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Abstract— This paper presents a coverage control strat-
egy for a team of aerial robots equipped with downward
facing cameras. Based on the observation that the reso-
lution of a camera mounted on an aerial robot degrades
with the altitude of the robot, we propose a decentralized
gradient-based controller that allows each robot to trade off
between the size of the area it monitors and the quality of
sensing it performs over the area. Moreover, the proposed
controller drives a team of robots to a configuration that
maximizes the joint probability for detecting targets or
events of interest in the coverage domain. To ensure inter-
robot collision avoidance during deployment, we utilize
control barrier functions to prevent the robots from getting
closer to each other than a specified safety distance. The
proposed controller is experimentally validated in simula-
tions.

Index Terms— networked control systems, decentralized
control, sensor networks

I. INTRODUCTION

THE problem of multi-robot coverage control deals with
the distribution of a team of robots over a domain

of interest to effectively cover the region to detect signals,
events, phenomena, etc [1]. A common formulation of this
problem is introduced in [2] where the problem is cast as
a locational optimization problem. In such formulation, each
robot is responsible for covering an exclusive portion of the
domain defined as the Voronoi cell [3] of the robot, and the
optimal coverage is obtained when every robot is located at
the center of mass of its Voronoi cell, resulting in a centroidal
Voronoi tessellation [4] configuration. Variations on the cov-
erage problem have been extensively studied using weighted
Voronoi diagrams, e.g., [5], [6], [7]. However, the standard
coverage control framework assumes that planar robots cover
a planar domain with each robot responsible for a mutually
exclusive portion of the domain, which does not hold in the
problem concerned in this paper.
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In this work, we consider a coverage problem where a team
of aerial robots equipped with downward facing cameras need
to achieve an effective visual coverage over a planar domain
of interest. In such scenario, the standard coverage control
framework cannot be directly applied as an additional factor,
the altitude of each robot, needs to be considered since it
directly affects both the robot’s quality of sensing and the
size of its sensing region. This tradeoff between quality and
range is not only present in camera-based systems. It is also of
relevance to communication systems, where the quality of the
signal deteriorates as a function of the distance, yet is able to
cover a broader area as a function of distance, or in acoustic
localization systems, where the same quality-range trade-offs
appear. In [8], this problem is interpreted as minimizing the
size of the area monitored by the number of pixels in the
image sensors of robots, i.e., area/pixel, hence maximizing the
amount of details acquired from a given area. This formulation
was adopted in [9] to visually track wildfire using a team of
aerial robots. In [10], [11], a more abstract sensing quality
function is used to keep every robot within a specified range
of altitudes. Also, each robot’s sensing region is defined as
the set of points within its field of view where the sensing
quality of the robot is better than that of others. In addition to
downward facing cameras mounted on robots, cameras with
pan/tilt/zoom capabilities are considered in stationary [12] and
dynamic [13] settings.

The aforementioned works are similar in the sense that over-
lapping of sensing regions of robots are discouraged. This is
based on the idea that monitoring the same area using multiple
cameras does not improve the coverage performance over the
area. However, the quality of the image provided by a robot
significantly depends on environmental factors such as ambient
light conditions or weather conditions at the position of the
robot. Accordingly, even if multiple robots are monitoring the
same part of an area at the same altitude but at different
planar positions, their sensing quality over the area may not
be identical. Furthermore, other factors including software
or hardware failures of robots can compromise the sensing
performance of the robot. Still, such factors are difficult to
generalize.

These observations necessitate a coverage control strategy
that allows multiple robots to form overlapping sensing regions
to account for the uncertainties on their coverage quality,
especially for the areas with higher importance. In [14], [15],
overlapping of sensing regions of robots are utilized to some



extent to prevent the creation of coverage holes which are
unmonitored areas in between the field of views (FOVs) of
robots. In contrast to these works, the key idea of this paper
is encouraging a team of aerial robots to form overlaps in their
sensing regions and using the resulting coverage redundancy
to robustly monitor a given area based on the joint probability
of detection.

