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ABSTRACT This paper addresses the problem of temporal-logic-based planning for bipedal robots in
uncertain environments. We first propose an Interval Markov Decision Process abstraction of bipedal
locomotion (IMDP-BL). Motion perturbations from multiple sources of uncertainty are incorporated into
our model using stacked Gaussian process learning in order to achieve formal guarantees on the behavior
of the system. We consider tasks which can be specified using Linear Temporal Logic (LTL). Through
a product IMDP construction combining the IMDP-BL of the bipedal robot and a Deterministic Rabin
Automaton (DRA) of the specifications, we synthesize control policies which allow the robot to safely
traverse the environment, iteratively learning the unknown dynamics until the specifications can be satisfied
with satisfactory probability. We demonstrate our methods with simulation case studies.

I. Introduction
Legged locomotion and navigation have been extensively
studied in recent years due to the accessibility of reliable,
highly-agile quadrupedal [1], [2] and bipedal [3], [4] robotic
platforms. As compared to more widely received mobile
robot and drone platforms, legged robots offer the promise of
high mobility in difficult terrain with additional manipulation
capabilities for material transportation.

Numerous planning works for legged robots have focused
on optimization methods for locally stable control [5], [6],
[7]. These methods are primarily concerned with formulating
tracking controllers which allow legged robots to track
desired motion trajectories formulated by higher-level task
planners, especially in the presence of motion perturbations.

In the field of formal methods, there has been much work
on using Linear Temporal Logic (LTL) specifications for task
and motion planning (TAMP) [8], [9], [10], [11], [12], [13],
[14]. Formal methods approaches to TAMP allow for formal
guarantees on task satisfaction and offer expressive semantic
languages to represent broad classes of TAMP objectives.
Many studies have focused on mobile robot navigation in
partially observable domains through exploration [15], [16],
re-synthesis when encountering unexpected obstacles [17],
[18], and receding-horizon planning [19]. However, these

existing approaches are better suited for guaranteeing suc-
cessful navigation and collision avoidance in environments
with simple robot dynamics such as point-mass mobile
vehicles. Legged navigation in complex environments while
incorporating safety-critical locomotion kinematics and dy-
namics is largely an open research question.

In this work, we apply temporal-logic-based planning
techniques onto legged navigation in order to synthesize con-
trol policies for legged robots which enforce the satisfaction
of complex tasks in uncertain environments. From a formal
methods perspective, our work demonstrates the applicability
of abstraction-based verification and synthesis techniques
onto legged robotic systems with complex dynamics. With
respect to the locomotion community, our work advances
the use of formal methods as a framework to enable robots
to execute a broad class of navigation tasks with formal
guarantees on safety and satisfiability.

A. Related Work
High-level task planning for legged robots has not been
widely explored, with many works focusing on develop-
ing a reduced-order-model-based motion planner which de-
signs optimal locomotion trajectories [20], [21], [22], [23],
[24], [25]. One major difficulty in applying high-level task
planning approaches to legged locomotion problems is the



Jiang ET AL.: Abstraction-based Planning for Uncertainty-aware Legged Navigation

FIGURE 1. Illustration of the PIPM-based IMDP-BL model, depicting a
walking single step. The spheres represent the CoM position of the robot
at the two discrete apex states, and the arc connecting them shows the
continuous trajectory of the CoM during the step. The apex positions are
also projected to the x� y plane using the yellow and blue dots, while the
foot contact points during the step are depicted using the stars. The
heading angle of the robot before and after the step is shown using the
arrows coming out of the CoM. The cones in the bottom left corner of the
figure illustrate the regions used in transition probability calculations.
The GP yaw uncertainty (gray region) is centered on the targeted yaw
angle. To calculate the maximum probability that the robot deviates to a
yaw angle bin left of the target state, we center the stochastic yaw noise
(green region) on the left edge of the GP yaw uncertainty and compute the
probability densities. Likewise, the minimum probability of the robot
turning further left than intended is computed by centering the stochastic
yaw noise on the right edge of the GP yaw uncertainty (red region).

need for reduced-order dynamical models which enable
computationally tractable planning while capturing the full-
body kinodynamics of the robot [26], [27]. One high-level
approach which has seen success is the use of Markov De-
cision Process (MDP) planners for control policy synthesis
[28], [29]. These MDP-based approaches abstract the motion
trajectories of the robot by planning using a subset of the
robot’s states which approximate the low-level states.

In the formal methods community, Interval Markov Deci-
sion Process (IMDP) [30] abstraction-based modeling has
shown potential for enabling planning for systems with
complex dynamics [31], [32], [33], [34], [35]. As opposed
to standard MDPs, IMDPs have transition probability inter-
vals, allowing for the modeling of stochastic or uncertain
dynamics [36], [37], [38]. Multiple approaches have been
proposed in the literature for the problem of control policy
synthesis for IMDP-abstracted systems with respect to !-
regular specifications, including partitioning and refinement
strategies [39], invariant set computation [40], and two-
player games [41]. These approaches address scenarios
where the transition probability intervals of the graph remain
static. In contrast, in this work we develop graph-based
techniques which synthesize control policies to improve
transition probability intervals online, thus increasing the
probability of satisfying the desired specifications. In par-
ticular, we shrink these intervals via integration of Gaussian
process (GP) learning [42] of uncertainties into the IMDP

as explored in some recent works [43]. GPs have proven to
be a popular approach for learning uncertainties in robotic
planning problems [44], [45], [46], [47], [48]. IMDPs render
a coherent structure to map learned GP high-confidence
bounds on the uncertainty into transition probability intervals
so that verification and synthesis tasks explicitly consider un-
certainty. This methodology combines the formal guarantees
associated with abstraction-based planners with the online
adaptation capabilities of learning.

B. Contributions
This study proposes a novel integrated planning frame-
work of legged locomotion which fuses high-level formal
methods-based control synthesis techniques, learning meth-
ods, and low-level dynamics-aware motion plans in order to
enable temporal-logic-based planning capabilities for bipedal
robots. We first formulate an IMDP model for bipedal loco-
motion which incorporates the complex dynamics associated
with legged locomotion. We then integrate a multi-layer GP
learning structure into the IMDP abstraction to allow for
learning of correlated robot model and environmental (i.e.,
terrain) uncertainties. Using this IMDP model, we develop
and prove the validity of a planning methodology which
allows a robot to iteratively traverse its environment to per-
form online learning while maintaining safety with respect to
complex LTL specifications. Finally, we map our high-level
planner onto a low-level full-body kinematics-based bipedal
robot model and demonstrate simulation results.

Within our framework of temporal-logic-based planning
for legged locomotion, we make the following contributions:

• We develop a novel IMDP abstraction of legged loco-
motion systems, which possess more complex dynamics
than the systems used for the IMDP methodology
in our previous work [49]. For high-level planning,
we abstract the system using reduced-order Prismatic
Inverted Pendulum Model (PIPM) dynamics. We also
explicitly consider the effects of low-level full-body
kinematic constraints in our IMDP planner, allowing
for computationally tractable synthesis of high-level
control policies which can be executed on the full-order
legged dynamical model.

