
Local-Global Interval MDPs for Efficient Motion

Planning with Learnable Uncertainty

Jesse Jiang, Ye Zhao, and Samuel Coogan

Abstract— We study the problem of computationally effi-

cient control synthesis for Interval Markov Decision Processes

(IMDPs), that is, MDPs with interval uncertainty on the tran-

sition probabilities, against tasks specified in linear temporal

logic. To address the scalability challenge when synthesizing this

control policy in a holistic way, we propose decomposing the

monolithic global IMDP into a collection of interconnected local

IMDPs. We focus on the problem of robotic motion planning.

Specifically, we assume a setting in which the transition proba-

bilities can be learned and their interval uncertainty reduced by

observing the dynamics of the system at runtime. This creates

an objective of exploration to ensure that the planning task can

be completed with sufficient probability of success. We perform

decoupled exploration and learning on the local IMDPs and

then combine local control policies to guarantee global task

satisfaction. In a simulation-based case study, we show that,

compared to existing approaches, our proposed decomposition

leads to faster learning and satisfaction of the planning task and

provides a feasible controller when other methods are infeasible.

I. INTRODUCTION

Markov Decision Processes (MDPs) have been widely
used for robotic motion planning tasks [1], [2]. In par-
ticular, abstraction-based planning methods utilizing MDPs
are applied to tasks specified using the language of Linear
Temporal Logic (LTL) [3], [4]. More recently, Interval MDPs
(IMDPs) have been explored in the literature to model
stochastic or uncertain dynamics [5]–[7]. Gaussian process
(GP) [8] learning of uncertainties has proven especially well-
suited for IMDP planning approaches [9]. In robotics, GP
learning has been applied effectively to quantify environ-
mental uncertainty such as terrain variation [10], [11].

A major challenge with abstraction-based control synthesis
techniques is the curse of dimensionality arising from the
poor scaling of these algorithms with the size of the state
space [12], [13]. One approach that has been proposed to
address this problem for MDPs is the use of partitioning
[14] to reduce computational burden. Another approach is
the hierarchical MDP [15], [16], which further abstracts the
MDP to improve scaling with problem size.

In this work, we propose a novel local-global IMDP frame-
work to enable computationally efficient motion planning

This work was supported in part by the National Science Foundation
under grant #1924978 and by the National Science Foundation Graduate
Research Fellowship under grant #DGE-2039655.

Jesse Jiang and Samuel Coogan are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: jjiang@gatech.edu, sam.coogan@gatech.edu). S. Coogan is
also with the School of Civil and Environmental Engineering.

Ye Zhao is with the School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, GA 30332 USA (e-mail: ye.zhao@me.gatech.edu).

(a) (b)

Fig. 1. Visualization of the problem setup with robotic motion planning
motivation. (a): The unknown terrain elevation which results in motion
perturbation is overlaid over the 2D x–y plane which depicts the grid used
for IMDP abstraction and motion planning. (b): The graph representation of
the LG-PIMDP is shown. Computations are performed on the local regions
enclosed in boxes, with PIMDP states represented as circles. Interactions
between the regions are captured by the edges which cross region borders.

on robotic systems with formal guarantees on system be-
haviors with respect to complex specifications. We consider
a scenario in which unknown environmental features create
control error and thus uncertainty in the system dynamics,
and the objective is to learn the uncertainties and satisfy
LTL specifications with sufficient probability. Our specific
contributions are as follows:

• We propose a control policy synthesis algorithm which
operates on local regions of the state space for compu-
tational efficiency. We then combine these local control
policies such that we obtain global guarantees on a robot
satisfying LTL task specifications.

• We use local GPs to learn state-dependent motion
perturbations. As opposed to using a single GP to learn
global motion perturbations, local GPs allow for ex-
ploitation of environments with local regions of varying
uncertainty in the environment.

• We evaluate the effectiveness of our framework on sim-
ulation examples and compare to baseline approaches.

The structure of the remainder of the paper is as follows.
In Section II, we introduce the tools used in our approach
and briefly summarize our previous work on global control
policy synthesis for IMDPs which serves as a baseline of
comparison for this work. We then define our problem setup
in Section III. In Section IV, we explain the local control
policy synthesis algorithm performed on individual regions
of the state space, and in Section V we detail a methodology
to combine these local control policies and prove that we
obtain global system behavior guarantees. Finally, in Section

VI we show simulation results of our methodology and
provide an ablation study to show its effectiveness.

II. PRELIMINARIES

Consider a robotic system with a data-driven controller
modeled using the discrete-time dynamics

x[k + 1] = f(x[k], u[k]) + g(x[k], u[k]) + ⌫[k] (1)

where x 2 X is the state of the system, u 2 U is the control
input, f represents the known dynamics of the system, g

models perturbations arising from controller imperfections,
and ⌫ is stochastic noise with stationary, symmetric, and
unimodal distribution ⇢⌫ which is independent in each di-
mension, zero mean, and has bounded support. For the
remainder of this paper, we will use a mobile robot case
study to motivate and explain the methodology.

