
GTernal: A Robot Design for the Autonomous

Operation of a Multi-Robot Research Testbed

Soobum Kim1, Paden Davis1, Nathan Yam1, Samuel Coogan1, and Sean Wilson2

1 Georgia Institute of Technology, Atlanta GA 30332, USA,
{skim743, pdavis77, nyam3, sam.coogan}@gatech.edu,

2 Georgia Tech Research Institute (GTRI), Atlanta, GA, 30318 USA,
Sean.Wilson@gtri.gatech.edu

Abstract. This paper presents GTernal, an open-source robot designed for multi-
robot experimentation with a focus on reducing the overhead labor required to
setup and conclude multi-robot experiments. This paper discusses the robot’s
hardware design choices and the supporting algorithms that together enable the
automation of the time intensive initialization, clean up, and charging routines as-
sociated with multi-robot experimentation. The efficacy of the presented design
and algorithms are validated by the continuous execution of 453 experiments over
a three day period on the Robotarium testbed.

Keywords: multi-robot system, automation, collision avoidance

1 Introduction

Creating a multi-robot research testbed is in general a labor intensive task as it requires
the development and integration of the hardware and software necessary to experimen-
tally validate novel algorithms. Beyond this, the cost to instantiate these multi-robot
testbeds, in terms of time and money, is also often prohibitive, leading many theoreti-
cal findings in the area of multi-robot research to be validated in simulations. To date,
a number of different robot platforms with low cost designs and small footprints have
been introduced in an effort to make multi-robot systems more accessible to researchers
[1,2,3,4,5,6].

In practice, operating a multi-robot testbed can be as labor intensive as creating it.
For example, to run a multi-robot experiment, a researcher typically needs to turn each
robot on, charge and replace the batteries of each robot, update each robot with the
code to execute the experiment, and place each robot into a desired initial configuration.
Similarly, after completing an experiment, a researcher needs to go through a cleanup
procedure including retrieving each robot, powering them down, and charge their bat-
teries for a future use. These relatively mundane procedures can occupy a large amount
of a researcher’s time. This necessitates a robot design that facilitates automating the
repetitive and labor intensive procedures associated with multi-robot experiments.

This paper presents GTernal (pictured in Fig. 1), a robot platform designed for
multi-robot research, focusing on the design choices and supporting algorithms that
enable the platform to autonomously perform the mundane and time-consuming initial-
ization and cleanup routines surrounding multi-robot experimentation. An early pro-
totype of the GTernal was briefly introduced in [7,8] as GRITSBot X. Although [7,8]

mailto:skim743@gatech.edu
mailto:pdavis77@gatech.edu
mailto:nyam3@gatech.edu
mailto:sam.coogan@gatech.edu
mailto:Sean.Wilson@gtri.gatech.edu

2 Soobum Kim et al.

Fig. 1. The GTernal robot (left) and the exploded rendering of it (right).

discuss the design philosophies for the robot, they do not provide specific details on the
robot’s design, the algorithms that support its ability to automate experiment execution,
nor validate its performance over long time scales, as the primary focus of these papers
is on the Robotarium, a remotely accessible multi-robot research testbed. In the past 5
years since the initial deployment of GRITSBot X in the Robotarium, the robot design
has gone through a series of design iterations culminating in the GTernal, whose design
enables the autonomous execution of many multi-robot experiments over long periods
of time with minimal human intervention.

The effectiveness of the GTernal’s design and associated automation algorithms is
validated through the continuous execution of experiments by a group of 10 GTernals
on the Robotarium over a three day period. During this time, 453 experiments were
autonomously conducted with only 6 human interventions required during the period.

This paper is organized as follows. In Section 2, GTernal is compared with other ex-
isting robot platforms. The robot design, including its processors, sensors, locomotion,
and power system, is discussed in Section 3. In Section 4, the initialization, charging,
and barrier deadlock resolution algorithms that are used with the GTernal platform to re-
duce the required human labor to instantiate and conclude multi-robot experiments are
explained. The onboard collision avoidance feature of GTernal is introduced in Section
5, and the effectiveness of the overall robot design for multi-robot testbed automation
is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Existing Platforms

Over the past decade, various robotic platforms have been developed to validate multi-
robot research in a laboratory setting. This section motivates the development and de-
sign of the GTernal robot by comparing its design and capabilities with these existing
robotic platforms, listed in Table 1. To facilitate the comparison process, we categorize
the robot platforms into two groups: 1. Miniature platforms (robots with a diameter of
5 cm or less) and 2. Non-miniature platforms.