• We generalize our previous work on IMDP planning in
[49] to broaden the language of allowable specifications
from the syntactically co-safe fragment of LTL to the
entire language of LTL. Using graph-theoretic tech-
niques, we develop theory and algorithms for synthesis
of control policies for data sampling which are non-
violating with respect to infinite-horizon specifications.
We demonstrate the computational tractability of our
approach on case studies with state space sizes which
are orders of magnitude higher than those in [49].

• We propose a stacked GP learning model for structured
learning of the motion uncertainties from modeling and
environmental sources inherent to legged locomotion.
This allows our planner to compensate for a priori
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unknown motion perturbations and improve online the
probability of satisfying high-level tasks.

II. Background
A. Reduced-order Locomotion Dynamics
We model the rigid body dynamics of a bipedal robot using
the prismatic inverted pendulum model (PIPM) [50]. In
this model, the mass of the robot is modeled as a single
point on the hip of the robot. This point is called the 3D
Center of Mass (CoM) and has position p

com
= (x, y, z)>,

which are the sagittal, lateral, and vertical coordinates,
respectively. The robot also has angular motion with orien-
tation angles (�, ✓, )> and a foot contact position p

foot
=

(xfoot, yfoot, zfoot)>. Following the exposition in [51], we
take the position and velocity of the CoM to be the system
state space ⇠ = (p>

com
, ṗ>

com
)> = (x, y, z, ẋ, ẏ, ż)> 2 ⌅ ✓

R6, where ⌅ is the set of admissible CoM positions and
velocities. Figure 1 illustrates these parameters. The second-
order CoM dynamics of the legged robot at the q

th step are

ẍ =!2

q
(x� xfootq )�

!
2

q

mg
(⌧y + bq⌧z) (1)

ÿ =!2

q
(y � yfootq )�

!
2

q

mg
(⌧x + aq⌧z)

z̈ = aq!
2

q
(x� xfootq ) + bq!

2

q
(y � yfootq )

�
!
2

q

mg
(aq⌧y + bq⌧x + 2aqbq⌧z),

with m the robot mass, g the gravitational acceleration, !q

the phase-space asymptotic slope parameter, aq and bq the
slope coefficients, and cq the constant bias term. The hybrid
control inputs to this system are the discrete foot contact
position and the PIPM asymptotic slope !q . The derivation of
Equation 1 is found in [50]. For hybrid locomotion planning,
we introduce apex and keyframe states:

Definition 1 (Apex State):

The apex state occurs when the CoM sagittal position is
equal to the location of the foot contact in the sagittal axis
(i.e. the point in the walking step when the robot’s body is
exactly over its foot contact). The coordinates of the CoM
at the apex state are (xapex, yapex, zapex)>.

Definition 2 (Locomotion Keyframe State):

A keyframe state of the PIPM is defined as k =
(d,�✓,�zfoot, vapex, zapex) 2 K, where

• d := xapex,n � xapex,c is the walking step length;
• �✓ := ✓apex,n � ✓apex,c is the yaw angle change;
• �zfoot := zfoot,n � zfoot,c is the height change;
• vapex is the CoM sagittal apex velocity;
• zapex is the global CoM height at apex.

Summary of the PIPM planning approach: We use the
apex states of the robot as discrete-time states for high-level
planning. At each apex state, the objective of the discrete-
time planner is to target an apex state to reach in the next

step. The parameters of the keyframe state correspond to the
actions commanded at each apex state. The high-level action
aHL = (d,�✓,�zfoot) 2 AHL determines the (x, y, z)
coordinates of the next apex state. In order to calculate the
corresponding action in the PIPM dynamics, we first need
to compute the additional parameters aLL = (vapex, zapex)
for the action using a low-level motion planner. Together,
the keyframe state parameters determine the foot placement
of the next walking step. The keyframe state also maps to a
corresponding asymptotic slope !q required for tracking the
continuous trajectory in between apex states.

B. Temporal-Logic-Based Task Planning
For the high-level planning component of our problem, we
utilize an Interval Markov Decision Process (IMDP) model:

Definition 3 (Interval Markov Decision Process):

An Interval Markov Decision Process (IMDP) is a tuple I =
(Q,A, Ť , T̂ , Q0, O, L) where

• Q is a finite set of states,
• A is a finite set of actions,
• Ť , T̂ : Q⇥A⇥Q

0 �! [0, 1] are lower and upper bounds,
respectively, on the transition probability from state q 2
Q to state q

0 2 Q under action ↵ 2 A,
• Q0 ✓ Q is a set of initial states,
• O is a finite set of atomic propositions or observations,
• L : Q �! O is a labeling function.

A(q) denotes the set of actions at q. Moreover, for all q 2 Q

and all ↵ 2 A(q), Ť and T̂ satisfy
X

q02Q

Ť (q,↵, q0)  1 
X

q02Q

T̂ (q,↵, q0).

In this work, we consider specifications which can be written
using the semantics of Linear Temporal Logic (LTL):

Definition 4 (Linear Temporal Logic [52, Def. 2.1]):

A linear temporal logic (LTL) formula � over a set of
observations O is recursively defined as

� => | o | ¬o | �1 ^ �2 | �1 _ �2 | � � |
�1U�2 | ⌃� | ⇤� | �1 ! �2 | �1 $ �2

where o 2 O is an observation and �, �1, and �2 are LTL
formulas. We define the next operator � as satisfying � in
the next state transition, the until operator U satisfying �1

until �2 is satisfied, the eventually operator ⌃ as >U�, and
the always operator ⇤ as ¬⌃¬>.

It is well known that the satisfaction of LTL formulas can be
checked using deterministic Rabin automata [52, Def. 2.7]:

Definition 5 (Deterministic Rabin Automaton):

A deterministic Rabin automaton (DRA) is a tuple R =
(S, s0, O, �, F ), where

• S is a finite set of states,

VOLUME 00 XXXX 3



Jiang ET AL.: Abstraction-based Planning for Uncertainty-aware Legged Navigation

• s0 ⇢ S is a singleton initial state,
• O is the input alphabet, which corresponds to observa-

tions from the LTL formula,
• � : S ⇥ O ! 2S is a transition map which is either ;

or a singleton for all s 2 S and o 2 O, and
• F = {(G1, B1), · · · , (Gn, Bn)}, where Gi, Bi ✓

S, i = 1, 2, · · · , n is the acceptance condition.

The semantics of a deterministic Rabin automaton are de-
fined over infinite input words in O

! (the set of infinite
sequences of observations). A run of R over an infinite
word wO = wO(1), wO(2)wO(3) · · · 2 O

! is a sequence
wS(1)wS(2)wS(3) · · · 2 S

! , where wS(1) = s0 and
wS(k + 1) = �(wS(k), wO(K)) for all k � 1.

A run wS admits a set inf(wS) = {wS(i) : 8m 2 N 9k >

m s.t. wS(k) = wS(i)}, defined as the set of observations
in wS which appear infinitely often.

Then, a run wS is accepted by R if inf(wS) \Gi 6= ; ^
inf(wS)\Bi = ; for some i 2 {1, · · · , n}. If wS is accepted
by R, we say that ws |= R.