We assume that the state space X is bounded and parti-
tioned into hyper-rectangular regions {Xq}q2Q:

Xq = {x | aq x bq} ⇢ X, (2)

where the inequality is taken elementwise for lower and
upper bounds aq, bq 2 Rn and Q is a finite index set of
the regions.

Tasks are specified using Linear Temporal Logic (LTL).
Definition 1 (Linear Temporal Logic [17, Def. 2.1]):

A linear temporal logic (LTL) formula � over a set of
observations O is recursively defined as

� => | o | ¬o | �1 ^ �2 | �1 _ �2 | � � |
�1U�2 | ⌃� | ⇤� | �1 ! �2 | �1 $ �2

where o 2 O is an observation and �, �1, and �2 are LTL
formulas. We define the next operator � as meaning that �
will be satisfied in the next state transition, the until operator
U as meaning that the system satisfies �1 until it satisfies �2,
the eventually operator ⌃� as >U�, and the always operator
⇤� as ¬⌃¬�. Finally, we have that �1 ! �2 = ¬�1 _ �2

and �1 $ �2 = (�1 ! �2) ^ (�2 ! �1).
The satisfaction of LTL formulas can be checked using

deterministic Rabin automata (DRA) [17, Def. 2.7].
Definition 2 (Deterministic Rabin Automaton): A deter-

ministic Rabin automaton is a tuple R = (S, s0, O, �, F),
where

• S is a finite set of states,
• s0 ⇢ S is a singleton initial state,
• O is the input alphabet, which corresponds to the set of

observations from the LTL formula,
• � : S ⇥ O ! 2S is a transition map which is either ;

or a singleton for all s 2 S and o 2 O, and
• F = {(G1, B1), · · · , (Gn, Bn)}, where Gi, Bi ✓

S, i = 1, 2, · · · , n is the acceptance condition.
The semantics of a Rabin automaton R are defined

over infinite input words in O
! (the set of infinite se-

quences of observations). A run of R over an infinite
word wO = wO(1), wO(2), wO(3) · · · 2 O

! is a sequence
wS(1)wS(2)wS(3) · · · 2 S

! , where wS(1) = s0 and wS(k+
1) = �(wS(k), wO(k)) for all k � 1. A run wS admits a

set inf(wS) = {wS(i) : 8m 2 N 9k > m s.t. wS(k) =
wS(i)}, defined as the set of observations in wS which
appear infinitely often. Then, a run wS is accepted by R
if inf(wS) \ Gi 6= ; ^ inf(wS) \ Bi = ; for some i 2
{1, · · · , n}. If wS is accepted by R, we say that wS |= R.

We use Interval Markov Decision Processes to abstract the
system dynamics.

Definition 3 (Interval Markov Decision Process): An In-
terval Markov Decision Process (IMDP) is a tuple I =
(Q,A, Ť , T̂ , Q0, O, L) where:

• Q is a finite set of states,
• A is a finite set of actions,
• Ť , T̂ : Q⇥A⇥Q �! [0, 1] are lower and upper bounds,

respectively, on the transition probability from state q 2
Q to state q

0 2 Q under action ↵ 2 A,
• Q0 ✓ Q is a set of initial states,
• O is a finite set of atomic propositions or observations,
• L : Q �! O is a labeling function.
For our setting, the set of IMDP states Q corresponds

to the set of hyper-rectangular regions {Xq} of the state
space such that IMDP state q abstracts hyper-rectangular
region Xq . Then, the set of actions A also corresponds to the
hyper-rectangular regions of the state space, i.e., the action
↵q targets the center of region Xq . However, due to system
uncertainty, the robot may be perturbed from its targeted
point. We use methods proposed in [18], [19] to learn the
motion uncertainties using Gaussian processes (GP) [8] and
map learned bounds of the motion perturbations onto the
transition probability intervals of an IMDP.

For control policy synthesis, we combine an IMDP with
the DRA of the LTL specification to form a product IMDP.

Definition 4 (PIMDP): Let I = (Q,A, Ť , T̂ , Q0, O, L)
be a IMDP and A = (S, s0, O, �, F) be an DRA. The product
IMDP (PIMDP) is defined as a tuple P = I ⌦A =
(Q⇥ S,A, Ť

0
, T̂

0
, Q⇥ s0, F

0), where
• Ť

0 : (q, s)⇥A⇥(q0, s0) := Ť (q,↵, q0) if s0 2 �(s, L(q))
and 0 otherwise (where ↵ 2 A is an IMDP action),

• T̂
0 : (q, s)⇥A⇥(q0, s0) := T̂ (q,↵, q0) if s0 2 �(s, L(q))

and 0 otherwise,
• (q0, �(s0, L(q0))) 2 (Q0 ⇥ S) is a set of initial states

of I ⌦A, and
• F

0 = Q ⇥ F = {Q ⇥ (G1, B1), · · · , Q ⇥ (Gn, Bn)},
where Gi, Bi ✓ S is the ith acceptance condition.

