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This chapter considers the problems of verification and synthesis for
robotic systems with respect to complex tasks. In particular, a class of
problems will be considered in which uncertainties in both system dy-
namics as well as environmental perturbations result in in high risk of
failure. Abstraction-based methods are introduced which allow for com-
putationally tractable high-level task planning with formal guarantees
on the probability of task satisfaction. Then, Gaussian process learn-
ing techniques are incorporated into the abstraction model to enable
learning of the system and environmental uncertainties. Finally, con-
trol policy synthesis algorithms are introduced which allow the robot to
safely traverse its environment, learning the uncertainties online until
the task can be satisfied with sufficient guarantees.

1.1 Introduction

Abstraction-based approaches for verification and synthesis of dynami-
cal systems offer computationally tractable methods for planning with
respect to complex tasks [1, 2, 3, 4]. These approaches model contin-
uous and hybrid systems using discretized state space models, which
allow for the use of graph-[5] and optimization-based [6] planning al-
gorithms on the simplified state space with formal guarantees on the
behavior of the original dynamics. In particular, Interval Markov Deci-
sion Processes (IMDP) [5, 7, 8], which allow for an interval of transition
probabilities (and are also called Bounded Markov Decision Processes
or Uncertain Markov Chains depending on the context [9, 10]), pro-
vide a rich abstraction model for stochastic systems. As compared to
stochastic control [11], abstraction-based methods allow for more com-
plex specifications to be considered and have been widely used for hy-
brid stochastic systems [12].

The transition probability intervals in IMDP abstractions have typi-
cally modeled the uncertainty which arises from abstracting the dynam-
ics of continuous states in discrete regions [13]. Thus, best- and worst-
case bounds on the behavior of the original system can be obtained
through resolution of the uncertainty in the transition probability in-
tervals [14]. However, partially-known stochastic systems, which show
promise for modeling a wide range of real-world systems, add unknown
dynamics which contribute further uncertainty. Previous works model
this uncertainty by assuming that some prior data on the dynamics
are available [15]. However, this precludes the possibility of tightening
bounds on the behavior of the system as data is gathered online.
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The work [16] is the first to address the problem of modeling un-
known dynamics in stochastic hybrid systems via the use of IMDP ab-
straction in combination with Gaussian process (GP) regression [17].
GP regression can approximate unknown functions with arbitrary ac-
curacy given sufficient data samples [18], and crucially, it also provides
high-confidence bounds on the approximation uncertainty [19, 20, 21].

This chapter develops a method for sampling the unknown dynam-
ics of a robotic system online in order to reduce abstraction error and
increase the probability of satisfying a desired task. In particular, the
class of tasks which can be represented using syntactically co-safe linear
temporal logic (scLTL) specifications [5] will first be explored to illus-
trate the methodology. Then, the class of feasible task specifications
will be generalized to the entire expressivity of Linear Temporal Logic
(LTL) [22].

The goal is to find a control policy which guarantees the satisfaction
of a scLTL or LTL specification with sufficient probability. However,
there exists a stochastic noise in the dynamics which creates unavoid-
able perturbations. The system also has unknown dynamics which are
estimated with Gaussian processes. This in turn creates an estimation
error which increases uncertainty in state transitions. Then, the robot
seeks to reduce this uncertainty by sampling the unknown dynamics
online. However, executing a control policy to enable the robot to per-
form online sampling requires formal guarantees that the robot will not
violate the specification of interest. Thus, this chapter focuses on the
problem of safe learning to allow online exploration rather than a static
planning problem using previously collected data samples as in [16].

The approach presented in this chapter is as follows. First, the un-
known dynamics of the system are estimated using Gaussian processes
and a high-confidence IMDP abstraction is developed. Next, an algo-
rithm is detailed for finding nonviolating cycles in a product IMDP of
the system abstraction combined with an automaton of the scLTL/LTL
specification which allow the dynamics of the system to be sampled
without violating the specification. A heuristic for evaluating candi-
date cycles is developed in order to maximize the uncertainty reduc-
tion gained from sampling. Finally, an iterative method is proposed
to sample the state space, thereby decreasing the uncertainty of a GP
estimation of the unknown dynamics until a satisfying control policy
for the system can be synthesized or a terminating condition such as
a maximum number of iterations has been reached. Sparse GPs [23]
are introduced into the methodology in order to address computa-
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tional complexity considerations. The methods are demonstrated on
case studies of robotic motion planning.

1.2 Problem Setup

Consider a discrete-time, partially-known system
xzlk + 1] = f(z[k]) + ulk] + g(z[k]) + v[K] (1.1)

where x € X C R" is the system state, u € R™ is the control action, f(z)
is the known dynamics, g(x) is the unknown dynamics to be learned via
GP regression, v is stochastic noise, and time is indexed with brackets.
This system has applications in, e.g., biology [24], communications [25],
and robotics [26].

Assumption 1.1
1) Each dimension v;[k],i = 1,...,n of v, is an independent, zero mean
random variable with stationary, symmetric, and unimodal distribution p,,
and is o,,-sub-Gaussian, i.e., the distribution tail decays at least as fast as a
Gaussian random variable with variance 031.
2) Given a data set D = {(27,y7)}L, where y? is an observation of g(z7)
perturbed by o, -sub-Gaussian noise, along each coordinate i = 1,...,n, it is
possible to construct an estimate g (z) of g and bound the estimation error

between g(x) and §P (x) by
l9i(z) — 47 (2)| <7 (x) VeeX, i€l n] (1.2)
for some high-confidence bound P (x). Thus,
92(x) = g"(x) =P (2), gF(x) =g (2) +~"(x) (1.3)

are high-confidence bounds on g, i.e., gP(z) < g(x) < g2 (z) with high confi-
dence. For simplicity, the superscript D is dropped when the dataset is clear.

Assumption 1.1 implies that the uncertainty from the noise v and
the unknown dynamics g are treated differently: the noise v is drawn
from a stationary distribution that is coordinate-wise independent and
is stochastic and never learnable; on the other hand, g(z) is unknown
but learnable.

Assumption 1.2
The state space X is bounded and is partitioned into hyper-rectangular regions

{X¢}qeq defined as
Xo=A{z] ag<z<b,} CX, (1.4)
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where the inequality is taken elementwise for lower and upper bounds aq,bq €
R™ and Q is a finite index set of the regions. FEach region has a center point
defined as c¢q = (aq+bq)/2. Additionally, the system possesses a labeling
function L which maps hyper-rectangular regions to observations O. Addi-
tionally, it must also hold that the partition of the state space is complete,
i.e., UgegXq = X, and regions only intersect along their boundaries, i.e.,
int(Xq N Xg) =0 for all g # ¢, where int(-) denotes interior.

Further, there exists a set of observations (i.e., atomic propositions) O and
a labeling function L : Q — O so that a sequence of states {x[0], z[1], z[2],...}
induces a sequence of observations {L(q[0]), L(q[1]), L(q[2]), ...} where g[k] is
the unique region index such that x[k] € X,

Given a state x, knowledge of the known dynamics f, and an esti-
mate of the unknown dynamics g, define feedback controllers K, (- ;g) :
X — X as

Ko(2:9) = ¢q = f(x) = g(2). (1.5)

Assumption 1.3

For each region X, there exists a fized subset V(q) C Q of available con-
trollers for which, for each ¢’ € V(q), the controller Ky (x;§) is available for
any x € Xg.