C. Gaussian Process Learning
In order to learn the uncertainties present in our system, we
will utilize Gaussian process (GP) regression:

Definition 6 (Gaussian Process Regression):

Gaussian Process (GP) regression models a function gi :
Rn ! R as a distribution with covariance  : Rn ⇥
Rn �! R>0. Assume a dataset of m samples D =
{(zj , yj

i
)}j2{1,...,m}, where z

j 2 Rn is the input and y
j

i

is an observation of gi(zj) under Gaussian noise with
variance �

2

⌫i
. Let K 2 Rm⇥m be a matrix defined el-

ementwise by Kj` = (zj , z`) and for z 2 Rn, let
k(z) = [(z, z1) (z, z2) . . . (z, zm)]T 2 Rm. Then, the
predictive distribution of gi at a test point z is the conditional
distribution of gi given D, which is Gaussian with mean
µgi,D and variance �2

gi,D
given by

µgi,D(z) = k(z)T (K + �
2

⌫i
Im)�1

Y (2)
�
2

gi,D
(z) = (z, z)� k(z)T (K + �

2

⌫i
Im)�1

k(z), (3)

where Im is the identity and Y =
⇥
y
1

i
y
2

i
. . . y

m

i

⇤T .

In practice, we use a sparse Gaussian process regression
approximation [53] to reduce computational complexity.

III. Problem Setup
We now define our planning problem for bipedal robot
locomotion. We consider a 3D environment for the bipedal
robot in which there exists a priori a rectangular partition R

on the x� y plane with partition regions {Rn}n2N :

Rn = {x, y|ax,n  x  bx,n, ay,n  x  by,n} ⇢ R, (4)

where ax,n and ay,n are lower bounds on the x and y

coordinates, respectively, and bx,n and by,n are upper bounds.
We assume that the bipedal robot can be modeled using the
PIPM dynamics as introduced in Subsection IV.A.

Assumption 1:

There exists a model error between the PIPM used for
planning and the low-level controller of the bipedal robot
which causes deviation from the desired trajectory of motion.
Additionally, the terrain elevation of the environment is
unknown, which results in a separate motion perturbation.
Both sources of uncertainty can be characterized and learned.

Assumption 2:

The bipedal robot experiences a stochastic yaw perturbation
⌫ at each walking step which can be modeled as a zero mean
random variable with stationary, symmetric, and unimodal
distribution ⇢⌫ . We further assume a bounded support on the
distribution so that the perturbation cannot drive the system
into arbitrary regions of the space. In particular, this makes
the distribution sub-Gaussian.

In this work, we specifically consider the effect of uncertain-
ties on yaw angle error. Using proprioceptive sensing only
for legged robots, the results in [54], [55], [56], [57] proved
that the absolute yaw angle is unobservable so that estimates
of these quantities will drift over time. To address this issue,
we explicitly model yaw uncertainties using GPs.

Our objective is to develop a high-level planning algo-
rithm which considers the robot’s full-body kinematics to
satisfy a LTL objective in the presence of robot system and
environmental uncertainties:

Problem 1:

Design a temporal-logic-based planning algorithm for a
bipedal robot to safely traverse its environment and learn
system and environmental uncertainties in order to satisfy
given LTL specifications with satisfactory probability under
worst-case resolutions of the transition probability intervals
of the discretized model of the robot.

Subproblem 1.1:

Design an IMDP model of bipedal locomotion based on
Prismatic Inverted Pendulum Model dynamics. Integrate
Gaussian process learning of system and environmental
uncertainties into the bipedal IMDP in order to model and
account for motion perturbations.

Subproblem 1.2:

Synthesize a control policy for an IMDP-abstracted system
which allows the robot to traverse its environment while
maintaining nonzero probability of satisfying given LTL
specifications under best-case resolutions of transition prob-
ability intervals.

IV. Bipedal IMDP Formulation
In this section, we propose a high-confidence IMDP model
of bipedal robot locomotion which incorporates Gaussian
process learning of system uncertainties.
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PIMDP Model (Sec. V) PIPM Model (Sec. IV-E) Full Body Robot (Sec. VI-B)

Yaw Angle GP (Sec. IV-B) Model Error GP (Sec. IV-B) Terrain Estimation GP (Sec. IV-B)

High Level
Waypoint

Dynamical
Considerations Middle Level

Action

Model Error Compensation Terrain
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Model Error
Uncertainty

Empirical yaw error

Terrain Uncertainty

Yaw
Uncertainty

GP Mean:

GP Mean:GP Variance:

Measurement:

GP Variance:

GP Mean:
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FIGURE 2. Overall IMDP-BL framework. Planning is done using a product IMDP model which considers dynamical constraints from a PIPM bipedal
robot framework. Additionally, the product IMDP relies on GP learning of uncertainties for safe planning with respect to a LTL specification. Control
actions from the IMDP planner are input to the PIPM dynamics, where they are mapped to low-level control actions for the physical robot. Trajectory
data from the robot executing the control policy is fed back into the stacked GP model, updating the transition probabilities in the product IMDP. Black
arrows/text illustrate the flow of information through the system and green text shows the corresponding parameters.

A. IMDP State Definition
We first define the IMDP abstraction states:

Definition 7 (IMDP Abstraction States):

An IMDP abstraction state {Xq}q2Q is defined as
Xq = {r, ✓, |r 2 Rq, a✓,q  ✓ < b✓,q, =  q} (5)

where Rq is a rectangular partition region, a✓,q and b✓,q are
lower and upper bounds, respectively, on the yaw angle, and
 q 2 {left, right} is the left or right foot stance index.

Given the full-body kinematic constraints of the robot, we
assume that forward and backward steps are feasible, with
a limited turning motion possible in the forward direction.
Formally, we have the action set

A = {N,NE,NW,S}, (6)
where N corresponds to a straight forward step, NE is a
forward step with a right turn, NW is a forward step with
a left turn, and S is a straight backwards step.

We use a high-level waypoint planner � to map IMDP
actions to target IMDP states. We first perform an intermedi-
ate mapping from IMDP actions to high-level keyframe state
actions aHL = (d↵,�✓↵, �zfoot) as in Definition 2. Then, we
map high-level keyframe state actions to their corresponding
target IMDP states as follows. Given an initial IMDP state
Xq with a geometric center xc,q, yc,q , a mean yaw angle ✓c,q ,
and an action ↵ 2 A, we target the center of the IMDP state
X

⇤
q

closest to the desired endpoint, which is calculated as
Xq⇤ = min

q02Q

((xq0 � xq + x↵)
2 + (yq0 � yq + y↵)

2+

(✓c,q0 � ✓c,q + ✓↵)
2)1/2, (7)

where x↵ = d↵ cos(�✓↵+✓c,q) and y↵ = d↵ sin(�✓↵+✓c,q)
are the x and y components of the desired step, respectively.
Once each state-action pair has been associated with a target
state during planning time, we implement a controller to
execute the appropriate trajectory at runtime.

B. Gaussian Process Formulation
Inspired by stacked Gaussian process learning [58], a hi-
erarchical framework in which output parameters of lower-
level GPs are used as inputs to higher-level GPs, we propose
a multi-layer GP learning framework to model sources of
bipedal locomotion uncertainties.