We next define the control policies we consider.
Definition 5 (Control Policy): A control policy ⇡ 2 ⇧ of

a PIMDP is a mapping (Q⇥ S)+ �! A, where (Q⇥ S)+ is
the set of finite sequences of states of the PIMDP.

The transition probability intervals in PIMDPs resulting
from learnable uncertainties are resolved at planning time
using adversaries.

Definition 6 (PIMDP Adversary): Given a PIMDP state
(q, s) and action ↵, an adversary ⇠ 2 ⌅ is an assignment
of transition probabilities T

0
⇠

to all states (q0, s0) such that

Ť
0((q, s),↵, (q0, s0)) T

0
⇠
((q, s),↵, (q0, s0))

 T̂
0((q, s),↵, (q0, s0)).

In particular, we use a minimizing adversary, which realizes
transition probabilities such that the probability of satisfying
the specification is minimal, and a maximizing adversary,
which maximizes the probability of satisfaction.

A. Global Control Policy Synthesis

We give a brief overview of the global control policy
synthesis algorithm for IMDPs detailed in our previous works
[18], [19]. We will refer to this baseline as “Global VI,
Global GP” later in this work. We consider two distinct
objectives. First, we want to synthesize a control policy
which allows a robot to traverse its state space without violat-
ing LTL specification �, thus sampling and learning system
uncertainties using a global GP. Then, once the uncertainties
have been learned sufficiently to make � feasible, we want
to synthesize a control policy to satisfy �.

For the first objective, a value iteration algorithm [20] is
first performed with respect to a maximizing adversary to
determine the probability of satisfying � from each state.
States which have probability zero are considered violating.
Then, a graph pruning algorithm is used to find a global
control policy which avoids transitions to violating states.

For the second objective, global value iteration is per-
formed with respect to a minimizing adversary to determine
the probability of satisfying � from each state. The control
policy is then synthesized by selecting the action at each state
which produces the maximum probability of satisfaction.

III. PROBLEM SETUP

We now explain the problem we address in the remainder
of the paper. We consider a scenario in which a robot
modeled by (1) has a task given as LTL specifications.
However, there exist state-dependent motion perturbations
which we seek to learn with GPs. Additionally, we assume
that there exists a priori knowledge of local variation in
the perturbations which should be leveraged for more ef-
ficient learning. This assumption can be relaxed by learning
the local uncertainty regions online through hyperparameter
tuning of local GPs, although that is not explored in this
work. Figure 1(a) illustrates an example of the types of
environments we consider.

Our ultimate goal is to synthesize a high-level control pol-
icy which allows the robot to satisfy the LTL specifications
while learning and accounting for motion perturbations.

Problem 1: Synthesize a computationally efficient control
policy for the system (1) to satisfy LTL specifications by
learning and reducing system uncertainties.
To improve the speed of the computations and incorporate
knowledge of regions with varying perturbation characteris-
tics, we want an algorithm which can perform calculations
on sub-regions of the state space using local data:

Subproblem 1.1: Develop an algorithm which reduces
computation time by performing calculations on sub-regions
of the state space using localized data.
Then, we need to combine these local calculations in a man-
ner which gives global guarantees on LTL task satisfaction:

Subproblem 1.2: Use the local calculations generated by
the algorithm solving Subproblem 1.1 to synthesize a control
policy with global guarantees on LTL task satisfaction.

Solving Subproblems 1.1 and 1.2 solves Problem 1.

IV. LOCAL-GLOBAL PIMDPS

In this section, we detail the local-global PIMDP structure
which we use to perform control policy synthesis.

A. Partition Structure
We first define the union and intersection of PIMDPs.
Definition 7 (Union of PIMDPs): Let P = {P0, ...,Pn}

be a set of PIMDPs, where each PIMDP Pi has a set of
states Qi ⇥Si and a set of actions Ai. Then, the union

S
P

is a PIMDP with tuple (Q⇥S,A, Ť
0
, T̂

0
, Q⇥ s0, F

0), where
• Q⇥S = {(q, s)|(q, s) 2 Qi⇥Si} for some i 2 1, · · · , n,
• A = {↵|↵ 2 Ai} for some i 2 1, · · · , n,
• Ť

0
, T̂

0
, Q⇥s0, F

0 follow from Definition 4 given Q⇥S

and A.
Thus, the union of PIMDPs can be thought of as a PIMDP

which contains the union of the states and actions of the
individual PIMDPs. Similarly, we can define the intersection
of PIMDPs as a PIMDP which contains the intersections of
the states and actions of the individual PIMDPs.