Miniature robot platforms typically focus on enabling the deployment of large num-
bers of robots simultaneously in an indoor setting. To facilitate this, the robots are de-
signed to be cost effective, have small footprints, and be relatively simple to assem-

GTernal 3

Table 1. Comparison of Multi-Robot Platforms

Robot Processors Sensors Automatic
Charging

Cost
($)

GTernal ARM CORTEX-A72,
ARM CORTEX-M7

wheel encoders, power meter, accelerometer, gyro-
scope, magnetometer, time-of-flight, camera

Y 370

Kilobot [1] ATmega328 infrared, visible light N 14
GRITSBot [4] ATmega328,

ATmega168
infrared, accelerometer, gyroscope Y 50

Zooid [3] ARM CORTEX-M0 capacitive touch N 50
mROBerTO 2.0 [5] ARM CORTEX-M0 infrared, time-of-flight N 120
e-Puck [9] ARM CORTEX-M4 infrared, time-of-flight, accelerometer, gyroscope,

magnetometer, microphone, camera
N 970

Khepera IV [10] ARM CORTEX-A8 infrared, ultrasonic, accelerometer, gyroscope, mi-
crophone, camera

N 3100

3pi+ [11] ARM CORTEX-M0+
or ATmega32U4

wheel encoders, infrared, accelerometer, gyroscope,
magnetometer, bump

N 150-
172

r-one [2] ARM CORTEX-M3 wheel encoders, accelerometer, gyroscope, light N 220
Pheeno [6] ARM CORTEX-A7,

ATmega328P
wheel encoders, infrared, accelerometer, magne-
tometer, camera

N 270

TurtleBot [12] ARM CORTEX-A72,
ARM CORTEX-M7

wheel encoders(4), infrared(4), LiDAR, accelerom-
eter, gyroscope, magnetometer, camera

N 660-
1900

SMARTmBOT [13] ARM CORTEX-A72 infrared, time-of-flight, camera N 210
JetBot [14] ARM CORTEX-A57 camera N 250

ble [1,4,3,5]. Although miniature robots enable researchers to deploy large amounts
robots simultaneously in a small indoor space, their small-sized actuators are not robust
enough for continuous long term autonomous operations. For instance, the vibration
based locomotion of Kilobots makes it difficult for them to move precisely for an ex-
tended period of time [1]. Also, miniature robots in general require a flat and clean
surface to operate reliably. The small, less powerful actuators of the miniature robots
have their motion biased when the testbed’s operating surface is not level or has imper-
fections from natural settling. Beyond this, small motors, like those of the GRITSBots
[4], are prone to picking up dusts and small particles on the surface of the testbed, which
leads to faster actuator failures. The requirement for testbed surfaces to be clean and flat
adds to the effort required for researchers to run multi-robot experiments. More impor-
tantly, the small actuators that drive these robots make automating a potential charging
process or the process of getting robots on and off the testbed less reliable.

In contrast to miniature robot platforms, non-miniature robot platforms typically
have reliable, robust actuation, a wide variety of sensing, powerful onboard computa-
tion, and the ability to expand their sensor suite. While not as many can be deployed
in the same space as their miniature counterparts, these non-miniature robot platforms
have the potential to automate charging, initialization, and cleanup procedures for multi-
robot testbeds. The e-puck [9] and e-puck2 [15] are mobile robot platform designed for
university level education. These robots are equipped with a wide variety of sensors
with different types of extensions available to address specific needs. Khepera IV [10]
is a commercially available robot designed for indoor lab applications. Similar to e-
puck, Khepera IV is equipped with a variety of sensors and offers several extensions
for a range of applications, from research to education. The 3pi+ [11] is a commercially
available robot from Pololu Robotics that fills a similar role as the e-puck and Khepera

4 Soobum Kim et al.

IV at a cheaper price range. The r-one [2] is an open source robot platform designed for
multi-robot research and education. The overall design of the robot is similar to that of
3pi+ robot, but r-one has additional capabilities such as a radio for global control, an
infrared beacon for localization, and direct inter-robot communication.