We first use a Gaussian process ẑ(x, y) to model the
elevation z of the terrain, which takes as input the x- and y-
coordinates of the position. We assume that at each step the
robot can measure the terrain elevation at its current CoM
position. Therefore, at a given step i we can record the x�y

position (xi, yi) and the observation zi.
Next, we model uncertainty in the yaw angle due to

model error at each step using Gaussian processes. We first
introduce a Gaussian process �✓̂(aHL), which takes as input
the commanded high-level action aHL = (d,�✓,�zfoot) and
outputs a mean expected deviation µ

�✓̂
and a variance �2

�✓̂

from the commanded yaw change. This Gaussian process
models the error induced by the low-level dynamics which
are not accounted for in the reduced-order PIPM model.

Then, we model the overall expected variance of the yaw
angle deviation using another Gaussian process �̂2

�✓̂
, which

takes as inputs the variance of the terrain uncertainty of
the step �2

ẑ
and the variance of the predicted yaw deviation

�
2

�✓̂
. Intuitively, this Gaussian process captures the range of

potential yaw angle deviations from a step, which should
increase when there exists more uncertainty in the Gaussian
processes used to predict the terrain elevation and yaw angle
deviation. Figure 2 shows the structure of the GPs.

Samples for each of the GPs are collected as follows. At
each step, the robot collects samples of the terrain elevation
{(x+

foot
, y

+

foot
), (z+

foot
)}, where (x+

foot
, y

+

foot
) is the x � y

foot stance after the step and (z+
foot

) is the corresponding
observation of the terrain elevation. This data point is then
added to the sample set of the GP ẑ(x, y).
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The robot has a target yaw angle ✓c,q0 but due to estimation
errors and motion perturbation actually reaches a yaw angle
of ✓+ after each step. We define a yaw angle error

✓e = ✓
+ � ✓c,q0 (8)

and use this error as observations for our remaining GPs
as follows. First, we generate samples (aHL, ✓e) for the
model error Gaussian process �✓̂, where aHL is the high-
level control action used for the step, calculated using the
controller in Subsection IV.C. Next, we generate samples
(�2

ẑ
,�

2

�✓̂
, |✓e|) for the yaw error Gaussian process �̂2

�✓̂
where

the inputs are the variances of the terrain and model error
GPs used for a step and the value to be predicted is the
absolute value of the yaw deviation. Our motivation for using
the absolute value of the yaw error is that this captures the
total error induced by the model error, terrain uncertainty,
and noise, whereas the yaw error itself will not capture the
cumulative effect of the the zero-mean stochastic noise.

C. Controller Design
Define a family of controllers Kq : Z ⇥ X ! AHL which
take as input a current pose ⇣ = (xcom, ycom, zfoot, ✓, ) 2
Z. Additionally, we have a target IMDP state Xq0 with
center (xc,q0 , yc,q0 , ✓c,q0) as a second input. The controller
then outputs a high-level waypoint-targeting control action
aHL = (d,�✓,�zfoot) as shown in Figure 3.
First, the controller calculates a desired step length d

d =
q

(xc,q0 � xcom)2 + (yc,q0 � ycom)2. (9)

The foot elevation change �zfoot is calculated as

�zfoot = µẑ(x
+
, y

+)� zfoot, (10)

where (x+
, y

+) is the desired foot placement which is
analytically calculated online at each step, and µẑ is the
mean of the GP prediction of the foot placement elevation.
The yaw angle change �✓ is calculated using the GP
prediction �✓̂(aHL) of the expected yaw angle deviation

�✓ = ✓c,q0 � ✓ � µ
�✓̂

(d, ✓c,q0 � ✓,�zfoot), (11)

where µ
�✓̂

is the GP estimate of the yaw angle deviation
due to model error.

D. IMDP Transition Probability Calculation
We next formulate transition probability bounds for the
IMDP abstraction states. Given the controller developed in
Subsection IV.C, we separate the IMDP state transition into
three components. First, we assume that the rectangular
partition region transition is deterministic; that is, given
current IMDP state Xq with rectangular partition region Rq

and an action which targets IMDP state Xq⇤ with rectangular
partition region Rq⇤ , we assume that the actual next IMDP
state Xq0 has rectangular partition region Rq0 = Rq⇤ .
Additionally, we assume that the foot stance of the robot
alternates between IMDP states, i.e. if the current IMDP
state Xq has stance  q = left, the next IMDP state Xq0

always has stance  q0 = right and vice versa. Then, the
uncertainty in IMDP state transitions arises solely from

Waypoints
CoM Yaw Angle
CoM Apex Pos.
CoM Trajectory
Foot Position
Foot Safety Bound
Hazard

FIGURE 3. Illustration of bipedal robot motion planning. The high-level
action components d,�✓ are planned with respect to waypoints (brown
dots). The high-level command �z depends on the elevation change
between successive foot placements (blue stars). However, the actual
trajectory (orange) of the robot’s center of mass follows a sinusoidal
curve around the desired waypoints. Additionally, there exists lateral
motion deviation at each step. We assume that the lateral deviation
between the waypoint and robot apex CoM can be bounded by a
parameter �y1,max, and the lateral deviation between the apex CoM and
the foot position can be bounded by �y2,max. Thus, we can guarantee
that the CoM apex position stays within the target region if the side length
of the regions is at least 2�y1,max. Similarly, safety with respect to foot
positions can be guaranteed for an action if there is no hazard region
within a circle of radius �y1,max + �y2,max from the center of the target
region (blue circle). These conditions will be proved in Theorem 2.

yaw uncertainty. We assume that this yaw uncertainty has
two components. First, uncertainty in the GP estimations of
the terrain elevation and reduced-order model error induce
learnable controller error. We also assume a nonlearnable
disturbance modeled as stochastic noise.

Given current IMDP state Xq and an action which targets
IMDP state Xq⇤ , we model the yaw uncertainty induced by
GP estimation error using the GP �̂

2

�✓̂
. We first calculate a

maximum terrain GP variance �2

ẑ,max
and a maximum model

GP variance �2

�✓̂,max
for the state-action pair as follows. We

can conservatively estimate the maximum terrain variance
�
2

ẑ,max
under the action as

�
2

ẑ,max
= max

(x,y)2Rq⇤
�
2

ẑ
(x, y) (12)

where �2

ẑ
(x, y) is the variance of the GP prediction of the

terrain at a given x� y location.
We now define a series of parameters in order to calculate

the maximum model error GP variance. First, since the
controller always seeks to move to the center xc,q0 of the
target IMDP region Xq0 , lower and upper bounds on the
step length input to the model error GP are

dmin = min
(x,y)2Rq

q
(xc,q0 � x)2 + (yc,q0 � y)2 (13)

dmax = max
(x,y)2Rq

q
(xc,q0 � x)2 + (yc,q0 � y)2 (14)

which are the distances of the closest and furthest points,
respectively, in Xq to the center of Xq0 .
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Next, we define lower and upper bounds on the yaw angle
change inputs to the model error GP as

�✓min = min
a✓,q✓<b✓,q

||✓c,q0 � ✓|| (15)

�✓max = max
a✓,q✓<b✓,q

||✓c,q0 � ✓|| (16)

where a✓,q and b✓,q are lower and upper bounds on the yaw
angles in state Xq , and ✓c,q0 is the central yaw for state Xq0 .
Finally, we define lower and upper bounds on the foot
elevation change input to the model error GP as

�zfoot,min = min
x,y2Rq

min
x0,y02Rq0

||ẑ(x0
, y

0)� ẑ(x, y)|| (17)

