounds on HL and
HR. The results are shown in Figure 6 and the comparison
between the runtime of our approach with POLAR [35] and
JuliaReach [36] is provided in Table III.

Sherlock-Benchmark-9 (TORA): We consider the transla-
tional oscillations by a rotational actuator (TORA) bench-
mark from [55, Equation (2)]. The neural network controller
(4 ⇥ 20 ⇥ 20 ⇥ 20 ⇥ 1 with ReLU activation functions and
an additional layer with tanh activation function) is applied
with a zero-order holding of 0.5 seconds [55]. The goal is
to verify whether the system reaches the region [�0.1, 0.2]⇥
[�0.9,�0.6]⇥R2 from the initial set X0 = [�0.77,�0.75]⇥
[�0.45,�0.43]⇥[0.51, 0.54]⇥[�0.3,�0.28] within 5 seconds.

We add the affine redundant variables y1 = x1 + x2

and y2 = x1 � x2 and analyze the augmented system in
z = (x1, x2, y1, y2)>. We consider the interaction-based
approach with the mixed Jacobian-based cornered inclusion

14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Fig. 6. The interval estimates of the safety specification for the
2D Spacecraft Docking benchmark obtained from the interconnection-
based inclusion function Fcon are pictured for four different initial sets
{X i

0}3
i=0. The upper and lower bounds on HL are shown in red and

the upper and lower bounds on HR are shown in blue. Our approach
verifies that HL HR for t 2 [0, 40].

Fig. 7. The reachable set for the TORA benchmark is shown on the x1-
x2 plane. The goal set is pictured in green, and 100 true trajectories of
the system are pictured in red. Left: Every tenth over-approximation of
the reachable set is pictured in blue. Right: The plot is zoomed into the
goal set, and all over-approximations of the reachable set are shown in
blue. We numerically verify that the final reachable set is fully contained
inside of the goal region.

function Fact as defined in (17) constructed for four corners
(z, u), (z, bu), (bz, u), (bz, bu) (cf. Remark 5). We use the inter-
section of the two inclusion functions Fcon

^ Fact with Euler
integration step size of 0.005 to provide over-approximations
of reachable sets of the system starting from X0. The results
are shown in Figure 7 and the comparison between the runtime
of our approach with POLAR [35] and JuliaReach [36] is
provided in Table III.

System ReachMM POLAR JuliaReach
ACC 0.398± 0.010 1.388± 0.022 0.255

Docking 0.243± 0.004 43.696± 0.141 N/A5

TORA 5.586± 0.029 0.139± 0.008 0.690

TABLE III
SUMMARY OF RUNTIMES (S) FROM THE ARCH-COMP BENCHMARKS.

Discussion: We showed that for verification of safety
specification on a selected number of examples from ARCH-
COMP [55], the runtime of our approach is comparable with
the state-of-the-art methods POLAR [35] and JuliaReach [37].
On the other benchmarks in [55], our method is unable to
verify the desired specification at this time, due to their large

5JuliaReach did not attempt this specification.

N (units) # of states Fcon Fact POLAR JuliaReach
1 4 0.297 0.635 9.352 0.224
4 16 0.399 1.369 14.182 12.579
9 36 0.574 3.144 43.428 59.929

20 80 0.999 9.737 316.337 �6

50 200 2.420 46.426 4256.435 �

TABLE IV
THE RUNTIMES (S) FOR THE PLATOONING BENCHMARK.

time horizons and excessive over-approximation buildup. In
the next section, however, we show that our interconnection-
based and interaction-based methods enjoy better scalability
compared to POLAR and JuliaReach.

D. Vehicle Platooning
Finally, we investigate the scalability of our method. We

consider a platoon of N vehicles V = {Vj}
N

j=1, each with the
two-dimensional double integrator dynamics

ṗ
j

x
= v

j

x
, v̇

j

x
= �(uj

x
) + w

j

x
,

ṗ
j

y
= v

j

y
, v̇

j

y
= �(uj

y
) + w

j

y
, (26)

where p
j = (pj

x
, p

j

y
) 2 R2 is the displacement of the center of

mass of Vj , vj = (vj
x
, v

j

y
) 2 R2 is the velocity of the center

of mass of Vj , (uj

x
, u

j

y
) 2 R2 are desired acceleration inputs

limited by the softmax operator �(u) = ulim tanh(u/ulim)
with ulim = 5, and w

j

x
, w

j

y
⇠ U([�0.001, 0.001]) are uni-

formly distributed disturbances. We consider a leader-follower
structure for the system, where the first vehicle V1 chooses
its control u = (u1

x
, u

1
y
) as the output of a neural network

(4 ⇥ 100 ⇥ 100 ⇥ 2, ReLU activations), and the rest of the
platoon {Vj}

N

j=2 applies a PD tracking control input

u
j

d = kp

p
j�1
d � p

j

d � r
v
j�1
d

kvj�1k2

!
+ kv(v

j�1
d � v

j

d), (27)

for each d 2 {x, y} with kp = kv = 5 and r = 0.5. The neural
network was trained using data from an offline MPC policy
for the leader only (N = 1). The offline policy minimized a
quadratic cost stabilizing to the origin while avoiding a circular
obstacle centered at (4, 4) with radius 2.25, implemented as a
hard constraint with 33% padding and a slack variable.