The aforementioned non-miniature robot platforms are relatively older platforms,
initially introduced about a decade ago, making reproduction and augmentation of their
original open source designs difficult since some of their electrical and mechanical
components are no longer available. Although e-puck and Khepera have more recent
versions of their original design commercially available, the commercial price of an
e-puck2 (⇠ $9503) and a Khepera (⇠ $3100 [10]) can make it prohibitively expensive
to use the platforms for multi-robot research. The e-puck2 does have extensions avail-
able for autonomous charging, but this raises their price further to between ⇠ $1470
and ⇠ $1525 per robot3. The 3pi+ uses AAA batteries, which makes maintaining the
battery level of a fleet of robots tedious.

More recently introduced non-miniature robot platforms feature powerful single
board computers and open source designs that are current enough to potentially re-
produce. Pheeno [6] is a robot designed for research and education. The robot has a
modular design where the gripper module or other custom modules can be attached to
the core module for additional functionality. TurtleBot [12] is a commercially available
design that can support sensor expansion through its single board computer. SMARTm-
BOT [13] is built for robotics research and education using 3 layers of PCBs and 3D
printed parts, providing its adopters the ability to customize it. JetBot [14] is a robot that
leverages the NVIDIA Jetson Nano [16], 3D printed parts and commercially available
components for its construction.

Although the modern non-miniature platforms offer powerful onboard computation
capabilities in addition to more reliable actuators, rich sensor suites, and potential ex-
pandability, their current designs are not ideal for automating the mundane processes
associated with experimentation on a multi-robot testbed. The TurtleBot is larger than
the GTernal with the Burger model having a ⇠ 60% larger footprint and the Waffle
model having a ⇠ 90% larger footprint, which makes it difficult to use many of them
for an indoor experiments. In addition, its starting commercial price of ⇠ $650 can be
cost prohibitive to create a multi-robot system using the platform. Pheeno, SMARTm-
BOT, and JetBot are more compact and less expensive than TurtleBot filling similar
roles. However, all of these platforms, including the Turtlebot, do not natively support
automatic charging and are not designed to limit power draw from sensors, actuators,
and computation devices when charging which are key features to automate the labor
intensive battery maintenance of a multi-robot testbed.

3 Robot Design

The motivation for GTernal design is to create a robot platform suitable for autonomously
executing indoor multi-robot experiments over an extended period of time without the
need for human intervention for maintenance, setup, or cleanup. This can be achieved

3 http://www.gctronic.com/shop.php : Accessed April 2, 2024

GTernal 5

with a design that provides; 1) reliable actuation and sensor suites to safely navigate the
testbed repeatedly while maintaining a small footprint, 2) onboard power sensing and
regulation capabilities with the ability for the robot to charge itself to autonomously
maintain its battery levels, 3) Over-the-air (OTA) interfacing to reduce programming
time and enable global safety routines from a central computer (i.e. stop all robots if
a collision occurs) and 4) be repairable and upgradable so the design does not become
obsolete from wear and tear or computation advances. Figure 2 shows a high level block
diagram of the GTernal design that support these features along with its connections to
a potential central computer and tracking system present in most multi-robot testbeds.
The rest of the section details the design choices of the GTernal robot.

Fig. 2. Block diagram of a GTernal connected to general multi-robot testbed infrastructure (left)
and the wireless charging receiver of GTernal and a charging station in the Robotarium (right).

3.1 Compact and Reliable Robot Design

The GTernal, pictured in Figure 1, is a differential drive platform with a small footprint
11 cm ⇥ 9.5 cm ⇥ 9.5 cm (width, length, height). The robot is constructed with a
custom laser-cut acrylic chassis, a custom PCB, and commercially available off the
shelf components. The design files and guide associated with constructing and running
the robot can be found within a publicly available GitHub repository [17].

The most fundamental requirement for a mobile robot to successfully operate for a
long time is reliable actuation. Typically, smaller actuators are less powerful and more
fragile, but the size of the actuator has a significant impact on the robot footprint. The
two motors chosen to drive GTernal are 6V DC micro metal geared motors with 100:1
gear ratio4. These motors enable the robot to maintain a small footprint with dimensions
of 14.5 mm ⇥ 12 mm ⇥ 40.5 mm while remaining powerful and agile. The motors are
coupled with wheels with a diameter of 32 mm, which yield a maximum linear speed of
the robot of approximately 26 cm/s. Additionally, these motors come with an attached
quadrature encoder with 0.25� resolution. The built-in encoder allows precise feedback
control of the motor and enables the robot to detect motor failure.