�zfoot,max = max
x,y2Rq

max
x0,y02Rq0

||ẑ(x0
, y

0)� ẑ(x, y)|| (18)

where ẑ(x, y) is the mean of the GP prediction of the terrain
elevation at point (x, y).
We now calculate the maximum model error GP variance as

�
2

�✓̂,max
= max

dminddmax

max
�✓min�✓�✓max

(19)

max
�zmin�z�zmax

�
2

�✓̂
(d,�✓,�z)

Given maximum terrain and model error GP uncertainties,
we then take the corresponding mean prediction of the yaw
uncertainty GP � = µ�̂2

�✓̂
(�2

ẑ,max
,�

2

�✓̂,max
) under these

parameters to be a measure of uncertainty in the yaw angle
for each state-action pair. We can then bound the yaw angle
✓
+ after the action using �:

✓c,q0 � ��  ✓
+  ✓c,q0 + ��, (20)

where ✓c,q0 is the desired yaw angle after the action is
taken and � is a high-confidence interval factor calculated
using methods in [43]. We note that although the yaw angle
measurements we use to train the GPs are perturbed by the
stochastic noise as in Assumption 2, it is established in [57]
that we can place high-confidence bounds on the underlying
learnable function as in Equation (20). The effect of the noise
is to increase the magnitude of the high-confidence interval
factor �, thus making the bounds on the underlying function
more conservative. However, our approach assumes a priori
conservative bounds to initialize the GPs, so the calculated
bounds always remain conservative and thus the validity of
the overall approach is not affected by noise. Practically, the
noise perturbation results in the robot having to collect more
data samples to generate sufficiently tight bounds.

We can then calculate lower and upper transition prob-
ability bounds for the IMDP state-action pair by treating
the high-confidence transition region as nondeterministic and
centering the stochastic noise at probability minimizing and
maximizing points in this region:

Lemma 1 (Yaw-Based Transition Probability Bounds):

Consider Xq, Xq0 ; q, q0 2 Q and action ↵q⇤ 2 Aq . Lower
bound Ť and upper bound T̂ transition probabilities from

Xq to Xq0 under ↵q⇤ are given by

Ť (Xq,↵q⇤ , Xq0) =

Z
b✓,q0

a✓,q0

⇢⌫(z � ✓min(Xq,↵q⇤ , Xq0))dz,

(21)

T̂ (Xq,↵q⇤ , Xq0) =

Z
b✓,q0

a✓,q0

⇢⌫(z � ✓max(Xq,↵q⇤ , Xq0))dz,

(22)
where we recall ⇢⌫i is the probability density function of
the stochastic noise ⌫i and a✓,q0 and b✓,q0 are the lower and
upper boundary points for region Xq0 . We define ✓min and
✓max as
✓min(Xq,↵q⇤ , Xq0) = argmax

✓

✓ � ✓c,q0 (23)

s.t. ✓c,q⇤ � ��(q)  ✓  ✓c,q⇤ + ��(q),

✓max(Xq,↵q⇤ , Xq0) = argmin
✓

✓ � ✓c,q0 (24)

s.t. ✓c,q⇤ � ��(q)  ✓  ✓c,q⇤ + ��(q),

Proof:
The proof for the validity of these transition probability
bounds follows from the proof outlined in Theorem 1, [49],
as a special one-dimensional case with yaw angles rather
than Cartesian coordinates considered.

Figure 1 illustrates the nondeterministic transition regions
and the stochastic noise centering used in Lemma 1.

E. IMDP for Bipedal Locomotion Definition
With the individual components of the IMDP defined along
with the integration of a stacked GP framework, we can now
formally define an IMDP abstraction of bipedal locomotion:

Definition 8 (IMDP for Bipedal Locomotion):

Consider a bipedal robot modeled according to the PIPM
dynamics in 1. An IMDP abstraction of bipedal locomotion
(IMDP-BL) modeled using the dynamics in (1) is an IMDP
I = (Q,A, Ť , T̂ , Q0, O, L) which satisfies that

• The states of the IMDP are defined as in Definition 7,
• The actions of the IMDP are defined according to

Equation 6,
• The lower and upper transition probability bounds are

calculated according to Lemma 1.

The IMDP-BL abstracts the dynamics of bipedal robots and
also incorporates multi-component GP learning of uncertain-
ties, solving Subproblem 1.1. We note that the reduced-
order bipedal PIPM dynamics in (1) are outside of the
class of dynamics considered in the previous work [49] for
the IMDP-based methodology. Additionally, the IMDP-BL
explicitly accounts for low-level full-body kinematics unique
to bipedal locomotion such that the proposed IMDP planning
method can be realistically implemented on bipedal robots.

Figure 2 shows the structure of the proposed IMDP-
BL framework with interconnections between the high-level
planning, low-level dynamics, and GP learning components.
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V. Control Policy Synthesis
We now turn our attention to the verification and synthesis of
control policies for the IMDP-BL against LTL specifications.
The structure of our methodology broadly follows our pre-
vious work in [49], in which we constructed similar control
synthesis techniques for the syntactically cosafe fragment
of LTL (scLTL). In this section, we introduce generalized
algorithms which are able to accommodate complex speci-
fications from the general class of LTL.

A. Product IMDP
To check LTL specifications against observations from an
IMDP abstraction of a bipedal robot, we utilize a product
IMDP construction synthesized from the IMDP-BL and a
DRA of the LTL specifications, defined as follows:

Definition 9 (PIMDP):

Let I = (Q,A, Ť , T̂ , Q0, O, L) be an IMDP-BL and A =
(S, s0, O, �, F ) be an DRA. The product IMDP (PIMDP) is
defined as a tuple P = I ⌦A =
(Q⇥ S,A, Ť

0
, T̂

0
, Q⇥ s0, F

0), where

• Ť
0 : (q, s)⇥A⇥(q0, s0) := Ť (q,↵, q0) if s0 2 �(s, L(q))

and 0 otherwise,
• T̂

0 : (q, s)⇥A⇥(q0, s0) := T̂ (q,↵, q0) if s0 2 �(s, L(q))
and 0 otherwise,

• (q0, �(s0, L(q0))) 2 (Q⇥ S) is a set of initial states of
I ⌦A, and

• F
0 = Q ⇥ F = {Q ⇥ (G1, B1), · · · , Q ⇥ (Gn, Bn)},

where Gi, Bi ✓ S is the ith acceptance condition.

The PIMDP construction encodes both the abstracted dy-
namics of the robot as well as specification satisfaction.

For LTL specifications, [59, Def. 10.128, Thm. 10.129]
show that specification checking on a PIMDP structure
reduces to checking reachability of accepting maximal end
components, defined as follows:

Definition 10 (End Component [60]):

An end component of a finite PIMDP P is a pair (T , Act)
with T ✓ (Q⇥ S) and Act : T ! A such that

• ; 6= Act(q, s) ✓ A(q) for all states (q, s) 2 T ,
• (q, s) 2 T and ↵ 2 Act(q, s) implies {(q0, s0) 2

T | T̂ (q,↵, q0)) > 0, s0 2 �(s, L(q))} ✓ T ,
• The digraph induced by (T , Act) is strongly connected.

We note that upper bound transition probabilities are used
to calculate end components in order to enable all possible
edges in the PIMDP. This ensures that the end components
are robust to all realizations of the transition probabilities.