We consider the interconnection-based approach with
closed-loop inclusion function Fcon defined in (15) con-
structed from the natural inclusion function for open-loop
system. We also consider the interaction-based approach
with the closed-loop mixed Jacobian-based cornered inclusion
function Fact as defined in (17) constructed for four cor-
ners (x, u), (u, bu), (bx, u), (bx, bu) (cf. Remark 5). We perform
reachability analysis for platoons of N vehicles with N 2

{1, 4, 9, 20, 50}. For jth vehicle in the platoon, we compute the
reachable sets for the time frame t 2 [0, 1.5] using the closed-
loop inclusion functions Fcon and Fact starting from the initial
set ([7.225+0.5(j�1) cos(⇡/3), 7.275+0.5(j�1) cos(⇡/3)]⇥
[5.725 + 0.5(j � 1) sin(⇡/3), 5.775 + 0.5(j � 1) sin(⇡/3)] ⇥
[�0.5,�0.5] ⇥ [�5,�5]). All integration is performed using
Euler integration with a step size of 0.0125. Figure 8 visualizes

6No matter the choice of hyper-parameter, the package failed, either 1)
citing a maximum number of validation steps reached or 2) timing out.

S.JAFARPOUR et al.: EFFICIENT INTERACTION-AWARE INTERVAL ANALYSIS OF NEURAL NETWORK FEEDBACK LOOPS 15

Fig. 8. Left: The over-approximation of the reachable sets computed
using Fcon for each individual unit in the platooning example with N =
9 are shown on px-py planes, with the circular obstacle in salmon.
Right: The over-approximation of the reachable sets computed using
Fact for each individual unit in the platooning example with N = 9 are
shown on px-py planes, with the circular obstacle in salmon.

the result for N = 9. Runtimes of our approach as well as
POLAR [35] and JuliaReach [37] for platoons of varying size
are reported in Table IV. Note that the implementations in
POLAR and JuliaReach omit the disturbances w

j

d and the
softmax � in equation (26).

Discussion: This experiment demonstrates one of the
key features of our interval analysis framework—its scal-
ability to large-scale systems. In general, Figure 8 shows
how Fact outperforms Fcon in accuracy of the reachable set
over-approximation. However, Table IV shows how Fcon out-
performs Fact in terms of scalability with respect to state
dimensions. Moreover, both Fcon and Fact demonstrate better
runtime scalability than POLAR and JuliaReach.

VIII. CONCLUSIONS

We present a framework based on interval analysis for
safety verification of neural network controlled systems. The
main idea is to embed the closed-loop system into a higher
dimensional system whose over-approximation of reachable
sets can be easily computed using its extreme trajectory. Using
an inclusion function of the open-loop system and interval
bounds for neural networks, we proposed an interconnection-
based approach and an interaction-based approach for con-
structing the closed-loop embedding system. We show how
these approaches can capture the interactions between the
nonlinear plant and the neural network controllers and we
provide several numerical experiments comparing them with
the state-of-the-art algorithms in the literature.

REFERENCES

[1] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, p. 528–535.

[2] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 2118–2124.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[4] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer
et al., “Algorithms for verifying deep neural networks,” Foundations and
Trends® in Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.

[5] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 56th Conference
on Decision and Control (CDC), 2017, pp. 2242–2253.

[6] I. Mitchell and C. J. Tomlin, “Level set methods for computation in
hybrid systems,” in Hybrid Systems: Computation and Control (HSCC),
2000, pp. 310–323.

[7] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability
analysis,” in Proceedings of 3rd International Conference on Hybrid
Systems: Computation and Control (HSCC), 2000, pp. 202–214.

[8] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Proceedings of the 8th International Conference on Hybrid Systems:
Computation and Control (HSCC), 2005, p. 291–305.

[9] X. Chen and S. Sankaranarayanan, “Reachability analysis for cyber-
physical systems: Are we there yet?” in NASA Formal Methods: 14th
International Symposium, NFM 2022, Pasadena, CA, USA, May 24–27,
2022, Proceedings. Springer, 2022, pp. 109–130.

[10] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter, Applied Interval Analysis.
Springer London, 2001.

[11] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of linear
systems with uncertain parameters and inputs,” in 2007 46th IEEE
Conference on Decision and Control, 2007, pp. 726–732.