The choice ulk] = K, (x[k]; §) thus produces a control action which
compensates for the known and estimated dynamics to reach the cen-
ter of region X/, although the actual state update will be perturbed as
shown in Figure 1.1 and may not reach partition X, . In practice, ap-
plying the feedback control K is only feasible from a subset of regions,
in particular, those regions X, for which ¢’ € V(¢). An illustration of
the feedback controllers under consideration is in Figure 1.1.

Remark 1.1  The problem setting above can be generalized in several ways
while retaining the applicability of the results developed below at the expense
of increased notation. In particular, (1.1) could allow for known dynamics
f(x,u) rather than the form f(z) + w under an appropriate condition on the
range of f(x,-) that ensures there exists feedback controllers K,(x; §) allow-
ing the system to reach the center of, e.g., any adjacent region. Further, the
unknown dynamics g and noise v could depend on the applied feedback con-
troller K. Lastly, the above formalism could be generalized to permit broader
classes of state space partitions, e.g. convex polytopes [27]; however, hyper-
rectangular partitions are especially suitable for accommodating unknown dy-
namics modeled as Gaussian processes.
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The ultimate goal is to apply a sequence of feedback controllers so
that the resulting sequence of observations satisfies a desired control
objective. First, the set of objectives will be considered which can be
represented as a syntactically co-safe LTL (scLTL) formula over the set
of observations O.

Definition 1.1 Syntactically co-safe LTL [5, Def. 2.3] A syntactically
co-safe linear temporal logic (scLTL) formula ¢ over a set of observations O
is recursively defined as

dp=Tlo|70|p1ANp2| o1 Vo | O | dlhepa | O

where o € O is an observation and ¢, ¢1, and ¢9 are scLTL formulas. The nezt
operator () is defined as meaning that ¢ will be satisfied in the next state
transition, the until operator U as meaning that the system satisfies ¢, until
it satisfies ¢, and the eventually operator { as TU¢.

ScLTL formulas are characterized by the property that, for any in-
finite sequence (i.e., word) of observations satisfying the formula, there
exists a finite prefix of the word such that all infinite extensions of the
prefix satisfy the formula, i.e., scLTL formulas are satisfied in finite
time. It is well-known that scLTL satisfaction can be checked using a
finite state automaton:

Definition 1.2 Finite State Automaton [5, Def. 2.4] A finite state
automaton (FSA) is a tuple A = (S, 59, O, §, F'), where

B S is a finite set of states,
B sy € S is the initial state,

B O is the input alphabet, which corresponds to observations from the
scLTL specification,

B ):5%x0 — Sis a transition function, and

B F C S is the set of accepting (final) states.

An input word {0[0],0[1],...} with each o[k] € O generates a se-
quence of states (i.e., a run) {s[0],s[1],...} of A via the relationship
s[0] = so, s[k + 1] = d(s[k],0k]). A word is accepted by the FSA if
the induced run satisfies s[k] € F' for some k. A scLTL formula can
always be translated into a FSA that accepts all and only those words
satisfying the formula. The class of scLTL specifications is particularly
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A~

@ x[k+1]

1
[ = uncertainty from high-confidence bounds on g(x)
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®

X

X-L N
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= Xmin (1, @2, 3)

Figure 1.1: Feedback controller and calculation of transition probabilities.
The controller targets the center of state X2. The uncertainty in §(z)
creates a nondeterministic region of transition (brown rectangle). The
maximum probability of transitioning to state X3 is found by centering
stochastic noise at the point zmax closest to state X3 (green point) and
calculating the probability that the noise reaches state X3. The minimum
probability of transitioning to state X3 under this controller is given
likewise by centering stochastic noise at the point x,,;, furthest from X3
(red point).

well-suited to robotic motion planning tasks which are satisfied in fi-
nite time. In Section 1.5, an extension to the general class of Linear
Temporal Logic (LTL) specifications will be considered.

To satisfy the ultimate control objective, an abstraction-based ap-
proach will be used that takes high-confidence bounds on the unknown
function g, where the bounds are improved via online data collection,
to iteratively construct an Interval Markov Decision Process (IMDP)
that appropriately abstracts the dynamics.

Definition 1.3 Interval Markov Decision Proc?ss An Interval Markov
Decision Process (IMDP) is a tuple T = (Q, A, T,T,Qo, O, L) where:

B () is a finite set of states,
B A is a finite set of actions,

BT T:QxAxQ — [0, 1] are lower and upper bounds, respectively,
on the transition probability from state ¢ € Q to state ¢’ € Q under
action a € A,

B () C (@ is a set of initial states,

B O is a finite set of atomic propositions or observations,
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B L:Q — O is a labeling function.

The set of actions A corresponds to the set of all valid feedback controllers for
the system. For some ¢ € Q and a € A, if T(q,a,¢') = T'(q, 0, ¢') = 0 for all
¢ € Q, «a is said to be disabled at ¢, and is otherwise enabled. A(q) denotes
the set of actions at ¢. Moreover, for all ¢ € Q and all a € A(q), T and T
satisfy

T(q,0,¢) <T(q;,¢), Y T(g,0,4) <1< Y T(g,0,q).
q7€eQ 7eQ

Definition 1.4 High-Confidence IMDP Abstraction Consider
stochastic system (1.1), partitions (1.4), and the family of feedback con-
trollers (1.5) where g(z) is an estimate of g(x). Further, suppose that g_(z)
and g4 (x) are high-confidence bounds on §(x) which satisfy (1.3). Then, an
IMDP Z = (Q,A,T,T, Qo,0, L) is a high-confidence IMDP abstraction of
(1.1) given estimate g(x) and high-confidence bounds g_(z) and g (z), or
simply a high-confidence abstraction of (1.1), if:

B The set of states ) for the abstraction is the index set of partitions,
i.e. partition X, is abstracted as state ¢, and the set of observations
O and labeling function L for the abstraction are the same as for the
system,

m For all ¢ € Q, the set of actions A(q) is the set of one-step reachable
regions at ¢ under its feedback controllers,

m Forall ¢ € Q and all oy € A(g):

T(q 00, 0) < (1.6)
min min P,(f(z)+w+ Ky (2;9) + v € Xy),

by e SRLLYC) o (39) a)

(@ 0q, ) 2 (1.7)
max max P.(f(z) +w+ Ko (z;§) + v € X,

r€Xq g (z)<w<gy(z) (f(2) ¢+ (%3 9) a)

where P, denotes probability with respect to v.