The organization of the paper is as follows. In Section
II the sensing model of a robot is defined, and the area
coverage problem is formulated as an optimization problem
based on the joint probability of detection. In Section III, a
decentralized gradient based controller for maximizing the re-
sulting coverage optimization function is derived. The control
barrier functions for preventing inter-robot collisions during
the deployment are discussed in Section IV. The proposed
control strategy is validated in simulations in Section V, and
Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a coverage control problem, where a planar target
domain D ⇢ R2 is to be effectively covered with a team of N
aerial robots as described in Fig. 1. Denote the set of robots’
indices as N = {1, 2, . . . , N}. Each Robot i 2 N has its
altitude, zi 2 R�0, as its state in addition to its planar position,
pi 2 R2. In other words, the state vector for Robot i is defined
as xi = [p>i , zi]

>, and the state vector for the team of robots
is denoted as x = [x>

1 , x
>

2 , . . . , x
>

N ]>. In this work, each robot
is modeled using single integrator dynamics, ẋi = ui, and we
denote u = [u>

1 , u
>

2 , . . . , u
>

N ]>. The sensing region of Robot i
is assumed to be a disk centered at pi with radius rs,i where the
subscript s denotes ‘sensing.’ Given the circular field of view
(FOV) model described in Fig. 1 where the half-angle field
of view of a robot is represented as 0 < ✓ <

⇡
2 , the sensing

radius rs,i can be written as a function of the robot’s altitude
as rs,i(zi) = zi tan(✓). Accordingly, the sensing disk can be
represented as Bi(xi) = {q 2 D | kpi � qk  rs,i(zi)}. In
general, the performance of a sensor degrades as the distance
between the sensor and a signal source increases. Therefore,
the quality of coverage provided by a robot for an arbitrary
point q can be defined as

f(xi, q) =

(
g(zi), for q 2 Bi(xi)

0, otherwise

where g : R�0 ! R�0 is a continuously differentiable strictly
decreasing function of zi. Note that this sensing quality func-
tion quantifies the quality of coverage, i.e., image resolution,
provided by Robot i for covering a point q, and a higher
f(xi, q) indicates a better sensing quality.

Now, let us define the probability that a robot will actually
detect events of interest given its current sensing quality func-
tion, f(xi, q). In general, higher sensing quality yields better
detection probability as higher sensing quality implies richer
information received by a sensor. Therefore, the probability of
detection function of Robot i, Pi, is defined as a continuously
differentiable strictly increasing function of its sensing quality
function, i.e., Pi : f ! [0, 1] where @Pi

@f > 0. Given the
individual probability of detection function, Pi(f(xi, q)), the

Fig. 1. Two robots at different altitudes with an overlapping sensing

region.

joint probability of detecting an event at an arbitrary point
q 2 D is expressed as the probability of the event not
detected by any of the robots covering the point subtracted
from the probability of 1. In other words, the joint probability
of detection is given as

PNq (x, q) = 1�
Y

k2Nq

(1� Pk(g(zk)))

where q 2 D is an arbitrary point, and Nq = {k 2

N | q 2 Bk(xk)} is the set of indices of the robots that
are covering point q. Note that PNq (x, q) is equivalent to the
joint probability of detection evaluated using all robots in the
system since Pk(f(xk, q)) = 0 when q /2 Bk(xk).

Using the definitions of the sensing region of a robot and
the joint probability of detection function, we can formulate
the following coverage performance function,

H(x) =

Z

B(x)
PNq (x, q)�(q)dq, (1)

which needs to be maximized with respect to the states of
the robots, x, to obtain an optimal coverage over a domain.
Here, B(x) =

SN
i=1 Bi(xi) is the union of the sensing disks

of the robots, and �(q) : D ! R�0 is a density function that
describes the importance of point q.