Definition 11 (Maximal End Component (MEC) [60]):

An end component (T , Act) of a finite PIMDP P is max-
imal if there is no end component (T ⇤

, Act
⇤) such that

(T , Act) 6= (T ⇤
, Act

⇤) and T ✓ T ⇤ and Act(q, s) ✓
Act

⇤(q, s) for all (q, s) 2 T .

Maximal end components are pairwise disjoint, so the num-
ber of MECs is bounded above by the number of PIMDP
states, thus reducing the computational complexity of specifi-
cation checking. In order to use graph-theoretic techniques to
calculate reachability probabilities, it is necessary to resolve
the transition probability bounds in the PIMDP to reduce it
to a product MDP. We define adversaries for this purpose:

Definition 12 (PIMDP Adversary):

Given a PIMDP state (q, s) and action ↵, an adversary ⇠ 2 ⌅
is an assignment of transition probabilities T

0
⇠

to all states
(q0, s0) such that

Ť
0((q, s),↵, (q0, s0))  T

0
⇠
((q, s),↵, (q0, s0))

 T̂
0((q, s),↵, (q0, s0)).

In particular, we use a minimizing adversary, which realizes
transition probabilities such that the probability of satisfying
the specification is minimal, and a maximizing adversary,
which maximizes the probability of satisfaction.

Definition 13 (Control Policy):

A control policy ⇡ 2 ⇧ of a PIMDP is a mapping (Q ⇥
S)+ �! A, where (Q⇥ S)+ is the set of finite sequences of
states of the PIMDP.

Then, reachability probabilities in the PIMDP are uniquely
determined by the control policy and adversary selected.

B. Graph Pruning
In order to enable online learning of the uncertainties in
the system, we require paths through the state-space which
the legged robot can take in order to collect samples of the
dynamics without violating the specifications of interest. The
key idea is that verification of LTL specifications reduces to
checking reachability of accepting MECs. Then, states which
have zero probability of reaching any accepting end com-
ponent under a maximizing control policy and maximizing
adversary are unsafe, i.e. the robot is guaranteed to violate
the specification at these states. On the other hand, states
which have zero probability of reaching an accepting MEC
under a maximizing control policy and minimizing adversary
but have nonzero probability under a maximizing adversary
are considered safe to sample, as these are states which could
benefit most from uncertainty reduction.

Algorithm 1 details our methodology for graph pruning in
order to generate a nonviolating sub-graph to sample. First,
we assume that MECs corresponding to accepting conditions
in the product IMDP have been calculated. The MECs
themselves can be calculated using standard algorithms [59,
Algorithm 47]. Then, accepting MECs are simply those
which contain states in an accepting condition Gi but no
states from the corresponding rejecting set Bi. In line 1, we
initialize the accepting states of the PIMDP to be those in
the union of all of the accepting MECs. In lines 4–14, we
prune any state-action pairs which have zero probability of
reaching the accepting states under a maximizing adversary.
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Algorithm 1: Nonviolating PIMDP Generation
Input: PIMDP P , Accepting MECs (T ⇤

, Act
⇤)

Output: Nonviolating subset P’ of P
1 Initialize G = {(q, s) 2 T ⇤}, R = {;}, U = {;};
2 for (q, s) 2 P \G do

3 for ↵ 2 A((q, s)) do

4 if T̂ ((q, s),↵, G) = 0 then

5 Remove ↵ from available actions at (q, s);
6 end

7 end

8 if A((q, s)) = ; then

9 R = R [ (q, s), U = U [ (q, s);
10 end

11 end

12 while R 6= ; do

13 for (q, s) 2 P \ U do

14 for ↵ 2 A do

15 if T̂ ((q, s),↵, U) 6= 0 then

16 Prune action ↵ from state (q, s);
17 end

18 end

19 end

20 R = ; ;
21 for (q, s) 2 P \ U do

22 if A((q, s)) = ; then

23 R = R [ (q, s), U = U [ (q, s);
24 end

25 end

26 end

27 return P 0 = P \ U

If this pruning leaves any state with no available actions, we
add this state to a set of hazard states to be excluded from the
nonviolating sub-graph. In lines 15–28, we prune state-action
pairs which have nonzero probability under a maximizing
adversary to reach any hazard state. Finally, in line 31 we
return the remaining state-action pairs as a nonviolating sub-
graph.

Once a nonviolating sub-graph has been generated, a
control policy to safely sample the state-space can be syn-
thesized using the method detailed in Algorithm 2. For states
which are in the nonviolating sub-graph (lines 2–4), we
randomly select from the available actions for each state.
For states which are outside of the nonviolating subgraph
(lines 5–7), we select the action which produces the highest
probability under a minimizing adversary of reaching a state
in the nonviolating subgraph.

Theorem 1 (Safety of Nonviolating Subgraph):

The control policy synthesized using Algorithm 2 from the
nonviolating sub-graph output of Algorithm 1 enforces a
nonviolating motion plan for a bipedal robot modeled using
the IMDP-BL methodology in Section IV.

Algorithm 2: Nonviolating Control Policy Synthesis
Input: PIMDP P , Nonviolating subgraph P 0 output

by Algorithm 1
Output: Nonviolating control policy ⇡0

1 Initialize G = {(q, s, a) 2 P 0};
2 for {(q, s, a) 2 G} do

3 ⇡
0(q, s) = random{a|(q, s, a) 2 G};

4 end

5 for {(q, s)|(q, s, a) 62 G 8a 2 A} do

6 ⇡
0(q, s) =
argmaxa2A max(q0,s0)2G Ť ((q, s),↵, (q0, s0));

7 end

8 return ⇡
0

Proof:
By construction, Algorithm 1 produces as output a subgraph
P 0 in which every state has nonzero probability of reaching
an accepting maximal end component of the specifications.
Therefore, executing a control policy generated by Algorithm
2, which performs control policy synthesis using the nonvi-
olating sub-graph from Algorithm 1, ensures that the robot
will always traverse states which have nonzero probability of
satisfying the LTL specifications. Thus, the robot can traverse
the state space using this control policy indefinitely while
remaining in nonviolating regions, proving the safety of the
control policy generated from Algorithms 1 and 2.

Therefore, executing Algorithms 1 and 2 on a bipedal
PIMDP produces a control policy which allows the robot to
traverse its state space indefinitely while guaranteeing safety
with respect to LTL specifications, solving Subproblem 1.2.

VI. Bipedal Abstraction-based Planning
A. Task Planning Algorithm
Given the IMDP-BL model developed in Section IV and
the LTL control policy synthesis framework proposed in
Section V, we can now formulate a complete algorithm for
bipedal task planning for safe online learning with respect
to complex LTL specifications, detailed in Algorithm 3.