Definition 8 (Intersection of PIMDPs): Let P =
{P0, · · · ,Pn} be a set of PIMDPs, where each PIMDP
Pi has a set of states Qi ⇥ Si and a set of actions
Ai. Then, the intersection

T
P is a PIMDP with tuple

(Q⇥ S,A, Ť
0
, T̂

0
, Q⇥ s0, F

0), where
• Q⇥ S = {(q, s)|(q, s) 2 Qi ⇥ Si} for all i 2 1, · · · , n,
• A = {↵|↵ 2 Ai} for all i 2 1, · · · , n,
• Ť

0
, T̂

0
, Q⇥s0, F

0 follow from Definition 4 given Q⇥S

and A.
Finally, given PIMDPs P⇤ and P 0 which are subsets of

a global PIMDP Pglobal = ((Q ⇥ S)g, Ag, Ť
0
g
, T̂

0
g
, (Q ⇥

s0)g, F 0
g
), we define P⇤ and P 0 to be neighbors if there exists

a state in P⇤ which has a corresponding action in Pglobal

with nonzero upper bound probability of transitioning to a
state in P 0 and vice versa.

We define a Local-Global extension of Pglobal as follows.
Definition 9 (Local-Global PIMDP): A Local-Global

PIMDP (LG-PIMDP) extension of a PIMDP Pglobal is a
tuple P = (Psub,N), where

• Psub is a set of PIMDPs such that
S

Psub = Pglobal

and
T
{P 0

,P⇤} = ; 8P 0
,P⇤ 2 Psub, P 0 6= P⇤ ,

• N ✓ Psub ⇥ Psub is a set of neighbor PIMDPs such
that (P 0

,P⇤) 2 N =) (P⇤
,P 0) 2 N , i.e. the edges

are undirected.
Figure 1(b) shows an example of a LG-PIMDP.

B. Local Control Policy Synthesis
Given a LG-PIMDP P, we now detail a local control

policy synthesis methodology for PIMDPs in its set of
regions Psub. Following the exposition in [18], [19], we
consider two control policy objectives. Initially, the given
LTL specification � may be infeasible due to the high level
of motion uncertainties throughout the environment. Thus,

0 1

0.616 0.781

0 1

0.563 0.75

(a) Global VI (b) Local VI

Fig. 2. Toy example comparing local and global control policy synthesis
strategies. The blue state is the start, the brown state is a hazard, and the
green state is the goal. Numbers on states indicate the final calculated
satisfaction probability. (a): The global value iteration (VI) evaluates the
satisfaction probabilities of all states simultaneously through VI with a 4x4
matrix of transition probabilities. (b): The local VI evaluates the satisfaction
of the states sequentially beginning from the goal state and proceeding
recursively through the neighbor states.

the robot must first traverse the environment using a control
policy ⇡samp without violating �. Once the robot has learned
its motion uncertainties sufficient to make � feasible, a
satisfying control policy ⇡sat must be synthesized.

For each local region Pi 2 Psub with tuple ((Q ⇥
S)i, Ai, Ť

0
i
, T̂

0
i
, (Q ⇥ s0)i, F 0

i
), we synthesize a local safe

sampling control policy ⇡samp,i, i.e., one which avoids states
which are guaranteed to violate �, as follows. We first define
an augmented PIMDP P 0

i
which has states

(Q⇥ S)0
i
={(q, s)|(q, s) 2 (Q⇥ S)i}

[
(3)

{(q0, s0)|Ť 0
g
((q⇤, s⇤),↵, (q0, s0)) > 0}

for some (q⇤, s⇤) 2 (Q⇥ S)i,↵ 2 Ai.

Intuitively, P 0
i

augments Pi with states it can potentially
transition to in one step given the set of corresponding actions
in Pglobal. The external states are set to self-transition with
probability 1, i.e., they are sink states.

Then, the sampling policy ⇡samp,i can be obtained by
first running value iteration with a maximizing adversary
on P 0

i
and identifying violating states (q, s)viol with sat-

isfaction probability P
�

sat
= 0. Next, we iteratively prune

any state-action pairs ((q, s),↵) 2 ((Q ⇥ S)i, Ai)) with
T̂

0((q, s),↵, (q, s)viol) > 0 until none remain. The remaining
actions at each state (q, s) 2 (Q⇥S)i are safe and the union
of all such actions is ⇡samp,i. The maximizing adversary
allows the robot to target states which may have P

�

sat
= 0

under other adversaries, a design choice allowing the robot
to maximize information gain by exploring uncertain states.

For the local control policy ⇡sat,i in region Pi to satisfy
the LTL specification, we can perform a similar operation,
forming the augmented PIMDP P 0

i
and performing value

iteration on the augmented PIMDP using a minimizing
adversary. The control policy for each state (q, s) 2 (Q⇥S)i
selects the optimal action

↵
⇤ = arg max

↵2Ai

P
�

sat
((q, s),↵), (4)

where P
�

sat
((q, s),↵) is the probability of satisfying � from

state (q, s) after taking action ↵. Here, the minimizing
adversary ensures that P�

sat
((q, s),↵⇤) is a lower bound on

the true P
�

sat
at each state.

For each PIMDP, the transition probability intervals are
generated according to the uncertainty from a GP as in
Theorem 1, [18]. In particular, we use local sparse GPs
trained on data collected within their respective PIMDP
regions. This differs from the approach in [18], [19] where
a single global GP was used to learn uncertainties.