[12] J. K. Scott and P. I. Barton, “Bounds on the reachable sets of nonlinear
control systems,” Automatica, vol. 49, no. 1, pp. 93–100, 2013.

[13] K. Shen and J. K. Scott, “Rapid and accurate reachability analysis for
nonlinear dynamic systems by exploiting model redundancy,” Computers
& Chemical Engineering, vol. 106, pp. 596–608, 2017, eSCAPE-26.

[14] G. A. Enciso, H. L. Smith, and E. D. Sontag, “Nonmonotone systems
decomposable into monotone systems with negative feedback,” Journal
of Differential Equations, vol. 224, no. 1, pp. 205–227, 2006.

[15] H. L. Smith, “Global stability for mixed monotone systems,” Journal
of Difference Equations and Applications, vol. 14, no. 10-11, pp. 1159–
1164, 2008.

[16] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone
systems,” in Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control, Apr. 2015, pp. 58–67.

[17] S. Coogan, “Mixed monotonicity for reachability and safety in dynami-
cal systems,” in 59th IEEE Conference on Decision and Control (CDC),
2020, pp. 5074–5085.

[18] M. Abate, M. Dutreix, and S. Coogan, “Tight decomposition functions
for continuous-time mixed-monotone systems with disturbances,” IEEE
Control Systems Letters, vol. 5, no. 1, pp. 139–144, 2021.

[19] M. Khajenejad and S. Z. Yong, “Tight remainder-form decomposition
functions with applications to constrained reachability and guaranteed
state estimation,” IEEE Transactions on Automatic Control, pp. 1–16,
2023.

[20] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Computer Aided Verification. Springer International Publishing,
2017, pp. 97–117.

[21] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient
formal safety analysis of neural networks,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, ser.
NIPS’18, 2018, p. 6369–6379.

[22] M. Mirman, T. Gehr, and M. Vechev, “Differentiable abstract interpre-
tation for provably robust neural networks,” in International Conference
on Machine Learning, vol. 80, 2018, pp. 3578–3586.

[23] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. A. Mann, and P. Kohli, “Scalable verified training
for provably robust image classification,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 4841–4850.

[24] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
vol. 67, no. 1, pp. 1–15, 2022.

[25] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation func-
tions,” in Advances in Neural Information Processing Systems, vol. 31,
2018, p. 4944–4953.

[26] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter, “Beta-crown: Efficient bound propagation with per-neuron split
constraints for neural network robustness verification,” Advances in
Neural Information Processing Systems, vol. 34, pp. 29 909–29 921,
2021.

[27] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “NNV: The neural network
verification tool for deep neural networks and learning-enabled cyber-

16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

physical systems,” in Computer Aided Verification. Springer Interna-
tional Publishing, 2020, pp. 3–17.

[28] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-guided ap-
proach,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 5, pp. 1821–1830, 2021.

[29] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,”
in Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, 2019, p. 157–168.

[30] M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis
of neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953,
2021.

[31] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-SDP: Reach-
ability analysis of closed-loop systems with neural network controllers
via semidefinite programming,” in 59th IEEE Conference on Decision
and Control (CDC), 2020, pp. 5929–5934.

[32] C. Sidrane, A. Maleki, A. Irfan, and M. J. Kochenderfer, “OVERT: An
algorithm for safety verification of neural network control policies for
nonlinear systems,” Journal of Machine Learning Research, vol. 23, no.
117, pp. 1–45, 2022.

[33] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “ReachNN: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[34] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in International Conference on Computer Aided
Verification. Springer, 2021, pp. 249–262.

[35] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “POLAR: A polynomial
arithmetic framework for verifying neural-network controlled systems,”
in Automated Technology for Verification and Analysis. Springer
International Publishing, 2022, pp. 414–430.

[36] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling,
“JuliaReach: a toolbox for set-based reachability,” in Proceedings of the
22nd International Conference on Hybrid Systems: Computation and
Control (HSCC), 2019, pp. 39–44.

[37] C. Schilling, M. Forets, and S. Guadalupe, “Verification of neural-
network control systems by integrating Taylor models and zonotopes,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2022,
pp. 8169–8177.

[38] S. Jafarpour, A. Harapanahalli, and S. Coogan, “Interval reachability
of nonlinear dynamical systems with neural network controllers,” in
Learning for Dynamics and Control Conference. PMLR, 2023, pp.
12–25.

[39] H. L. Smith, Monotone Dynamical Systems: An Introduction to the
Theory of Competitive and Cooperative Systems, ser. Mathematical
Surveys and Monographs. American Mathematical Society, 1995.

[40] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics, 2009.

[41] A. Harapanahalli, S. Jafarpour, and S. Coogan, “A toolbox for fast
interval arithmetic in numpy with an application to formal verification
of neural network controlled system,” in 2nd ICML Workshop on
Formal Verification of Machine Learning, 2023. [Online]. Available:
https://arxiv.org/abs/2306.15340

[42] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
p. 357–362, 2020.