The bounds (1.6)~(1.7) ensure that T(q, a.-,q) and T(q, oy, q')
lowerbound and upperbound the probability of transition from some
state x € ¢ to the partition ¢’ under an action ay- € A(g) C @, which
prescribes a particular feedback controller K., given that the high-
confidence bound g_(x) < g(x) < g4 (z) holds. In Section 1.3 below, an
approach to constructing abstractions is presented such that (1.6) and
(1.7) hold with equality, ensuring a tight abstraction.
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Verification and synthesis problems for IMDP systems evaluated
against scLTL specifications are often solved using graph theoretic
methods on a product IMDP:

Definition 1.5 PIMDP Let 7T = (Q, A, T, T, Qo,0, L) be an IMDP and
A= (S,s0,0,6,F) be an FSA. The product IMDP (PIMDP) is defined as a
tuple P=Z® A=

(Q x S, AT T, Q x s0, F"), where

B T :(q,8) x Ax(¢,s") :=T(q,,q) if s’ € 5(s, L(q)) and 0 otherwise
m 7 :(q,8)x Ax(¢,s) :=T(q,a,¢)if & € 6(s, L(g)) and 0 otherwise
B (qo,9(s0,L(q0))) € (Q x S) is a set of initial states of Z ® A, and

B F’' =(Q X F is the set of accepting (final) states.

A PIMDP admits a set of adversaries and control policies, defined
as follows:

Definition 1.6 PIMDP Adversary  An adversary of a PIMDP realizes
transition probabilities that respect the PIMDP transition bounds, i.e., given a
PIMDP state (g, s) and action «, an adversary & is an assignment of transition
probabilities TEI to all states (¢, ') such that

T'((g,5), 0, (. 8) < Te((q,8), 00, (d',8)) < T'((a, ), e, (¢, 8)).

Definition 1.7 Finite Memory Control Policy A finite memory control
policy 7 € II of a PIMDP is a mapping (Q x S)* — A, where (Q x S)T is the
set of finite sequences of states of the PIMDP.

With these preliminaries, the problems which will be addressed in
the remainder of this chapter can be elucidated:

Problem 1.1

Given a system of the form (1.1) with initial assumptions on g(x) and some
current dataset of samples of the system dynamics, construct a high-confidence
IMDP abstraction of the system.

Once a high-confidence IMDP abstraction has been constructed, a
control policy is synthesized which allows the state space to be tra-
versed indefinitely while data samples are collected without violating
the scLTL specification of interest.
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Problem 1.2

Given a system of the form (1.1) with a corresponding high-confidence IMDP
abstraction T and scLTL specification ¢, synthesize a control policy which
allows the state space to be sampled indefinitely without violating ¢.

The approach to this problem is divided into several phases. First,
an algorithm is developed to find nonviolating regions in the product
IMDP of the system along with corresponding control policies which
do not violate ¢.

Subproblem 1.1

Given a high confidence IMDP abstraction T and scLTL specification ¢, con-
struct a product IMDP P and identify regions in P along with corresponding
control policies which do not violate ¢.

Next, a heuristic is developed to identify an infinite cycle in the non-
violating graph constructed in Subproblem 1.1 which can be sampled
to reduce the uncertainty of the GP regression:

Subproblem 1.2

Given a nonviolating sub-graph as in Subproblem 1.1, develop a heuristic to
select an infinite cycle to sample to reduce uncertainty in the Gaussian process
when estimating the unknown dynamics g(x).

Finally, a proof is developed to show that these algorithms guarantee
that the scLTL specification ¢ is not violated:

Subproblem 1.3
Prove that the algorithms developed in Subproblems 1.1 and 1.2 do not violate
the specification ¢ of interest.

Additionally, an iterative algorithm is developed which utilizes the
methods developed in Problem 1.1 and Problem 1.2 to synthesize a
satisfying control policy with respect to a scLTL specification ¢:

Problem 1.3

Design an iterative algorithm using the methods in Problems 1.1 and 1.2 to
sample the unknown dynamics of system (1.1) without violating the scLTL
specification ¢, construct a GP approximation, and synthesize a control policy
which satisfies ¢ with some desired threshold probability or prove that no such
control policy exists.
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1.3 Abstraction of System as IMDP

In this section, an approach is detailed for abstracting a system of the
form (1.1) into a high-confidence IMDP. First, a method is described
for calculating the transition probability bounds at each state. Then,
these bounds are used to construct a high-confidence IMDP abstraction
of the system.

In order to calculate lower and upper transition probability bounds
for each state in the IMDP, an approximation of g(z) (the unknown
dynamics) needs to be calculated. At each time step of system (1.1),
the quantities x[k + 1], f(z[k]), and u[k] are known. Define the value
ylk] as

ylk] = @[k + 1] = f(z[k]) — u[k] = g(z[k]) + v[k].

Then, a Gaussian process estimation g(z) for g(z) can be constructed
using a dataset of samples (z[k], y[k]).

Definition 1.8 Gaussian Process Regression  Gaussian Process (GP)
regression models a function g; : R® — R as a distribution with covariance
k:R" x R" — Ry (. Assume a dataset of m samples D = {(zj,ylj‘)}je{l,wm},
where 2/ € R is the input and y/ is an observation of g;(z?) under Gaussian
noise with variance a,%i. Let K € R™*™ be a matrix defined elementwise by
Kjo = k(27,2 and for z € R", let k(2) = [k(2,2') Kk(z,22)... k(z,2™)]T €
R™. Then, the predictive distribution of g; at a test point z is the conditional
distribution of g; given D, which is Gaussian with mean p4, p and variance

2 .
o,. p given by

fg.,p(2) = k(2)T (K + 00, 1n) 'Y (1.8)
gShD(z) = k(z,2) — k(2)T (K + Usilm)_lk‘(z), (1.9)
where I,,, is the identity and YV = [y} y? ... yZ”]T

In practice, GP regression has a complexity of O(m?). To mitigate
this, sparse Gaussian process regression [23] can be used:

Definition 1.9 Sparse Gaussian Process Regression A sparse Gaus-
sian process uses a set D, = {(z7,y])};eq1,..n) to approximate a GP
of a larger dataset D. Given inducing points {z;}jeq1,.. ny With Y, =

[yil y: o y?]T and covariance matrix A,, the predictive distribution of
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2

the unknown function g; has mean f,, p, and variance oy,

Ig,.D,(2) = kn(z)T(Kn + Ugiln)ilyn

oo, p,(2) = K(2,2) = ky(2) T K (K, — Ap) K,y (2)

where K, € R7*" is a matrix defined elementwise by K, j, = k(z7, 2%) for all
z € Dy. For z € R", let ky(z) = [r(z,2") K(z,2%)... Kk(z,2")]" € R". The
parameters {zj}je{l),,w}, {v]}jeqn,...ny» and A, are optimized to minimize
the Kullback-Leibler divergence (evaluated at the inducing points) between
./\/'(ugi,pn,ainn), the posterior of g; under the sparse GP; and p(g;|Y), the
posterior of g; under a GP with the full dataset D. The reader is referred
to [23] for a detailed treatment of sparse Gaussian process theory. The com-
putational complexity of sparse GP regression is O(mn?), so by fixing 1 the
algorithm is linear in m. Note that sparse GP regression introduces error into
the estimation; however, in practice this error does not affect the validity of
the methods detailed in this chapter.