Theorem 1 provides behavior guarantees on the local
control policy synthesis algorithms detailed in this section,
solving Subproblem 1.1.

Theorem 1 (Local Behavior Guarantees): A robot with
LTL specification � and executing control policy ⇡samp,i

generated by the algorithms in Section IV-B traverses only
nonviolating states while in the local region P 0

i
. When exe-

cuting the policy ⇡sat,i, the robot maximizes its probability
of satisfying � from states in P 0

i
.

Proof: We first examine ⇡samp,i. The algorithm first initial-
izes the probability of satisfaction for states in Pi to be 0
unless the state is contained in the accepting region F

0
i
, in

which case the probability of satisfaction is fixed at 1. Then,
the algorithm identifies an augmented PIMDP P 0

i
. Assume

that the external states {(q0, s0)|Ť 0
i
((q⇤, s⇤),↵, (q0, s0)) >

0} \ (Q⇥ S)i have valid probabilities of satisfaction:

max
↵2Ai

P
�

sat
((q0, s0),↵) P

�

opt
(q0, s0), (5)

where P
�

opt
(q0, s0) is the true probability of satisfaction. This

assumption is addressed in Section V. Let P̂
�

sat,k
be the

probability of satisfaction calculated for an arbitrary state in
P 0
i

at the kth step of value iteration given this assumption,
and let P̂�

opt,k
correspond to the case when the external states

are initialized at the optimal values

max
↵2Ai

P
�

sat
((q0, s0),↵) = P

�

opt
(q0, s0), (6)

Then, consider the value iteration algorithm as described in
[20]. Initially (for step k = 0) it holds trivially that P̂�

sat,0
P̂

�

opt,0 for all states in P 0
i
. If at the kth step P̂

�

sat,k
 P̂

�

opt,k
,

it holds that P̂�

sat,k+1 P̂
�

opt,k+1 at the next step since the
value iteration operations are monotone with respect to the
current state values. By induction, at any step of the value
iteration it holds for all states (q, s) 2 P 0

i
that

max
↵2Ai

P
�

sat
((q, s),↵) P

�

opt
(q, s), (7)

i.e. the calculated probabilities of satisfaction are underap-
proximations of the true values. It follows that this algorithm
identifies all the true violating states (q, s)viol with P

�

opt
= 0.

Then, by pruning actions transitioning to the violating states,
the set of allowable actions Aq,s ✓ ⇡samp,i at any state
(q, s) 2 P 0

i
has the property

T̂
0((q, s),↵, (q, s)viol) = 0 8↵ 2 Aq,s (8)

Therefore, when executing ⇡samp,i in P 0
i
, the robot is guar-

anteed to remain in nonviolating states.
The proof of the guarantees for ⇡sat,i follows similarly.

Assume the external states {(q0, s0)|Ť 0
i
((q⇤, s⇤),↵, (q0, s0)) >

0} \ (Q⇥ S)i in the augmented PIMDP P 0
i

satisfy

max
↵2Ai

P
�

sat
((q0, s0),↵) P

�

opt
(q0, s0). (9)

Then, at any step of value iteration with a minimizing
adversary, the relation

max
↵2Ai

P
�

sat
((q, s),↵) P

�

opt
(q, s). (10)

holds for all states (q, s) 2 P 0
i
. Therefore, the computed P

�

sat

for any state in P 0
i

is valid, and by construction ⇡sat,i selects
the probability-maximizing action at each state.

We now present a toy example to illustrate our algorithms:
Example 1 (Simple Grid World): Consider the system

shown in Figure 2, which has four states: the blue start
state, the brown hazard state, the green goal state, and
an unlabeled state. The LTL specification � is to reach
the goal state while avoiding the hazard state. Each state
has two actions, each of which targets one of its two
border states. Each action has a lower bound and upper
bound probability [0.75, 1] of reaching its target state,
and probability [0, 0.2] of reaching each one of the other
three states. In Figure 2(a), global value iteration (as in
[18], [19]) is used which involves repeated matrix-vector
multiplication of dimension 4. The P

�

sat
for each state is

taken as the final computed satisfaction probability for the
state when the value iteration converges. In Figure 2(b),
local value iteration as proposed in this work is used with
each state as its own region for control policy synthesis.
For each local region, a P

�

sat
is computed by selecting the

probability-maximizing action and taking its corresponding
satisfaction probability, an operation which requires only a
single matrix-vector multiplication.

V. GLOBAL CONTROL POLICY SYNTHESIS

Given the LG-PIMDP P and local control policy synthesis
algorithms established in Section IV, it remains to develop
an algorithm to combine local control policies to provide
global guarantees of task satisfaction.