Since the sensing quality function of a robot, g(zi), is a
strictly decreasing function of its altitude, a lower altitude
yields a higher individual probability of detection, Pi(g(zi)),
and a higher joint probability for detecting an event at point
q, PNq (x, q). However, this makes its sensing disk smaller,
which may actually result in a lower coverage performance.
Similarly, PNq (x, q) increases with the number of robots
covering the point, but excessive overlapping may result in
a lower coverage performance as the total area of the union
of the sensing disks become smaller. Therefore, each robot
needs to balance between how much area it covers and how
well it covers the area. At the same time, each robot needs to
optimize the amount of overlapping of its sensing disk with
other robots’ sensing disks in a way that maximizes the joint
probability of detection.

In general, the dynamics of aerial vehicles change during
take off due to factors such as ground effect. Therefore, we
make the following assumption throughout the paper.

Assumption 1. All robots are initialized to non-zero altitudes

before being deployed for the coverage.

Note that the value of the coverage performance function
H(x) is lower bounded by 0, which is achieved when zi = 0



for all robots in the team. Since H(x) needs to be maximized
for an optimal coverage, Assumption 1 does not constrain the
optimization problem.

III. GRADIENT ASCENT CONTROLLER

In this section, a decentralized controller that maximizes the
coverage performance function (1) is derived. The coverage
performance function is in general non-convex, and one way
to maximize the function is to use a gradient ascent controller
to obtain a local maximum of the function. We state the form
of the gradient of the coverage performance function (1) as a
theorem as follows.

Theorem 1. The gradient of the coverage performance func-

tion (1) with respect to the position of Robot i, xi, is given

as

@H(x)

@xi
=

"
1

zi tan(✓)
m

p
b,i(x)

⇣
c
p
b,i(x)� pi

⌘

@Pi(g(zi))
@zi

m
p
i (x) + tan(✓)mp

b,i(x)

#>

where

m
p
i (x) =

Z

Bi(xi)

�
1� PNq\{i}(x, q)

�
�(q)dq,

m
p
b,i(x) =

Z

@Bi(xi)

�
PNq (x, q)� PNq\{i}(x, q)

�
�(q)dq,

c
p
b,i(x) =

R
@Bi(xi)

q
�
PNq (x, q)� PNq\{i}(x, q)

�
�(q)dq

m
p
b,i(x)

are the probability weighted mass, boundary mass, and the

center of mass of the boundary of the sensing disk of the

robot, Bi(xi), respectively.

Proof. In order to facilitate the gradient analysis, the coverage
performance function is first rewritten as

H(x) =

Z

Bi(xi)
PNq (x, q)�(q)dq

+

Z

B(x)\Bi(xi)
PNq\{i}(x, q)�(q)dq

(2)

where the first term is the coverage performance function
evaluated over the sensing disk of an arbitrary Robot i, and
the second term is the coverage performance evaluated over
the rest of the union of the sensing disks. Here, \ denotes the
set difference operator.

The gradient of the coverage performance function (2) can
be expressed as @H(x)

xi
= [@H(x)

@pi
,
@H(x)
@zi

]. For clarity, the
gradient of the function with respect to the altitude of Robot
i is derived first. Following Leibniz integral rule [4], one can
obtain the gradient as

@H(x)

@zi
=

Z

Bi(xi)

@

@zi
PNq (x, q)�(q)dq

+

Z

@Bi(xi)
PNq (x, q)~n

>

i (q)
@q

@zi
�(q)dq

+

Z

@(B(x)\Bi(xi))
PNq\{i}(x, q)~n

>

B\Bi
(q)

@q

@zi
�(q)dq

(3)

where the first two integral terms are computed from the first
term in (2), and the last boundary integral term is obtained
from the second term in (2). The terms ~ni(q) and ~nB\Bi

(q) are
the unit outward normal vectors of Bi(xi) and B(x) \Bi(x),
respectively.