Given some dataset D, an estimation of the unknown dynamics
is constructed independently in each coordinate and high-confidence
bounds on the estimation error are determined using the equations

g7 (x) = pg,.p(x),
(@) = Boy,p(2) = |gi(x) = 4 ()]

for each ¢ = 1,...,n. Additionally, high-confidence lower and upper
bounds on g(z) are given by the equations

g9-(x) =" (@) = Bogp(), g:(z) =g"(x) + Boyp ()

The parameter 3 is calculated as

UV m 1
g ( e (BZ—I—J,,\/Q(fyk —I—l—l—logd))) (1.10)
for noise o,-sub-Gaussian, m the number of GP samples, high-
confidence parameter J, information gain constant v}, and RKHS con-
stant B; as detailed in Lemma 1, [16]. Note that the same parameter
Bog p is used to determine high-confidence bounds on both the estima-
tion error and g(x) itself.

For each region ¢ in the state space, a high-confidence error bound for
the unknown dynamics is given by

7i(q) = max;(x)

In practice, this bound is computed by sampling v;(x) throughout the
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state space, introducing a trade-off between approximation error and
computation complexity. Next, transition probability intervals are con-
structed assuming that the high-confidence bounds on the unknown
dynamics hold:

Theorem 1.1 Construction of Transition Probabilities

Consider q,q' € Q and action g« € A(q). Lower bound T and upper bound
T transition probabilities from q to ¢’ under ag, are given by

n bé
T((Laq*aq/) = H/ Pul(z 7Imin,i(Q7O‘q*7q/))d’Z7 (111)
=179

n b;
T((Laq*aq/) = H/ Pv; (Z - xmax,i(qvaq*vq/))dz7 (112)
i=1"

where Tmin,; 15 the i-th coordinate of Tmin and similarly for Tmaxi, pu, 5 the
probability density function of the stochastic noise v;, and a’ and V' are the
lower and upper boundary points for region q'. The points Ty and Tmay are
defined with the equations

xmin(‘L qu*,q/) = argmax ||IZ? - Cq’”l (113)
rzeX

s.t. Cqx — ’)’(Q) <z< Cq> + V(q)7

Tmax(q, g+, ¢') = argmin ||z — ¢y ||1 (1.14)
rzeX
st e —v(q) <z <cpr +7(q),

where || - ||1 is the I-norm and v(q) is a high-confidence error bound on the
unknown dynamics satisfying Assumption 1.1.

Then, the transition probability bounds (1.11)—(1.12) satisfy the constraints
for high-confidence IMDP abstractions in (1.6)—(1.7).

Proof 1.1  The righthand side of the bound in equation (1.6) can be rewrit-
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ten as
min min P,(f(z) + w+ K (z;9) +v € Xy) (1.15)
z€Xq g (z)<w
<g+(x)
= min min P, (c» +w—g(z)+v €q 1.16
2€Xq g (x)Sw<gy (v) (€ §(z) <) (1.16)
= min min P,(co« +w+v e Xy 1.17
2€Xq () Sw< (@) (¢ 2 (L17)
n
= mi i P, (co ; ; ; 1 ivbgr 1.1
A S (¢q=i +wi +vi € lag i by il) (1.18)
<y(z) T
= min min P, (co+; +w; + v € |agri, b4 1.19
mig [T _min e sty (119
T <o)
n
>[I min Py (cgi+wi+vi € lag i by.i]) (1.20)
i —7i(q)Swi
0 <)

where (1.15) is the righthand side of (1.6); (1.16) follows after expanding the
feedback controller expression Ky« (x;§) using (1.5) and simplifying; (1.17)
follows by assumption of high-confidence error bound v(x) and the definition
of g—(x) and g4 (z) from Assumption 1.1 and taking w = w — §(z); (1.18)
follows by assumption that each v; is independent and P, denotes probability
with respect to v;, where ay and by are the lower and upper corners of the
region Xy, and aqp ; is the i-th coordinate of ay and similarly for cqs; and
by .i; (1.19) follows from the fact that the hyper-rectangular constraint —y(x) <
w < v(x) is equivalent to independent constraint —v;(z) < w; < v;(x) along
each coordinate; and (1.20) follows from the definition v;(q) = maxzecx, vi(z)-
Now, because the probability distribution for each random wvariable v; is
assumed unimodal and symmetric, Py, (cq« i + w; + v; € [ag s, by 4]) is mini-
mized when the distance between (cq+ ; + w;) and the midpoint of [ay i, by 4]
is mazimized, i.e., when |cq- ; + w; — cq ;| is mazimized, subject to the con-
straint —v;(¢) < w; < i(q). Substituting x = cq- + w, and observing that
llz—colli = D0y |wi — cqril, this is exactly the mazimizing point specified by
Tmin(q, ag+,q') in (1.13). Thus, the expression in (1.20) is equivalent to

n

H Py, (Tmin,i(¢: g+, @) + i € [ag5,bqr ), (1.21)
i=1

which in turn is equivalent to the righthand side of (1.11), establishing the
bound in (1.6). An analogous argument establishes that (1.12) satisfies (1.7).

An illustration of transition probability interval calculations is
shown in Figure 1.1, above in Section 1.2.
A high-confidence IMDP abstraction of the system is constructed
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using the hyper-rectangular partition regions as states, high-confidence
bounds on the unknown dynamics obtained via GP regression, and
transition probability intervals calculated using Theorem 1.1, solving
Problem 1.1.

1.4 Safe Sampling of PIMDP

In this section, an iterative learning algorithm is detailed which synthe-
sizes control policies to learn the unknown dynamics and satisfy a given
specification with sufficient probability. First, a PIMDP is constructed
and a method is described to calculate specification satisfaction proba-
bilities for PIMDP states, which will be necessary for later algorithms
in this section. Then, a method is detailed to generate a sub-graph of
the PIMDP which guarantees safety (i.e., nonviolation) with respect to
a given scLTL specification. Next, a heuristic is developed to calculate
infinite cycles within the nonviolating sub-graph and choose a particu-
lar cycle to execute. Finally, the complete algorithm is detailed which
samples the state space iteratively, improving the GP approximation
of the unknown dynamics until the given scLTL specification can be
satisfied or the GP uncertainty is sufficiently small.

1.4.1 Probability of Satisfaction Calculation

Given a high-confidence IMDP abstraction of the system and a FSA of
a desired scLTL specification, a PIMDP is constructed using Definition
1.5. Then, to find safe sampling cycles in the PIMDP, the probability
that a random path w starting at PIMDP state (g, s) satisfies the scLTL
specification ¢ under a maximizing control policy 7 and minimizing
adversary £ is calculated:

Prax((q,8)E9) = maxmin P(w=¢ | 7, w[0] = (g, 5)),

Additionally, the best case probability of satisfaction under a max-
imizing control policy and adversary will also be used:

Poas((g,5) = 6) = maxmax P(wi ¢ | 7, w[0] = (g,5))

To calculate these probabilities, a method proposed in Section V of
[14] can be used, which is briefly summarized here. First, an ordering
of all the states in the PIMDP is constructed based on their initial
probability of satisfying the specification of interest. Then, for each
state-action pair, ¢-minimizing adversary is constructed by assigning
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the maximum probability to one-step reachable states which have the
lowest probabilities of satisfying ¢. Similarly, a ¢-maximizing adversary
is constructed by assigning as much probability as possible to transition
states which have the highest probabilities of satisfying ¢.