We first detail a global control policy synthesis algorithm
⇡samp to safely traverse the state space while learning
uncertainties. The key idea is to order the local partition
calculations in such a way as to guarantee the correctness
of the set of nonviolating states identified. Our algorithm
is as follows. We begin with the regions Pi which contain
accepting states of the LG-PIMDP, i.e. F

0
i
6= ;. We then

form the augmented PIMDP ⇡samp,i and perform value
iteration as in Section IV, initializing the neighbor states
{(q0, s0)|Ť 0

i
((q⇤, s⇤),↵, (q0, s0)) > 0} \ (Q ⇥ S)i with prob-

ability P
�

sat
= 0. Then, we identify the neighbor set

{Pj |(Pi,Pj) 2 N} (11)

and add these neighboring regions to a first-in-first-out queue
R. For each region Pj in the queue, we repeat the local
control policy synthesis algorithm and add its neighbors
which have not been processed already to the end of the
queue R. We continue this sequeunce until R = ;, at which
point the entire LG-PIMDP has been processed. The final
control policy is synthesized as

⇡samp =
[

{i|Pi2Psub}

⇡samp,i (12)

Algorithm 1: Safe Control Policy Synthesis
Input: LG-PIMDP P, Accepting PIMDP set G
Output: Global control policy ⇡samp

1 Initialize Processing Queue R, Completed Set U;
2 for PIMDP P 2 G do

3 Synthesize local control policy ⇡samp,P as in
Section IV-B with external augmented states
fixed with satisfaction probability 0;

4 Add unprocessed neighbor set
{P 0|(P,P 0) 2 N} \U to the end of queue R;

5 Add P to completed set U;
6 end

7 while R 6= ; do

8 Remove first PIMDP P from R;
9 Synthesize local control policy ⇡samp,P for P

with current information from external
augmented states;

10 Add unprocessed neighbor set
{P 0|(P,P 0) 2 N} \U to the end of queue R;

11 Add P to completed set U;
12 end

13 return ⇡samp =
S

{i|Pi2Psub} ⇡samp,i

Algorithm 1 details the methodology.
The global control policy synthesis algorithm to satisfy �

follows a similar structure. We again begin with the accepting
regions {Pi|F 0

i
6= ;}, performing local value iteration and

control policy synthesis to obtain ⇡sat,i as in Section IV-B.
We then add the neighbor set {Pj |(Pi,Pj) 2 N} to the end
of the queue R to be processed and continue performing
local control policy synthesis until R = ;, at which point
we generate

⇡sat =
[

{i|Pi2Psub}

⇡sat,i. (13)

Theorem 2 proves that the global control policy synthesis
algorithms presented in this section give global guarantees
on LTL task satisfiability, solving Subproblem 1.2.

Theorem 2 (Global Behavior Guarantees): Executing
⇡samp generated by Algorithm 1 ensures that the robot does
not violate the LTL specification � anywhere in the state
space if a nonviolating policy exists. Likewise, executing
⇡sat guarantees that the robot maximizes its probability of
satisfying � globally.

Proof: The proof follows generally from the proof of
correctness of the local control policy synthesis algorithms
established in Theorem 1. We first examine the safe control
policy ⇡samp generated by Algorithm 1. We initially run
the local control policy synthesis algorithm on the accepting
regions {Pi|F 0

i
6= ;}. Since we assume that accepting states

(q⇤, s⇤) are absorbing and thus

max
↵2Ai

P
�

sat
((q⇤, s⇤),↵) = 1, (14)

it follows that

P
�

sat
(q⇤, s⇤) P

�

opt
(q⇤, s⇤) (15)

since probabilities are bounded above by 1. All other states
are initialized with probability 0, so Equation (15) holds
for all states in Pi and by Theorem 1 we know that the
local value iteration in Pi produces valid values for all P�

sat
.

Once the initial regions have been processed, we proceed
to perform local control policy synthesis on the neighbors
{Pj |(Pi,Pj) 2 N}. By definition, these neighbors transition
to states in the initial set {Pi|F 0

i
6= ;}, so local value

iteration on the Pj satisfies the assumption (5) in Theorem 1
and the local value iterations are valid. Thus, by recursively
performing local control policy synthesis on neighbor sets as
in Algorithm 1, we guarantee the safety of each local control
policy ⇡samp,i by using guarantees from the previously
computed regions. Since ⇡samp,i is valid for all i, it follows
that ⇡samp =

S
{i|Pi2Psub} ⇡samp,i is also valid. A similar

argument holds for the validity of ⇡sat.
Example 2 (Simple Grid World Continued): We continue

illustrating our methodology using the same setup as in
Example 1. We compare the global control policy synthesis
algorithms to generate ⇡sat shown in Figure 2. In Figure 2(a),
global value iteration is used which takes eight iterations to
converge to the values shown in the figure. In Figure 2(b),
local value iteration is used which starts at the goal state and
then proceeds sequentially to neighbor regions as depicted
by the arrows. In this case, only four total computations
are needed, two of which are trivial (the goal and hazard
states). The final P�

sat
values in the local VI case are more

conservative than in the global VI case, illustrating a tradeoff
between computational complexity and accuracy.