In order to efficiently compute the gradient, the boundary
integral terms need to be simplified. Note that the second
boundary integral term is non-zero only for the points q 2

@(B(x) \Bi(xi))\ @Bi(xi) due to the term, @q
@zi

, in the inte-
grand. Accordingly, thanks to the PNq\{i}(x, q) term, we can
let @ (B(x) \Bi(xi)) = @Bi(xi) and ~nB\Bi

(q) = �~ni(q).
The unit outward normal vector ~ni(q) can be easily computed
as Bi(xi) is a circle centered at pi, i.e., Bi(xi) = {q 2

D | kpi � qk  rs,i(zi)}. In fact, Bi(xi) is a circular region
inside the coverage domain D, and @Bi(xi) may contain
points in @D which are not necessarily circular arcs. However,
the points on the boundary of the domain D do not depend on
the states of robots, and these points do not affect the value
of the boundary integrals as @q

@zi
= 0, 8q 2 @D. Therefore,

for brevity, we simply denote @Bi(xi)\@D as @Bi(xi) in the
rest of the paper. For any point q 2 @Bi(xi), it holds that
kpi � qk = rs,i(zi). Differentiating both sides of the equation
with respect to zi yields

(q � pi)>

kpi � qk

@q

@zi
= tan(✓). (4)

Note that rs,i(zi) = zi tan(✓), and (q�pi)
>

kpi�qk = ~n
>

i (q). Accord-
ing to Assumption 1, we do not consider the singularity case
on the left hand side of (4) obtained when pi = @Bi(xi) = q,
which occurs if and only if zi = 0.

With the above results, the gradient expression in (3) can
be simplified to
@H(x)

@zi
=

@Pi(g(zi))

@zi

Z

Bi(xi)

�
1� PNq\{i}(x, q)

�
�(q)dq

+ tan(✓)

Z

@Bi(xi)

�
PNq (x, q)� PNq\{i}(x, q)

�
�(q)dq.

(5)

Since the sensing quality function g(zi) is a strictly de-
creasing function of zi, and the individual probability of
detection function Pi(g(zi)) is a strictly increasing function
of g(zi), Pi(g(zi)) is a strictly decreasing function of zi, i.e.,
@Pi(g(zi))

@zi
< 0. Accordingly, the first term of (5) is negative,

and the term is the component of the gradient that tries to
bring Robot i down to the ground. On the other hand, the
second term of the gradient is positive since PNq (x, q) >

PNq\{i}(x, q), 8q 2 @Bi(xi). Therefore, it is the component
of the gradient that tries to lift the altitude of the robot.

The gradient of the coverage performance function (2) with
respect to the planar position of Robot i can be derived using
a similar analysis. Utilizing Leibniz integral rule [4] yields the
gradient expression as
@H(x)

@pi
=

Z

@Bi(xi)
PNq (x, q)~n

>

i (q)
@q

@pi
�(q)dq

+

Z

@(B(x)\Bi(xi))
PNq\{i}(x, q)~n

>

B\Bi
(q)

@q

@pi
�(q)dq.

(6)



Note that (6) only has boundary integral terms since
@

@pi
PNq (x, q) = 0, 8q 2 Bi(xi). As in the gradient analysis

for the vertical component, we can let @ (B(x) \Bi(xi)) =
@Bi(xi) and ~nB\Bi

(q) = �~ni(q). The expression ~ni(q)
@q
@pi

can be simplified using the relationship, kpi � qk =
rs,i(zi), 8q 2 @Bi(xi). Differentiating both sides of the
equation with respect to pi and reorganizing terms yield

(q � pi)>

kpi � qk

@q

@pi
=

(q � pi)>

zi tan(✓)
(7)

where the left hand side of (7) is ~ni(q)
@q
@pi

. Note that
kpi � qk = zi tan(✓), 8q 2 @Bi(xi). Rewriting the planar
component of the gradient using the above results gives

@H(x)

@pi
=

1

zi tan(✓)

Z

@Bi(xi)

�
PNq (x, q)

� PNq\{i}(x, q)
�
(q � pi)

>
�(q)dq.

(8)

Substituting the definitions of mp
i (x),m

p
b,i(x) and, cpb,i(x) into

(5) and (8) concludes the proof.