Given a biped with PIPM dynamics and LTL specification
� with desired probability of satisfaction Psat, we first
construct an IMDP-BL of the bipedal dynamics (initializing
the GP models of the system and environmental uncer-
tainties with conservative bounds) and a DRA of the LTL
specification �. We then construct a PIMDP and calculate
minimum and maximum probabilities of satisfaction from
the initial state (lines 1–3). If the initial minimum probability
of satisfaction is too small (line 4), we next check the
maximal probability of satisfaction. If this probability is less
than Psat, we know that the LTL specification cannot be
satisfied with sufficient probability regardless of how well
we learn the uncertainties, so the algorithm is terminated
(lines 5–7). Otherwise, we use Algorithm 1 and Algorithm
2 to calculate and traverse a nonviolating PIMDP, collecting
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Algorithm 3: Synthesis Algorithm
Input: Bipedal PIPM (1), LTL specification �, Psat
Output: Satisfying control policy ⇡†

1 Construct IMDP-BL I from System (1), DRA R
from �, PIMDP P from I and R, initial GP ĝ(x);

2 Calculate P̌max((q0, �(q0, s0)) |= �) for initial state;
3 Calculate P̂max((q0, �(q0, s0)) |= �) for initial state;
4 while (P̌max < Psat) and (Count< MaxBatches) do

5 if P̂max < Psat then

6 return No satisfying control policy exists;
7 end

8 Find nonviolating PIMDP P 0 using Algorithm 1;
9 Find MEC to cycle in with corresponding control

policy ⇡⇤ using Algorithm 2;
10 for NumSteps do

11 Take action ⇡⇤(q) at current state q;
12 Sample terrain zfoot, yaw error ✓e;
13 end

14 Reconstruct GPs using collected samples;
15 Recalculate transition probability intervals for P;
16 Recalculate P̌max((q0, �(q0, s0)) |= �);
17 Recalculate P̂max((q0, �(q0, s0)) |= �);
18 end

19 if P̌max � Psat then

20 return Control policy
⇡
† = argmax

↵2A(q)

P̌max((q, s) |= �) 8(q, s) 2 P;

21 end

a batch of data on the system dynamics for GP retraining
(lines 8–14). Finally, we recalculate the PIMDP transition
probabilities based on the new GPs (lines 16–18) and recheck
against the desired probability of satisfaction. If we have
reached the desired threshold, we output a final control
policy which maximizes the probability of satisfying the
specification under a minimizing adversary from all states
(lines 19–20); else, we repeat the sampling process. The
algorithm terminates once a satisfying control policy is
found, the nonexistence of a satisfying control policy has
been proved, or a maximum number of batches has been
reached. Algorithm 3 provides a complete framework for
the bipedal task planning problem with online learning of
uncertainties, solving Problem 1.

B. Locomotion-Specific Modeling Considerations
In order to apply our planning method to bipedal robots,
additional leg kinematic considerations (e.g., full-body kine-
matics) must be taken. Thus, we must solve the problem
of converting high-level waypoints produced by the PIMDP
task planner into motion plans via the PIPM. Using an
optimization-based approach as in [51, Algorithm 1], we
first solve for the PIPM keyframe state vapex, zapex in the
motion planner (see Definition 2). This gives us middle-level
waypoints from which we can interpolate a trajectory of

robot’s CoM motion. These middle-level waypoints can then
be translated into low-level joint motion plans.

We next map the low-level kinematic constraints asso-
ciated with legged locomotion to the high-level PIMDP
task planner. First, we consider the problem of lateral CoM
motion deviation. The nonperiodic gaits we design result in
sinusoidal center-of-mass trajectories, i.e., the CoM motion
wiggles between the desired CoM waypoint and the actual
foot contact position. To ensure accurate waypoint tracking,
we follow the results in [51, Prop. V.1] and assume a bound
�y1,max on the maximum lateral deviation between the
target waypoint and the CoM apex position. Similarly, we
assume a bound �y2,max on the maximum lateral deviation
between the CoM and foot apex positions. Figure 3 illustrates
these parameters. These global bounds can be enforced with
appropriate selection of vapex ([51, Algorithm 1]) and a
restriction of the possible set of motions (which we do by
restricting the set of IMDP-BL actions to be finite).

Second, we need to enforce CoM and foot position
constraints in order to ensure the validity of our high-level
PIMDP planner with respect to low-level full-body kinematic
constraints. Our IMDP planner assumes that the robot CoM
always reaches the desired x � y region at each walking
step. Furthermore, although high-level planning focuses on
CoM positions, we also want to ensure that the robot
avoids stepping in unsafe regions. We can enforce the CoM
constraint with the appropriate selection of the cell length l

of the x�y grid regions, and we can obtain safety guarantees
with respect to foot positions via graph pruning:

Theorem 2 (Safe Low-Level PIMDP Planning):

Given CoM lateral apex deviation bounds �y1,max,�y2,max

as in Subsection VI.B, geometrically safe planning with
respect to CoM apex positions is enforced if the grid region
cell length satisfies l > 2�y1,max. Additionally, safety with
respect to foot positions (i.e., no foot lands in a violating
region) is enforced by pruning PIMDP states for which a
violating x � y grid region lies within a circle of radius
�y1,max +�y2,max.

Proof:
First, we prove the CoM safety condition. Since the PIMDP
controller (Section IV.C) produces discrete actions which
always target the center of a 2D grid, the robot’s CoM
stays within the target grid region at each step under a
CoM deviation of at most �y1,max if the distance from the
center of each region to its boundary is at least �y1,max

in all directions. For a hyperrectangular region, this is
accomplished if each cell of the region has a side length
greater than or equal to 2�y1,max. Note that since the target
point under each step is always the center of a region, lateral
deviations do not accumulate over multiple steps.
We now prove the condition of safety with respect to foot
locations. We know that the maximum deviation of the foot
position from the center of a targeted 2D grid region is
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bounded by �y1,max + �y2,max. Therefore, the range of
potential foot locations is bounded by a circle with radius
�y1,max+�y2,max. If the circle for a PIMDP state intersects
with a violating region, the PIMDP state is violating. Then,
by including these new violating states in the graph pruning
method detailed in Algorithm 1, we can again use Theorem
1 to guarantee that the robot will never step in a violating
region. Figure 3 illustrates these safety conditions.

Theorem 2 can be applied to guarantee safety of the PIMDP
planner in the presence of low-level full-body kinematic con-
straints and in particular to the special case of the backward
step action in the IMDP-BL (i.e., action “S” in Equation 6).
Physically, this motion is executed through a “turn-in-place”
sequence wherein the robot performs a predefined series of
steps in place to change its yaw angle 180� and then take a
forward step to the desired location. Extending the arguments
in Theorem 2, the safety of this “turn-in-place” sequence
corresponds to the condition that there exists no violating
region within radius �y1,max +�y2,max of the region from
which the turn will be initiated, since each step during the
turn has a target waypoint corresponding to the center of the
initial region with an increment only in the yaw angle.

An alternative approach for obtaining safety guarantees
while considering low-level legged kinematic constraints
would be to discretize the 2D grid environment in a coarser
fashion, allowing for the foot positions to always remain
in the same region as the robot CoM. This would also
necessitate the use of IMDP-BL states with a longer se-
quence of actions corresponding to, e.g., predefined multi-
step sequences. However, we choose to focus on scenarios
with fine grid-world discretizations in order to showcase the
level of precision available with our proposed approach and
to illustrate our algorithms on an IMDP-BL structure that
explicitly accounts for legged kinematic constraints.

VII. Case Study
We demonstrate our methodologies utilizing the Digit
bipedal robot from Agility Robotics [4]. The Digit robot
weighs 45 kg and has 16 degrees of freedom: three joints in
each arm (shoulder roll and pitch, elbow), and five in each
leg (hip roll, pitch, and yaw, knee, and ankle).