The state ordering method for resolving adversarial transition prob-
abilities naturally lends itself to a value iteration method in order to
determine P, and P, for every state with arbitrary accuracy. First,
the probabilities of satisfaction for each state are initialized by setting
P... = Py = 1 for states (g, s) such that s is an accepting state in the
FSA, and P = Prnax = 0 for all other states. Then, adversarial tran-
sition probabilities for each state are selected using the state-ordering
method described above. At each step, the next iteration of the proba-
bility of satisfaction Pt _ or Pt for each state-action pair is calculated
by multiplying the appropriate transition probability to each one-step
reachable state by that state’s current probability of satisfaction and
summing across all reachable states:

PHlaX((q? S), a)Jr = Z T((q7 8)7 a, Ti) : PmaX(Ti)

The new probability of satisfaction for each state corresponds to the
maximizing control action:

PmaX((Q7 8))+ = maAX max«‘]v 8)7 a)

ac

+

The same process can be used to find Py, with appropriate state-
ordered transition probabilities.

1.4.2 Nonviolating Sub-Graph Generation

Note that scLTL specifications may generate FSA states which are
absorbing and non-accepting, i.e., it is impossible to satisfy the speci-
fication once one of these states is reached. Such states may also exist
in PIMDP constructions even without appearing in the corresponding
FSA. In this chapter, these so-called failure states are defined as those
which have zero probability of satisfying the scLTL specification under
any control policy and adversary:

Failure States = {(¢q,s) € @ x S | Pmax((q7 s5) = ¢) = 0}.

Example 1.1 Failure States
Figure 1.2 shows a simple example of failure states. State 4 is the accepting
state for the system, and the transitions are denoted in the form "action:(lower
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Figure 1.2: Illustration of failure states in a PIMDP. State 5 can never
reach accepting state 4 (in green), so state 5 is considered a failure state.

bound, upper bound)”. Since state 5 can never reach state 4, it is a failure
state. Note that while state 3 transitions to state 5 with probability 1 under
a minimizing adversary and thus has Pmax = 0, it can reach state 4 under
a mazimizing adversary with Prax > 0 and thus is not considered a failure
state.

Then, a notion of specification nonviolation can be defined:

Definition 1.10 Nonviolating PIMDP A PIMDP P is nonviolating with
respect to a scLTL specification ¢ if there exists no failure states in P.

An algorithm for calculating a nonviolating PIMDP is detailed in
Algorithm 1, solving Subproblem 1.1. It takes as input a PIMDP con-
struction along with upper bounds P,.. on the maximum probabil-
ity of satisfying the specification for each state. In lines 1-2, failure
states which have P,,, = 0 are identified. Next, in lines 4-10, non-
failure states are looped through and any of their actions which have
a nonzero upper bound probability of reaching the set of failure states
are removed. In lines 12-17, states which have no actions remaining are
added to the set of failure states and the algorithm returns to line 3.
The loop from lines 3-18 repeats until no new failure states are identi-
fied. The algorithm returns the remaining non-failure states and actions
as the nonviolating sub-graph.

Example 1.2 Pruning
An illustration of the pruning technique for the system in Figure 1.2 is shown
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Algorithm 1 Nonviolating Sub-Graph Generation

e e e e

19:
20:
21:

Input: PIMDP P, P for each state in P
Output: PIMDP P’ which is a nonviolating subset of P
Initialize R = {(q,s) € P | Puax(¢,s = ¢) =0}
Initialize U = R
while R # () do
for (¢,s) €e P\ U do
for a € A do
if T'((q,s),a,U) # 0 then
Remove « from available actions at (g, s)
end if
end for
end for
R=10
for (¢,s) e P\ U do
if A((¢q,s)) =0 then

R=RU(q,s)
U=UU(q,s)
end if
end for
end while

Return P =P\ U
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Figure 1.3: Illustration of the nonviolating sub-graph for the example
shown in Figure 1.2. State 5 along with transitions to it were pruned,
leaving state 3 with no actions. Therefore, state 3 also became a failure
state, so it was pruned along with the actions leading to it, leaving the
nonviolating sub-graph shown here.

in Figure 1.8. In this example, state 5 was found to be the only failure state,
so it was pruned from the graph along with the actions with transitions to it
from states 2 and 3. However, pruning action “a” left state 3 with no actions,
so it in turn also became a failure state and the transition to it from state 1
was also pruned, leaving the nonviolating sub-graph shown in the figure.

1.4.3 Candidate Cycle Selection

Now that a nonviolating sub-graph of the PIMDP has been calculated,
the next problem is to select a path which the robot can traverse in
order to sample the state space indefinitely while maximizing the infor-
mation gain of the Gaussian process learning of the unknown dynamics.
To do this, the concept of maximal end components [28] is introduced:

Definition 1.11 End Component [28] An end component of a finite
PIMDP P is a pair (T, Act) with T C (Q x S) and Act : T — A such that

m () # Act(q,s) C A(q) for all states (¢q,s) € T,

B (¢ s) €T and o € Act(q, s) implies {(¢',s') € T | T(q, ,¢)) > 0,5’ €
o(s,L(g)} € T,

B The digraph G (7 act) induced by (T, Act) is strongly connected.

Definition 1.12 Maximal End Component (MEC) [28] An end
component (7, Act) of a finite PIMDP P is mazimal if there is no end
component (7%, Act*) such that (7, Act) # (T*,Act*) and T C T* and
Act(q,s) C Act*(q, s) for all (¢,s) € T.
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PIMDP abstractions have the property that any infinite path will
eventually stay in a single MEC. Then, the following heuristic is used
to select a MEC to cycle within.

First, the value P... is calculated from the initial state to each can-
didate MEC using the value iteration method detailed previously. Any
MEC which cannot be reach with probability 1 is rejected, or, in case
no MECs can be reached with probability 1, the MEC with the highest
reachability probability is selected. If multiple candidate MECs remain,
the Gaussian process covariance r(cg, c,-) is then calculated between
the centers of the IMDP states ¢ in each remaining candidate MEC
and the accepting IMDP state ¢*. The covariances for all states in each
MEC are summed and the MEC with the highest total covariance score
is selected, which corresponds to maximum information gain [29], de-
fined as reduction of GP uncertainty at the accepting state. A control
policy is generated by selecting the actions at each state which give the
maximum probability of reaching the MEC. Once in the MEC, a con-
troller is used which cycles through the available actions. This method
was shown in [28] to guarantee fair reachability of each state within the
MEC. The heuristic is summarized in Algorithm 2.