Note that the gradient depends on the probability weighted
mass m

p
i (x) and the probability weighted boundary mass

m
p
b,i(x) of the sensing disk of the robot. Since this can make

the magnitude of the gradient negligibly small if a robot is
covering a low density region, we multiply the gradient by
a positive and state dependent gain, �i(x) = K

mp
i (x)

> 0, to
obtain a gradient ascent controller,

ui =


up,i

uz,i

�
= �i(x)

@H(x)

@xi

>

= K

2

4
1

zi tan(✓)

mp
b,i(x)

mp
i (x)

(cpb,i(x)� pi)
@Pi(g(zi))

@zi
+ tan(✓)

mp
b,i(x)

mp
i (x)

3

5 .

(9)

This way, the magnitude of the gradient depends on the ratio
between mi(xi) and mb,i(xi) rather than their actual values.

Remark 1. Although the compact notation of (9) suggests that

each robot’s control input relies on the states of all robots,

x, we note that only the states of neighboring robots with

overlapping sensing regions are actually needed.

With the gradient ascent controller, we obtain the following
proposition.

Proposition 1. The coverage performance function (1) for a

team of robots driven by the gradient ascent controller in (9) is

always non-decreasing, and all robots asymptotically converge

to stationary positions.

Proof. Since the joint probability of detection at point q inside
the coverage domain D has a value between 0 and 1, i.e.,
0  PNq (x, q)  1, the coverage performance function H(x)
is upper-bounded by Hmax =

R
D
�(q)dq where the joint

probability of detection is 1 across the whole domain. Now,
we can define a dual of the coverage performance function as
H̃(x) = Hmax�H(x). Assuming single integrator dynamics,

ẋi = ui, the time derivative of the dual function is given as

˙̃
H(x) = �

NX

i=1

@H(x)

@xi
ẋi = �

NX

i=1

@H(x)

@xi
�i(x)

@H(x)

@xi

>

 0
(10)

where �i(x) = �i(x)I3⇥3 is a diagonal matrix with I3⇥3 being
a 3 by 3 identity matrix. The time derivative ˙̃

H(x) is always
non-positive since �i(xi) is positive definite for all Robot i.
Now, let us define a set, S =

n
x |

˙̃
H(x) = Ḣ(x) = 0

o
, and

the largest invariant set of S as M. According to (10), ˙̃
H(x) =

0 if and only if ui =
@H(x)
@xi

>

= 0 for all Robot i. Therefore,
S = M = {x | u = 0}, and by LaSalle’s invariance principle,
it holds that x ! M as t ! 1.

From (9), we know that the optimal planar position of a
robot is given as c

p
b,i(xi). On the other hand, the behavior

of the vertical component of the gradient is unclear as its
equilibrium condition is not given in a closed-form. In order
to provide further analysis, we use the sensing quality function
of g(zi) = 1

z2
i

based on the observation that the area of the
sensing disk of a robot is proportional to the robot’s altitude
squared. Also, we let the individual probability of detection
function Pi(g(zi)) = g(zi)

g(zi)+1 to map the sensing quality to
[0, 1], which yields Pi(g(zi)) =

1
z2
i +1

. With the sensing quality
and individual probability of detection functions, the gradient
ascent controller for the altitude simplifies to

uz,i = �
2zi

(z2i + 1)2
+ tan(✓)

m
p
b,i(x)

m
p
i (x)

. (11)

As discussed previously, this vertical component of the con-
troller allows a robot to balance between how much area it
covers and how well it covers the area.

Remark 2. Although the gradient analysis in (11) is per-

formed using specific g and Pi, similar results to (11) hold

for different functions as long as g : R�0 ! R�0 is a strictly

decreasing function, and Pk : g ! [0, 1] is a strictly increasing

function.