We consider an environment discretized as a 10x10 grid
region as shown in Figure 4, with each square region having
a side length of 0.2 meters. Each region is divided into 24
yaw angle bins which are 15� wide. For each grid region
and yaw angle bin combination, there exists two IMDP-BL
states: one for a left-foot contact state, and one for a right-
foot contact state. At each IMDP-BL state, the robot has up
to four potential actions. First, the robot can walk forward
along its current yaw 0.4 meters (two regions forward) or
turn around and walk backward 0.4 meters (two regions
backward). Additionally, in left-foot states the robot can turn
right 15� and step 0.4 meters (two regions forward and one
region right), and in right-foot states the robot can turn left

Hazard
Goal

Start

FIGURE 4. Illustration of the first case study results. The objective is to
avoid the red hazard states and reach the green goal state. The robot
starts at the bottom-left blue state and walks along the lower half of the
environment, sampling the terrain elevation and model uncertainty until it
is confident enough to traverse further up the environment and eventually
reach the goal. The cyan stars correspond to footsteps, and each color of
dots/trajectories corresponds to a sampling batch.

15� and step 0.4 m (two regions forward and one region
left). In all cases, the discrete IMDP-BL action targets the
center of the IMDP-BL state which is closest to the target
point under these parameters. Finally, actions which would
lead outside the boundaries of the environment are removed.
Note that this formulation, which accounts for bipedal legged
kinematic constraints, restricts the motion trajectories of the
robot considerably as compared to, e.g., a mobile robot
which can target any adjacent state during grid cell transition.

We assume that the terrain elevation varies continuously
within [�0.1, 0.1]m in the environment, and construct a yaw
perturbation for each step which is a nonlinear function of
the commanded action as well as the terrain elevation error
between the robot’s estimation and ground truth.

A. Reach-Avoid Case Study
First, we consider a reach-avoid specification wherein the
robot must reach a goal state while avoiding hazard states,
written as the LTL specification

�1 = ¬Haz U Goal. (25)

To illustrate the effectiveness of our approach under highly-
perturbed conditions, we assume a priori that the learnable
motion perturbations can cause the robot to deviate up to
15� in yaw angle from its target during each step, along
with up to an additional 10� of perturbation due to bounded
stochastic noise, which we take as a zero mean, �⌫ = 2.5�

standard deviation Gaussian truncated at ±10� = 4�⌫ . This
gives an initial probability of satisfaction of 0.18.

Figure 4 shows the results of the case study simulation.
The robot initially cannot safely traverse through the ob-
stacles so it traverses the lower half of the environment,
training its GPs until it gains enough confidence to reach the
upper half of the environment. From there, after collecting
more samples, the probability of satisfaction P̌max exceeds
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the desired threshold Psat = 0.99, and the robot is able to
successfully reach the goal.

The simulation was run using Georgia Tech’s PACE com-
puting infrastructure [61]. Using a 24-core Intel Xeon Gold
6226 CPU and a RTX-6000 GPU with 32 GB of memory,
the complete algorithm took 24 minutes 28 seconds to run,
comprised of four iterations of the batch sampling. The initial
sampling batch had four steps to allow the robot to gain a
baseline understanding of the environment, and subsequent
batches consisted of eight steps to gather more data.

B. Intermediate Persistence Case Study
Next, we consider a more complex scenario to demonstrate
the expressivity of the specifications considered. The spec-
ification is now for the robot to reach a goal state while
avoiding hazards and also returning to a set of “checkpoint”
regions at least once every three steps along its trajectories.
Written as a LTL specification, this task becomes

�2 =¬Haz U Goal ^ ¬(¬Checkpoint^ (26)
� ¬Checkpoint ^�� ¬Checkpoint)

Note that this specification effectively quadruples the size of
the PIMDP state space from 4800 states in the first case
study to 19200 states. In this case study, the number of
hazard states is reduced in order to maintain feasibility of
the problem under the checkpoint constraint; otherwise, the
parameters are the same as in the first case study.

Figure 5 shows the simulation results for this case study.
In this case, the trajectory of the robot is noticeably altered
from the first case study in order to favor “checkpoint” states
although the general structure of the environment remains
similar. As in the first case study, the robot traverses in the
safer lower region (with an initial probability of satisfying
the specification of 0.46) before collecting enough data to
move upwards and eventually reach the goal.

Although the hazard set has been reduced and there
exist many checkpoint states, the low-level legged kine-
matic constraints on the robot’s motion make this problem
challenging to solve. In particular, it is possible for the
robot to enter a non-checkpoint region in a configuration
such that it cannot reach a checkpoint region within the
next two steps, even if there exist such regions adjacent to
the robot’s position. Because the PIMDP planner performs
infinite-horizon control policy synthesis, states with these
nonobvious unsafe configurations are pruned, enforcing safe
robot trajectories. Thus, this case study illustrates both the
planning capabilities of our abstraction-based approach as
well as the unique challenges inherent to legged locomotion
systems as compared to, e.g., mobile robots. The complete
simulation run took 10 hours 11 minutes to run, with four
batches and 18 robot steps per batch. Thus, the curse of
dimensionality with regards to PIMDP state space size is
clearly illustrated, which will be addressed in future works.

Hazard
Goal

Start

Checkpoint

FIGURE 5. Illustration of the second case study results. The robot’s
objective is to avoid the red hazard states and reach the green goal state
while touching pink states every three steps or less along its trajectory. In
this case, the trajectory of the robot is altered from the reach-avoid case
study so that the robot is able to return to pink states, but it is still able to
train its GP models by traversing the safe lower half of the state space
until it is able to gain confidence to reach the goal state.

VIII. Discussion, Conclusion, and Future Work
In this work, we introduced a temporal-logic-based planner
for bipedal robot locomotion which allows for GP online
learning of system and environmental uncertainties. We first
formulated an IMDP model of bipedal locomotion which
produces control policies compatible with low-level legged
kinematic constraints. Additionally, we incorporated stacked
GP learning of correlated multi-source yaw and terrain
uncertainty. Furthermore, we developed a safe learning pro-
cedure which allows a robot to traverse its environment
while respecting complex LTL specifications. Finally, we
demonstrated the simulation case study results of our al-
gorithms on reduced-order PIPM bipedal dynamics. Our
approach intersects the fields of formal methods, learning,
and locomotion in order to perform planning with respect to
complex specifications on robots with nonlinear, high-DOF
dynamics in highly uncertain environments.

Our work lays the theoretical and algorithmic founda-
tions for the application of temporal-logic-based planning
techniques onto legged locomotion systems. In particular,
we demonstrate an approach which synthesizes high-level
control policies that are compatible with low-level bipedal
locomotion kinematic constraints. Our future work will focus
on physical hardware implementation. We note that there
remain several technical challenges in order to translate
the simulation results in this work onto physical hardware
experiments. Among these are the need to develop a robust
low-level controller to track the desired reduced-order PIPM
trajectory and the need for experimental characterizations
of the motion perturbations experienced by the Digit robot,
which are the subject of ongoing research [51]. Additionally,
future works will address the computational complexity as-
sociated with our algorithms, in particular finding techniques
to reduce the effect of the curse of dimensionality associated
with abstraction-based techniques.
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