A. Complete Control Policy Synthesis Framework

We can now present the complete methodology to solve
Problem 1. We start by constructing a LG-PIMDP P of the
system (1), environment, and a given LTL specification �.
The true motion perturbation is initially unknown but is
estimated with local GPs based on conservative estimates
known a priori. The size of the regions corresponding to
local GPs is selected to balance computational tractability
and task feasibility. Smaller local regions are more computa-
tionally efficient, but result in more conservative satisfaction
probabilities as compared to larger local regions.

Next, we perform global control policy synthesis on P to
maximize the probability of satisfying �. If the probability
from the initial state is below a desired threshold P

�

des
,

we then synthesize a safe sampling control policy ⇡samp

using Algorithm 1. We execute this control policy (randomly
selecting actions if multiple are valid at a given state) for a
predetermined number of steps, allowing the robot to traverse
through the environment and collect actual motion perturba-
tion data. We then update the GPs corresponding to traversed
regions with the newly collected data and recalculate P

�

sat

globally. We continue sampling the state space and retraining
GPs until max↵2A P

�

sat
(q, s,↵) > P

�

des
at the current state

(q, s), or a maximum number of iterations has been reached.
This bound on the iteration count ensures termination in the
case that a satisfying control policy cannot be synthesized
for the given scenario. If � can be satisfied, we execute the

�
 �� �
 �� �

�

��

�

��

�

������
�
�
�
	

�

Fig. 3. Sample trajectory for one run of the case study simulation. Green,
yellow, and red regions correspond to areas with low, medium, and high
uncertainty, respectively. The initial state is in blue in the bottom left, the
target state is green in the top right, and the hazard regions are brown. There
are intermediate “A1” and “A2” states in purple, “A2” in the top left and
“A1” in the bottom right, and the “B” state is orange in the top middle.
The robot initially samples close to its start region until it learns the motion
perturbations sufficiently well to traverse to the top left area. Once there,
the robot traverses across to reach the “A2”, “B”, and goal states.

control policy ⇡sat until the robot reaches an accepting state.

VI. CASE STUDY

Consider a mobile robot in a state space depicted in
Figure 3 with bounds x 2 X := [0, 25]2 ⇢ R2. At each
discrete state, the robot has actions corresponding to moving
{up, down, left, right} one state. We assume that terrain
uncertainty in the environment creates motion perturbations,
and we choose to directly learn the state-dependent motion
perturbations with GPs. For implementation purposes, the
true motion perturbation for regions with low, medium,
and high uncertainty (green, yellow, and red regions in
Figure 3, respectively) is created by sampling pregenerated
local GPs with variance 0.01, 0.03, and 0.05, and length
hyperparameter 7, 5, and 3, respectively. Intuitively, regions
with higher variance and lower length hyperparameter have
greater variation in perturbation values and thus require more
sampling to characterize. Additionally, there exists stochastic
motion perturbation ⌫ sampled from a truncated Gaussian
distribution N(0, 0.01) bounded at ±2�. The objective of the
robot is to reach the goal state “G” while avoiding hazard
“H” states. Additionally, before it reaches the goal, it must
traverse either the “A1” or “A2” states and then the “B” state.
This gives the LTL specification

� = ¬H U G ^ ¬G U B ^ ¬B U (A1 _ A2) (16)

Given these parameters, under our proposed methodology the
robot initially has a probability of 0.19 to satisfy the spec-
ification. The robot then executes the algorithm, collecting
batches of trajectory data and retraining its GP estimations
of the motion perturbation in between each batch before
continuing from its current position. In earlier batches, the

TABLE I
ABLATION STUDY OF THE PROPOSED ALGORITHM.

Algorithm Total Time (sec) # Steps

Our Method (Local VI, Local GP) 354 2759

Global VI, Local GP 1284 9499
Local VI, Global GP Infeasible Infeasible

Baseline (Global VI, Global GP) Infeasible Infeasible

robot remains within the low perturbation areas close to its
starting position, learning the local dynamics until it moves
towards the “A2” checkpoint in the top left of the state
space. Once the probability of satisfaction crosses the desired
threshold of 0.99, the robot takes the riskier but shorter
direct path across the top of the state space towards the “B”
checkpoint and finally the goal region. The robot is able to
follow this trajectory owing to its efficient learning of motion
perturbations in the top left area of the state space, allowing it
to safely pass through the high-uncertainty regions separating
the “A2” and “B” checkpoints. The entire algorithm takes a
total of 5 minutes 54 seconds to run on a machine with a
Ryzen 7700X CPU, 32 GB of RAM, and a RTX 3090 GPU.
Figure 3 shows the trajectory of the run discussed.