In case of deploying single robot, i.e., N = 1, with
a uniform density function of �(q) = 1 applied to the
domain, PNq (x, q) reduces to Pi(g(zi)) =

1
z2
i +1

. Accordingly,

m
p
i (x) = ⇡r

2
s,i(zi) and m

p
b,i(x) =

2⇡rs,i(zi)
z2
i +1

. Since rs,i(zi) =

zi tan(✓), the controller (11) simplifies to

uz,i =
1

zi(z2i + 1)2
,

which implies that the robot will keep increasing its altitude
with a decreasing rate, i.e., uz,i ! 0 as zi ! 1.

Remark 3. In reality, the robot converges to an equilibrium

altitude since the coverage domain D ⇢ R2
is finite. As the

altitude of the robot becomes high enough, parts of its circular

boundary, @Bi(xi), start to lie outside of D, and this results

in a smaller m
p
b,i(x) hence decreased control input.



IV. CONTROL BARRIER FUNCTIONS FOR COLLISION

AVOIDANCE

The successful deployment of multiple aerial robots is
often premised on inter-robot collision avoidance. To prevent
collisions between robots, the distance between any pair of
robots needs to be greater than a safety distance at all times.
However, it is difficult to derive the minimum possible distance
between any pair of robots that can be obtained with the
gradient ascent controller (9) as it largely depends on the
density function applied to the domain. To address this issue,
we utilize control barrier functions (CBFs) [16].

Given single integrator robot dynamics, ẋi = ui, we can
define the safe set of states of an agent as C = {xi 2

D | h(xi) � 0} where h(xi) is a continuously differentiable
function. The function h(xi) is a control barrier function if
there exists a class K function ↵ such that

sup
ui2Ui

⇢
d

dt
h(xi)

�
� �↵(h(xi))

for all xi 2 D. Here, Ui is the set of admissible inputs.
To prevent the robots from colliding with each other,

we enforce the inter-robot distance constraint kxi � xjk �

dsafe, 8i, j 2 N , i 6= j where dsafe > 0 is the minimum safety
distance between a pair of robots. Therefore, we can define the
collision avoidance CBF, hij(xi, xj) = kxi�xjk

2
�d

2
safe � 0,

whose time derivative is given as

d

dt
hij(xi, xj) = 2(xi � xj)

>
ui � 2(xi � xj)

>
uj .

Accordingly, similar to what was done in [17], the quadratic
programming (QP) controller that composites the closest con-
trol input to the gradient ascent controller in (9) in the sense
of l2 norm while satisfying the minimum distance constraint
between every robot can be formulated as

u
⇤ = argmin

u

NX

i=1

kui � ûik
2

s.t. 2(xi � xj)
>(ui � uj) � �↵(hij(xi, xj)), 8j 6= i

(12)

where ûi is the nominal control input for Robot i given by
(9), and ↵ is a class K function.

Although the QP controller in (12) prevents potential inter-
robot collisions, it is a centralized approach as it requires the
nominal control input for each robot, ûi, and the positions
of all robots, x. Since the nominal controller of a robot in
(9) is decentralized in the sense that it only requires the
position of the robot itself and the positions of its neighboring
robots that have overlapping sensing regions with the robot, a
decentralized version of the QP controller is needed to keep
the controller for each robot decentralized. According to [18],
a decentralized implementation of the QP controller in (12)
for collision avoidance is given as

u
⇤

i = argmin
ui

kui � ûik
2

s.t. 2(xi � xj)
>
ui � �

↵(hij(xi, xj))

2
, 8j 2 Ni

(13)

where Ni = {j 2 N | kpi � pjk  rs,i(zi) + rs,j(zj), i 6=
j} is the set of neighbors of Robot i whose sensing disks

overlap with that of Robot i. The derivation of (13) is based
on the fact that (12) is a convex optimization problem, which
allows for the independent computation of each ui by ensuring
that every robot satisfies the half of each pair-wise barrier
constraints. Due to space constraints, we refer the reader to
[18] and references therein for a thorough discussion. This
decentralized QP controller (13) requires the same information
needed to compute the nominal gradient ascent controller in
(9), which effectively keeps the controller for each robot to be
decentralized.