Algorithm 2 takes as input a nonviolating sub-graph of a PIMDP. In
line 1, the maximal end components of the sub-graph are identified. In
lines 3-8, a lower bound P, on the maximum probability of reaching
each MEC from the initial state of the original PIMDP is calculated.
Those MECs which have P,.. = 1 are added to the list of candidate
MEC:s. In lines 9-11, if there are no candidate MECs found, then the al-
gorithm selects the MEC with the highest P, as the MEC to cycle in.
If there are candidate MECs, then in lines 12-17 each candidate MEC
is assigned a score equal to the sum of the covariances between each
state in the MEC and the accepting state ¢* of the PIMDP. The MEC
with the maximum covariance score is selected as the MEC to cycle in.
In line 18, a control policy for the selected MEC is calculated which
selects the actions at each state outside the MEC which have max-
imum probability of reaching the MEC. For states within the MEC,
the control policy cycles through the actions at each state which are
available in the MEC. The algorithm returns the selected MEC along
with its corresponding control policy. By applying the algorithms de-
tailed above to calculate a non-violating PIMDP and MEC, a control
policy which samples the state space indefinitely without violating the
specification is generated, solving Subproblem 1.2.
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Algorithm 2 Nonviolating Cycle Selection

© ®»

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:

20:

Input: Nonviolating Sub-PIMDP P’
Output: Selected MEC (7™, Act*) and control policy 7*
Initialize M as the MECs of P’
Initialize C = () as the set of candidate MECs
for (77, Act’) € M do

Calculate reachability probability Poax from initial state ro of
PIMDP P’ to 7'

if P = 1 then

C=CU(TT, Acth)

end if
end for
if C =0 then

(T*, Act*) = argmax P (ro = OTT)

(T, Act)eM

else

for (T1, Act’) € C do

H = Sum k(c,, ¢,-) for all IMDP states ¢ € T w.r.t. accept-

ing state ¢*

end for

Find (7™, Act*) € C with maximum score H
end if
Construct Control policy 7* which selects available actions in P’
with maximum probability of reaching 7* for states not in 7* and
cycles through actions Act* for all states in 7*
Return Selected MEC (T*, Act*), control policy 7*
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1.4.4 Safety Guarantees

The exploration of Problem 1.2 is completed by addressing Subproblem
1.3, guaranteeing the safety of Algorithms 1 and 2. A proof is given for
the property that any control policy generated using these algorithms
is guaranteed never to visit any failure states which have maximum
probability 0 of satisfying a given scL.TL specification ¢:

Theorem 1.2 Safety of Algorithms 1 and 2

Following the control policy m* generated by Algorithms 1 and 2 guarantees
that the system will never enter into a failure state which almost surely violates
a giwven scLTL specification ¢.

Proof 1.2  Failure states are characterized as those states which are absorb-
ing and non-accepting, i.e. they have probability 0 of satisfying ¢ under any
path regardless of the actions or transition probabilities chosen. Therefore,
failure states can be identified as states which have Pyax = 0 of satisfying ¢
under a maximizing adversary. By construction, Algorithm 1 identifies these
failure states and removes them from the nonviolating sub-graph P’ along
with any transitions which lead to them. Therefore, in the sub-graph P’ it is
impossible to reach a failure state under any available control action. Since
Algorithm 2 calculates a control policy using only actions in P’, the path
generated by Algorithm 2 is guaranteed to avoid failure states.

1.4.5 Iterative Sampling Algorithm

In this section the complete iterative sampling algorithm is detailed
which solves Problem 1.3.

Given a scLTL specification ¢ with desired probability of satisfac-
tion P, a PIMDP is first constructed using a high-confidence IMDP
abstraction of the system in Eq. (1.1) and an FSA which models ¢.
Then, reachability probabilities under a minimizing adversary Py, are
calculated from the initial states in the PIMDP to the accepting states.
If Pmax > P..;, then the control policy selects the actions which produce
P at each state and the problem is solved. Otherwise, Algorithms 1
and 2 are used to calculate a control policy to sample the state space
without violating the specification ¢ using the methods in previous
sections. The robot executes the calculated control policy for a pre-
determined number of steps and samples the unknown dynamics at
each step. The GP is batch updated with the data collected, transition
probability intervals are reconstructed for each state, and reachability
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probabilities P.... are recalculated for the initial states. If P, .. > P,
a satisfying control policy is found; otherwise, the process above is re-
peated.

The iterative algorithm ends when P > P,.:; the GP approxi-
mation has low enough uncertainty to know that a successful control
policy cannot be synthesized, i.e., when the reachability probability
P,.x under a maximizing adversary is less than the desired P,,; or a
maximum number of iterations has been reached. The complete method
is detailed in Algorithm 3.

Algorithm 3 takes as input the system dynamics, a scLTL spec-
ification, and a desired probability of satisfaction P,.. In line 1, an
IMDP abstraction of the system and a FSA of the specification are
constructed. Then, the IMDP and FSA are combined into a PIMDP
construction. Finally, a GP estimation §(z) of the unknown dynamics
is initialized with its hyperparameters. In lines 2-3, lower and upper
bounds P,... and P,... are calculated for the initial state in the PIMDP.
If the lower bound probability P... is less than the desired P..:, the
loop in lines 4-18 is entered. In lines 5-7, if the upper bound proba-
bility Puax is less than P, then the specification cannot be satisfied
with sufficient probability regardless of how well the unknown dynam-
ics are learned. Thus, the algorithm returns that no satisfying control
policy exists. Otherwise, in lines 8-9, a nonviolating sub-graph of the
PIMDP is calculated using Algorithm 1 and a MEC to cycle in along
with its corresponding control policy is calculated from this sub-graph
using Algorithm 2. In lines 10-13, this control policy is used to take a
predefined number of steps to sample the unknown dynamics. In lines
14-15, the GP estimation §(z) is updated using these samples, and
transition probability intervals are recalculated for each state in the
PIMDP. In lines 16-17, P... and P,.. are recalculated for the initial
state. If Poax > Piat, the loop terminates and the algorithm returns a
control policy calculated in lines 19-21 which selects the actions at each
state which have maximum probability of satisfying the specification.
If P < P,.¢, the loop repeats from line 4. If the maximum number
of iterations of the loop is reached, the algorithm terminates without
determining a satisfying control policy or the nonexistence thereof.
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Algorithm 3 Iterative Synthesis Algorithm

1: Input: System dynamics in (1.1), scLTL specification ¢, P,
2. Output: Satisfying control policy 7 or proof of nonexistence

w

22:
23:

Construct IMDP 7 from System 1.1, FSA A from ¢, PIMDP P
from Z and \A, initial GP regression §(z)
Calculate P,..((qo,0(qo,s0)) = ¢) for initial state
Calculate P,..((qo,8(qo, 50)) = ¢) for initial state
while (P < Pi) and (Count< MaxIterations) do
if Poax < Pay then
Return No satisfying control policy exists
end if
Find nonviolating sub-PIMDP P’ using Algorithm 1
Find MEC to cycle in with corresponding control policy 7* using
Algorithm 2
for NumlInnerlterations do
Take action 7*(q) at current state ¢
Sample y[k] = z[k + 1] — f(z[k]) — u[k]
end for
Construct GP g(x) using collected samples y[k]
Recalculate transition probability intervals for each state in P
Prax((q0,0(qo, 50)) = ¢) for initial state
Prax (90, 6(qo, 50)) |= ¢) for initial state
if P... > P.. then

Return Control policy 7' = argmax Pu.((g,s) E
a€A(q)
¢) V(g,s) €P
end if
end while
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1.5 Extension to LTL

In this section, the methods detailed above for scLTL specifications are
generalized to the entire semantics of Linear Temporal Logic, defined
as follows:

Definition 1.13 Linear Temporal Logic [5, Def. 2.1, 2.2] A linear
temporal logic (LTL) formula ¢ over a set of observations O is recursively
defined as

d=T|o|-0|dp1 N2 | P1 V| Q0]
1Pz | 0o | O | p1 — d2 | d1 > @2

LTL encompasses the syntax of scLTL with the addition of the always operator

[0 defined as =O—T.
Additionally, LTL includes the operators

d1 — Q2 1= P1 V o
1 > P2 i= (P1 — P2) A (P2 — H1)

Finally, LTL operators can be combined to form new operators such as O[]
("eventually always”) and 0O (”always eventually”).