[43] J.-L. Gouze and K. P. Hadeler, “Monotone flows and order intervals,”
Nonlinear World, vol. 1, no. 1, pp. 23–34, 1994.

[44] D. Guo and V. Lakshmikantham, “Coupled fixed points of nonlinear
operators with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 11, no. 5, pp. 623–632, 1987.

[45] L. Yang, O. Mickelin, and N. Ozay, “On sufficient conditions for mixed
monotonicity,” IEEE Transactions on Automatic Control, vol. 64, no. 12,
pp. 5080–5085, 2019.

[46] H. L. Smith, “The discrete dynamics of monotonically decomposable
maps,” Journal of Mathematical Biology, vol. 53, no. 4, pp. 747–758,
2006.

[47] A. N. Michel, L. Hou, and D. Liu, Stability of dynamical systems: Con-
tinuous, discontinuous, and discrete systems, ser. Systems & Control:
Foundations & Applications. Birkhäuser Boston, 2008.

[48] P.-J. Meyer, A. Devonport, and M. Arcak, “TIRA: Toolbox for interval
reachability analysis,” in Proceedings of the 22nd International Confer-
ence on Hybrid Systems: Computation and Control (HSCC), 2019, pp.
224–229.

[49] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.

[50] E. D. Sontag, “Monotone and near-monotone biochemical networks,”
Systems and synthetic biology, vol. 1, no. 2, pp. 59–87, 2007.

[51] A. Harapanahalli, S. Jafarpour, and S. Coogan, “Contraction-guided
adaptive partitioning for reachability analysis of neural network con-
trolled systems,” in 2023 62nd IEEE Conference on Decision and
Control (CDC), 2023, pp. 6044–6051.

[52] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang,
B. Kailkhura, X. Lin, and C.-J. Hsieh, “Automatic perturbation analysis
for scalable certified robustness and beyond,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1129–1141, 2020.

[53] P. Polack, F. Altche, B. d Andrea-Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” in IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 812–818.

[54] T. Entesari, S. Sharifi, and M. Fazlyab, “ReachLipBnB: A branch-and-
bound method for reachability analysis of neural autonomous systems
using lipschitz bounds,” in IEEE International Conference on Robotics
and Automation (ICRA), 2023, pp. 1003–1010.

[55] D. M. Lopez et al., “ARCH-COMP22 category report: Artificial intelli-
gence and neural network control systems (AINNCS) for continuous and
hybrid systems plants,” in Proceedings of 9th International Workshop
on Applied Verification of Continuous and Hybrid Systems (ARCH22),
ser. EPiC Series in Computing, vol. 90. EasyChair, 2022, pp. 142–184.

Saber Jafarpour (Member, IEEE) received the
Ph.D. degree from Department of Mathemat-
ics and Statistics, Queen’s University, Kingston,
ON, Canada, in 2016. He is currently a Re-
search Assistant Professor at the University of
Colorado Boulder, USA in the Department of
Electrical, Computer, and Energy Engineering.
Prior to joining CU Boulder in 2023, he was a
Postdoctoral Researcher with Georgia Institute
of Technology and with the Center for Control,
Dynamical Systems, and Computation, Univer-

sity of California, Santa Barbara, Santa Barbara. His research interests
include analysis and control of networks and learning-based systems.

Akash Harapanahalli (Graduate Student Mem-
ber, IEEE) received the B.S. degree in Computer
Engineering from the Georgia Institute of Tech-
nology, Atlanta, GA, USA in 2022. He is currently
working towards his Ph.D. in Machine Learning
and M.S. in Mathematics. His research inter-
ests include the intersection of machine learning
and control theory, with a specialty in safety for
learning-based control systems.

Samuel Coogan (Senior Member, IEEE) re-
ceived the B.S. degree in electrical engineer-
ing from the Georgia Institute of Technology,
Atlanta, GA, USA in 2010 and the M.S. and
Ph.D. degrees in electrical engineering from the
University of California, Berkeley, Berkeley, CA,
USA in 2012 and 2015. He is currently an asso-
ciate professor and the Demetrius T. Paris Junior
Professor at the Georgia Institute of Technology,
Atlanta, GA, USA in the School of Electrical
and Computer Engineering and the School of

Civil and Environmental Engineering. Prior to joining Georgia Tech in
2017, he was an assistant professor at the University of California, Los
Angeles from 2015 to 2017. Prof. Coogan received a CAREER Award
from the National Science Foundation in 2018, a Young Investigator
Award from the Air Force Office of Scientific Research in 2019, and the
Donald P Eckman Award from the American Automatic Control Council
in 2020. He is a member of SIAM and a senior member of IEEE.