V. EXPERIMENTAL RESULTS

In this section, the effectiveness of the nominal controller
(9) and the QP controller with collision avoidance (13) are
experimentally validated in simulations. For the experiments,
a rectangular domain D is used where the dimensions are
[�1.6, 1.6] for the X axis and [�1.0, 1.0] for the Y axis with
[0, 0] being the origin. For the density function, a bimodal
Gaussian distribution function,

�(q) =
1

4⇡
p

|⌃|

2X

i=1

exp

✓
�
1

2
(q � µi)

>⌃�1(q � µi)

◆
,

is used where µi is the mean of the i
th mode, and ⌃ is the

covariance matrix.
A total of 5 robots were deployed for the experiment

where the density function parameters are set to µ1 =
[1.0, 0.0]>, µ2 = [�1.0, 0.0]>, and ⌃ = 0.3I2⇥2. The initial
positions, final positions without CBFs, and final positions
with CBFs are shown in Fig. 2. For the initial condition
illustrated in Fig. 2a, two robots end up covering the left mode
of the density, and other three robots converge to positions
close to the right mode of the density. Since the coverage
performance function (1) to be optimized is in general non-
convex, and the controller in (9) is a gradient-based controller,
it is worth noting that the number of robots converging to each
mode of the density varies with the initial positions of the
robots.

In this experiment, Robot 3 was initialized at a higher
altitude than that of other robots to demonstrate that the
proposed controller allows the sensing disk of a robot to
be completely contained within the sensing disk of another
robot. From Fig. 2b and Fig. 2c, it can be observed that the
gradient ascent controller (9) without CBFs drives each robot
to unique position, and the QP controller (13) allows the robots
to converge to final positions similar to those obtained in
Fig. 2b but maintain a farther minimum inter-robot distance.
In both cases, the robots converge to a configuration where
they effectively form coverage redundancy around high density
regions. The evolution of the coverage performance function
(1) during the deployment is shown in Fig. 3a. As predicted
in Proposition 1, the coverage performance is always non-
decreasing and converge to a local optimum for the case
without CBFs. Similar result is obtained with CBFs with
slight decrease in the coverage performance. In addition to the
coverage performance plot, the minimum barrier value of each
robot, i.e., hmin

i = min
j

hij(xi, xj) is shown in Fig. 3b. Every
minimum barrier value remains greater than 0, implying that



(a) Initial Configuration (b) Final Configuration without CBFs (c) Final Configuration with CBFs

Fig. 2. The (a) initial configuration, (b) final configuration without CBFs, and (c) final configuration with CBFs of 5 robots. The color gradation in

the background visualizes the applied density function where colors close to yellow indicate higher density. Each white circle is the sensing disk of

a robot, and the trajectories of the robots are shown as colored lines.

(a) Coverage Performance (b) Minimum Barrier Value

Fig. 3. The evolution of the coverage performance (a) and the minimum

barrier values (b) during the experiment.

all robots indeed maintained a safety distance from each other.
In fact, although the CBF-based formulation provides safety
guarantees as well as supports decentralized formulations, it is
not necessarily optimal from a performance vantage-point as
the use of CBFs no longer guarantees the monotonic increase
of the coverage performance function. Additional work is
needed to fully elucidate this issue and is left as a future
endeavor.

VI. CONCLUSIONS

In this paper, we proposed a decentralized coverage con-
troller for a team of aerial robots equipped with downward
facing cameras to effectively cover a given domain utilizing
coverage redundancy. The coverage performance function for a
multi-robot team was formulated based on the joint probability
of detection provided by the robots covering common areas,
and a gradient ascent controller that maximizes this perfor-
mance measure was derived. To ensure inter-robot collision
avoidance, control barrier functions were utilized. The pro-
posed controller is decentralized in the sense that each robot
only requires the positions of the robots whose sensing disks
overlap with its own. Both the nominal controller and the
controller with the decentralized CBFs were validated using
simulations involving 5 robots.
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