As compared to scLTL, LTL includes classes of tasks which capture
limit behavior of the system as well as infinite-time tasks. Thus, the
methods detailed above which relied on checking finite end behavior in
a finite state automaton are not directly applicable when generalizing
to LTL specifications.

However, analogously to scLTL-FSA equivalence, satisfaction of
LTL formulas can be checked using an equivalent deterministic Rabin
automaton (DRA):

Definition 1.14 Deterministic Rabin Automaton [5, Def. 2.7] A
deterministic Rabin automaton is a tuple R = (5, so, O, J, F'), where

B S is a finite set of states,
B sy C S is a singleton initial state,

B O is the input alphabet, which corresponds to observations from the
LTL formula,

B J:S5 x 0 — 2°%is a transition map which is either () or a singleton for
all s € S and o € O, and
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m F={(G1,B1), - ,(Gn,Bn)}, where G;,B; C S,i=1,2,--- ,n is the
acceptance condition.

The semantics of a Rabin automaton are defined over infinite input words in
O% (the set of infinite sequences of observations). A run of R over an infinite
word wo = wo (1), wo(2)we(3) - - € O¥ is a sequence wg(1)wg(2)ws(3) -+ €
S«, where wg(1) = sg and wg(k + 1) = §(ws(k), wo(K)) for all k > 1.

A run wg admits a set inf(ws) = {wg(?) : Ym € N Ik > m s.t. wg(k) =
wg (1)}, defined as the set of observations in wg which appear infinitely often.
Similarly, there exists a set of infinitely appearing observations infwo in any
infinite word weo. Then, a Tun wg is accepted by R if inf(wg) N G; # 0 A
inf(wg) N B; = 0 for some 7 € {1,--- ,n}, i.e. any of the acceptance condi-
tions are met. If wg is accepted by R, the equivalent notation is ws; E R.
Intuitively, acceptance condition i stipulates that all observations from G; are
seen infinitely often and all observations from B; are seen only finitely often.

Then, similarly to the scLTL case, the next step is to construct a
product IMDP composed of the IMDP of the system dynamics and the
DRA of the LTL specification:

Definition 1.15 PIMDP (LTL) Let Z = (Q,A,T,7,Q0,0,L) be an
IMDP and A = (S, s9,0, 6, F) be an DRA. The product IMDP (PIMDP) is
defined as a tuple P=Z ® A =

(Qx S, AT T, Q x sy, F'), where

B T :(q,8) x Ax(q,s"):=T(qg,,q) if s’ € 5(s, L(q)) and 0 otherwise
B 7 :(q,8)x Ax (¢,s") =T(q,a,¢) if s € §(s, L(g)) and 0 otherwise
B (qo,9(s0, L(q0))) € (Q x S) is a set of initial states of Z ® A, and

u F/ :QXF: {QX(GlaBl)v"' 7QX(GnaBn)}7WhereGivBi g S,Z:
1,2,--- ,n is the acceptance condition.

Unlike in the scLTL case, where the acceptance condition of the
PIMDP was a set of accepting states, in the LTL version of the PIMDP
the acceptance condition requires checking multiple pairs of accepting
and rejecting states. The key insight to addressing this complication
is the use of MECs, which were introduced earlier in this chapter to
address the problem of selecting paths to traverse during the online
sampling process. Drawing on ideas in Chapter 10 of [13], checking
the acceptance condition of a PIMDP formed using a LTL specification
corresponds to checking reachability of accepting MECs in the PIMDP.
Specifically, the accepting MECs of the PIMDP are those for which at
least one acceptance condition ¢ holds, i.e. none of the states in the
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MEC are contained in the set of rejecting states B; and the MEC con-
tains all of the states in the accepting set ;. Then, calculating the
lower and upper bound probability of satisfying the LTL specification
from any state in the PIMDP can be done by calculating the probability
of reaching any accepting MEC from the state under the appropriate
(minimizing or maximizing) adversary and a maximizing control policy.

With this insight, the methods for scLLTL-based PIMDP verification
and synthesis detailed in previous sections can adapted to accommodate
LTL specifications by replacing the accepting states in the scLTL-based
PIMDP with accepting MECs in the LTL-based PIMDP and modify-
ing the calculations of satisfaction probabilities accordingly. With the
modified satisfaction probability calculations, the remainder of Algo-
rithms 1, 2, and 3 can be executed as detailed for the scLTL cases, as
the PIMDP structures in the scLTL and LTL cases differ only in their
accepting conditions. Thus, the introduction of a LTL-based PIMDP
structure allows for the generalization of the iterative synthesis algo-
rithm to the entire class of LTL specifcations.

1.6 Case Studies

Two case studies are considered to demonstrate the algorithms detailed
in previous sections. The first case study illustrates a basic reach-avoid
task a robot might be expected to accomplish, while the second case
study uses a more complicated specification which demonstrates the
expressivity of the LTL specifications which can be accommodated by
these methods.

1.6.1 Reach-Avoid Specification

Consider a mobile robot in a 2D state space with position z € X :=
[0,5]> C R2. The state space is partitioned into a set of 25 hyper-
rectangular regions corresponding to IMDP states. The dynamics of
the robot are

zlk + 1] = z[k] + ulk] + g(z[k]) + v (1.22)

where g(x) models the unknown effect of the slope of the terrain. The
use of g(x) to model unknown dynamics for locomotion systems is mo-
tivated by previous explorations in the literature, e.g. [30, 31, 32]. The
control action u is generated by the family of controllers in Section 1.2
where the set of available target regions are those left, right, above, or
below each region.
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Goal

Haz

Figure 1.4: Finite state automaton of the scLTL specification for the
reach-avoid specification. The system starts in state 1, which has a self-
transition until a hazard or goal state is reached. State 2 is the accepting
state, and state 3 is a non-accepting absorbing state. Therefore, all states
(¢, ) in the product IMDP such that ¢ € Q and s = 3 are failure states, as
are any states which have nonzero probability of transitioning to failure
states under all actions.

Within the state space, there exists one goal region with the atomic
proposition Goal and a set of hazard regions labeled with Haz. These
yield the scLTL specification

¢1 = —Haz U Goal. (1.23)

The FSA generated by this specification is shown in Figure 1.4.

An illustration of the state space is shown in Figure 1.5.

The true g(x) is sampled from two randomly generated Gaussian
processes (one for each dimension) with bounded support [—0.4,0.4]
and squared exponential kernel x,

_(@=x")?

(r,a') =oce” a7 (1.24)

The hyperparameters are chosen to be o, = 0.45 and [ = 1.75.