A. Ablation Study

We now perform an ablation study on the same sce-
nario to characterize the benefits of each component of
the proposed algorithm. We compare performance against a
baseline algorithm proposed in our previous works [18], [19]
which uses global value iteration (Global VI) and global GP
learning (Global GP), as well as against modified versions
of the algorithm in this work which remove one component
each (Global VI/Local GP, Local VI/Global GP). Table I
summarizes our findings, comparing total computation time
and the number of steps the robot required to satisfy the
LTL specification. The baseline case and the “Local VI,
Global GP” case are both infeasible due to the high levels of
uncertainty created by using global parameters for the GPs,
resulting in no valid safe sampling trajectory being found.
The “Global VI, Local GP” case finds a successful trajectory,
but requires four times the amount of time and number of
steps. In this case, the initial probability of satisfaction is
0.98, but the robot is less efficient in exploring towards the
goal as the robot tends to explore the space more uniformly
rather than moving along a trajectory of local regions towards
the goal as in the “Local VI, Local GP” case.

VII. CONCLUSION

In this work, we proposed a novel local-global method
to enable computationally efficient IMDP control policy
synthesis for robotic systems with system and environmental
uncertainty. We developed a methodology which performs
local control policy synthesis on sub-regions of the global
state space and then combines local policies to obtain global
guarantees on the probability of satisfying a given LTL
specification. Additionally, we proposed the use of local
GPs to learn uncertainties. Finally, we demonstrated the
effectiveness of our proposed algorithms compared to the

baseline global control policy synthesis algorithms developed
in previous works. Future work will implement these local-
global algorithms on hardware in order to demonstrate the
feasibility of online IMDP-based control policy synthesis.

REFERENCES

[1] K. Sreenath, C. R. Hill, and V. Kumar, “A partially observable
hybrid system model for bipedal locomotion for adapting to terrain
variations,” in Proceedings of the 16th International Conference on
Hybrid Systems: Computation and Control, ser. HSCC ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 137–142.

[2] K. Byl and R. Tedrake, “Metastable walking machines,” I. J. Robotic
Res., vol. 28, pp. 1040–1064, 07 2009.

[3] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning
for markov decision processes with co-safe ltl specifications,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 1511–1516.

[4] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-Based Probabilistic
LTL Motion Planning With Environment and Motion Uncertainties,”
IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2386–
2392, 2021.

[5] M. Dutreix, J. Huh, and S. Coogan, “Abstraction-based synthesis for
stochastic systems with omega-regular objectives,” Nonlinear Analy-
sis: Hybrid Systems, vol. 45, p. 101204, 2022.

[6] R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani, “Symbolic
qualitative control for stochastic systems via finite parity games.”
IFAC-PapersOnLine, vol. 54, no. 5, pp. 127–132, 2021, 7th IFAC
Conference on Analysis and Design of Hybrid Systems ADHS 2021.

[7] A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated
verification and synthesis of stochastic hybrid systems: A survey,”
Automatica, vol. 146, p. 110617, 2022.

[8] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for
regression,” in Advances in neural information processing systems 8.
MIT press, 1996, pp. 514–520.

[9] J. Jackson, L. Laurenti, E. Frew, and M. Lahijanian, “Strategy Syn-
thesis for Partially-known Switched Stochastic Systems,” Proceedings
of the 24th International Conference on Hybrid Systems: Computation
and Control, May 2021.

[10] A. H. Chang, C. M. Hubicki, J. J. Aguilar, D. I. Goldman, A. D.
Ames, and P. A. Vela, “Learning terrain dynamics: A gaussian process
modeling and optimal control adaptation framework applied to robotic
jumping,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 4, pp. 1581–1596, 2021.

[11] S. Vasudevan, F. Ramos, E. Nettleton, H. Durrant-Whyte, and A. Blair,
“Gaussian process modeling of large scale terrain,” in 2009 IEEE
International Conference on Robotics and Automation, 2009, pp.
1047–1053.

[12] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity
of solving markov decision problems,” in Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, ser. UAI’95. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, p.
394–402.

[13] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic mdp-behavior
planning for cars,” in 2011 14th International IEEE Conference on
Intelligent Transportation Systems (ITSC), 2011, pp. 1537–1542.

[14] D. Wingate, Solving large mdps quickly with partitioned value itera-
tion. Brigham Young University, 2004.

[15] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and
C. Boutilier, “Hierarchical solution of markov decision processes using
macro-actions,” arXiv preprint arXiv:1301.7381, 2013.

[16] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez, “Hierarchical solution
of large markov decision processes,” 2010.

[17] C. Belta, B. Yordanov, and E. GÖL, Formal Methods for Discrete-Time
Dynamical Systems, ser. Studies in Systems, Decision and Control.
Springer International Publishing, 2017.

[18] J. Jiang, Y. Zhao, and S. Coogan, “Safe learning for uncertainty-aware
planning via interval MDP abstraction,” IEEE Control Systems Letters,
vol. 6, pp. 2641–2646, 2022.

[19] J. Jiang, S. Coogan, and Y. Zhao, “Abstraction-based planning for
uncertainty-aware legged navigation,” IEEE Open Journal of Control
Systems, vol. 2, pp. 221–234, 2023.

[20] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal Verification and
Synthesis for Discrete-Time Stochastic Systems,” IEEE Transactions
on Automatic Control, vol. 60, no. 8, pp. 2031–2045, Aug. 2015.