The unknown dynamics are estimated with two sparse Gaussian
processes with the same kernel as the true dynamics, but which have no
knowledge of the system initially. The GPs are sampled at 100 points in
each region to determine error bounds. The number of inducing points
is set at 7 = 250 and the high-confidence-bound parameter is chosen to
be § = 2. Each iteration of the algorithm takes 250 steps, so the total
number of data samples m is the number of iterations times 250. The
stochastic noise v is independently drawn from two truncated Gaussian
distributions, one for each dimension, and both with ¢, = 0.1 and
bounded support [—0.2,0.2]. Note that all distributions with bounded
support are sub-Gaussian.
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Figure 1.5: State space of the reach-avoid case study. The initial region is
labeled with ”Init”, the (green) target region is labeled with ” Goal”, and
the (red) hazard regions are labeled with "Haz”. States that eventually
enter the safe cycle are blue, and the number in the region indicates the
iteration of the algorithm at which the state enters the safe cycle. States
which are not numbered do not enter the safe cycle. The yellow trace is
an example of a sampling run.

Remark 1.2 The rationale for the selection of the GP hyperparameters is
as follows. The length parameter [ is large enough that sampling states gives
information about the adjacent states, thus enabling the iterative learning
process. Increasing the variance of the learned dynamics or the stochastic
noise results in larger uncertainty in the system, which can be overcome at
the expense of more iterations of the algorithm to collect data samples. |

Next, the iterative algorithm described in Section 1.4.5 is executed,
setting the desired probability of satisfying the specification to 1. The
algorithm successfully finds a satisfying feedback control strategy in an
average of 15 iterations (calculated over 10 runs). The algorithm is im-
plemented in Python on a 4.5 GHz AMD Ryzen 7700X machine with
32 GB of RAM and a Nvidia RTX 3090 GPU, and requires on average
48 seconds to complete.

Figure 1.5 depicts the expansion of the safe cycle used to sample
the state space. Initially, only the left two columns of states are safe
and reachable. As the algorithm progresses, more states and actions are
added to the safe cycle, moving the system closer to the goal until the
unknown dynamics can be estimated with enough certainty to achieve
a probability of satisfying the specification of 1.
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Figure 1.6: The left plot shows the total uncertainty in transition prob-
ability intervals after each iteration of the algorithm, and the right plot
shows the probability of satisfying the specification after each iteration.
Results are plotted over 10 runs of the algorithm. The uncertainty de-
creases as more data samples are collected, and likewise the probability
of satisfaction increases once the safe cycle has expanded close enough to

the goal.

The left plot in Figure 1.6 depicts the total transition probability
uncertainty for the system after each iteration

Tunc,total = Z Z Z T(qa «, q/) - T(Qa a, q/) (125>

q€Q a€A(q) I'EQ

As the number of iterations increases, the transition probability un-
certainty decreases as the Gaussian process estimation of the unknown
dynamics becomes more precise.

The right plot in Figure 1.6 shows the probability of satisfying the
specification after each iteration. A control policy which satisfied the
specification with probability 1 was successfully calculated for all runs
of the algorithm.

1.6.2 Branching Objective

Consider the same mobile robot described in the previous case study,
this time in a 10x10 state space. In this case, the robot still needs to
reach a goal state while avoiding hazards, but it must also reach one of
two alternative intermediate checkpoints. It can either choose to reach
the checkpoint A, which is isolated by hazards, or reach the checkpoints
B1 and B2 sequentially, which are individually easier to reach but re-
quires traversal of more of the state space. Figure 1.8 shows the case
study environment.
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Figure 1.7: Finite state automaton of the scLTL specification for the
second case study. The system starts in state 1, which has a self-transition
until a hazard or the intermediate checkpoints A or B1 are reached. State
5 is the accepting state, and state 3 is a non-accepting absorbing state.
States 2 and 4 are intermediate states which keep track of the checkpoints
already reached.

The specification can be written using scLTL as
¢y = —Haz U Goal A (—Goal U [AV (B1 A (OB2])]). (1.26)

Figure 1.7 depicts the FSA of the specification. The hyperparameters
for this case study are o, = 0.24 and [ = 1. Each iteration of the al-
gorithm, the robot takes 50 steps, and correspondingly the number of
inducing points in the sparse GPs are set to 50. Otherwise, the param-
eters of the setup remain the same as in the first case study.

The algorithm takes seven iterations to satisfy the specification with
probability 1, and requires 35 minutes and 14 seconds to complete the
computations. The state space of the PIMDP for this case study is ap-
proximately 12 times the size of the state space in the previous case
study but the computation time is 44 times as long, illustrating the
curse of dimensionality inherent to abstraction-based approaches.

Figure 1.8 depicts the trajectory of the robot through the state
space. Initially, only the left two columns of the state space are in the
safe subgraph, so the robot samples these states until it learns the un-
certainty sufficiently well to explore states further to the right. The
robot chooses to visit the checkpoints B1 and B2 before traversing to-
wards the goal, perhaps because it has more knowledge about the states
closer to these checkpoints than the states closer to checkpoint A. Ul-
timately, the robot is able to safely traverse the environment to learn
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Figure 1.8: State space of the complex case study. The initial region is
labeled with ”S”, the (green) target region is labeled with ”G”, and
the hazard regions are red. Additionally, there exists intermediate check-
points ”A” (purple) and the pair ”B1” and ”B2” (orange). The yellow
trace depicts the robot’s trajectory, which initially stays in the left two
columns until it ventures further right in order to collect sufficient infor-
mation to satisfy the specification.

the uncertainties and then synthesize a control policy which satisfies
the specification despite the complex nature of the objective.

Figure 1.9 shows the plots of the total transition probability un-
certainty and iterative probability of satisfaction for this case study,
illustrating the effectiveness of the iterative learning process.

1.7 Conclusion

This chapter explored the use of abstraction-based methods in concert
with Gaussian process learning to enable complex task planning for
robotic systems in the presence of uncertainties. We saw that IMDPs
are well-suited to formally model uncertainties in system dynamics,
and we incorporated Gaussian process learning of uncertainties into the
IMDP model. Then, using a product IMDP construction of the system
IMDP combined with either a finite state automaton of a scLTL spec-
ification or a deterministic Rabin automaton of a LTL specification,
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Figure 1.9: The left plot shows the total uncertainty in transition prob-
ability intervals after each iteration of the algorithm, and the right plot
shows the probability of satisfying the specification after each iteration.
The uncertainty decreases as more data samples are collected, and like-
wise the probability of satisfaction increases once the safe cycle has ex-
panded close enough to the goal.

we developed algorithms which allow the robot to safely traverse its
environment, sampling and learning uncertainties online to improve its
probability of satisfying the specification.

The methodology developed in this chapter is applicable to a wide
range of robotic systems, allowing for the use of learning methods in
concert with formal guarantees on system behavior from abstraction-
based methods. Future work in this area remains in addressing com-
putational complexity considerations arising from operations on the
abstracted system, integrating more complex learning structures (e.g.
stacked Gaussian processes [33]), and extending these methods to com-
plex, high-order robotic systems (e.g. legged robots [26]).

IMDP methods show great promise in combining techniques from
the fields of formal methods, learning, and locomotion to enable novel
capabilities for real-world robotic operation. Thus, it is our hope that
the work detailed in this chapter will inspire further explorations in
this area to enable safe, efficient, and effective learning and control for
robotic systems.
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