GTernal is equipped with a fundamental sensor suite consisting of four types of
onboard sensors: a power monitor, an inertial measurement unit (IMU), a Raspberry
Pi Camera Module 2, and 7 time-of-flight (ToF) range sensors. The onboard power
monitoring chip is INA260 capable of measuring the voltage, current, and power with

4 Part number SKU:FIT0483

6 Soobum Kim et al.

precision of 1.25 mV, 1.25 mA, and 10 mW, respectively. The IMU used in GTernal is
BNO055, which can produce fused estimates of the robot’s orientation as well as raw
sensing data. The ToF distance sensors onboard GTernal are VL53L0X, each of which
have a field of view (FOV) of 25 degrees and can measure up to 1.2 m with 4 � 7%
accuracy in default mode. These ToF sensors also have the ability to be turned off when
not in use to conserve power.

In addition to reliable actuators and essential sensor suite, GTernal is equipped
with a Raspberry Pi [18] single board computer to execute high-level algorithms, and a
Teensy 4.0 [19] micro-controller to perform low-level hardware control. The Raspberry
Pi was chosen over other single board computers because of its large, active user base
to help with development, ability to modify power consumption, and identical form
factor between versions. The GTernal can be equipped with a Raspberry Pi Zero, 3,
or 4, depending on the user’s requirements for onboard computational power versus
power consumption. The microprocessor (Raspberry Pi) and micro-controller (Teensy)
are connected and communicate over a UART serial line, which allows a central control
station to interface with a fleet of GTernal robots by flashing them with new firmware,
sending them global commands, and receiving sensor data from the robots.

3.2 Wireless Charging and Power Management

Operating mobile robots autonomously for an extended period of time requires an
automatic charging system to restore or maintain robots’ battery levels between ex-
periments. Therefore, GTernal is equipped with a battery charge management chip,
MCP73871, capable of delivering the maximum of 1 A charging current coupled with
a Qi wireless charging receiver supporting the maximum charging current of 1A from
any standard Qi wireless charging transmitter. The wireless charging module of GTer-
nal is supported in between two 1/16” acrylic plates in the rear of the robot, as seen in
Figure 2. The rear of the robot chassis is designed to be flat to minimize the distance
between the wireless emitter and receiver. This choice facilitate the charging process
managed by an automated procedure that is discussed in Section 4. Similar to motor
selection, choosing the battery for the GTernal involves balancing trade-offs: it must
have sufficient capacity for extended operation yet remain compact and efficient for
wireless charging. Accordingly, GTernal is powered by a 3.7 V 2500 mAh lithium-ion-
polymer (LiPo) battery. With this power management setup, the GTernal equipped with
a Raspberry Pi 4 and full sensor suite draws approximately 400 mA in idle and 600 mA
during typical use. This results in the robot being able to nominally operate for about 3
hours without recharging and about 2 hours continuously while maintaining the ability
to recharge while on.

3.3 Repairability, Customizability, and Upgadeability

Although GTernal is designed to be durable, some of its components may need to be
replaced after continuous operation. For instance, the motors on the robot fail after
running for a long period of time due to wear and tear. Also, the acrylic plates or time-
of-flight sensors may be damaged due to collisions caused by hardware/software fail-
ures. In order to facilitate the potential robot repair process, GTernal features easily

GTernal 7

repairable design. All parts of GTernal are installed on the acrylic plate chassis of the
robot through screws and standoffs, and the electrical connections between different
components are made through Japan Solderless Terminal (JST) connectors. This allows
users to easily replace any damaged components of the robot.

Beyond repairability, GTernal’s design also makes the platform flexible in terms of
customizability and upgradability. Although GTernal is mainly designed for Raspberry
Pi 3s and 4s, it provides users with a degree of freedom on the processor and sensor
selections. For instance, users who do not require the heavy utilization of onboard data
processing or computations can build a version of GTernals using lower cost processors
(Raspberry Pi Zero W or Zero 2 W). Moreover, the users can decide not to install ToF
sensors which reduces the price of each platform by ⇠ $100. If needed, the Raspberry
Pis of the robots can be replaced with more powerful ones, or the ToF sensors can be
installed on the robots at a later date.

4 Autonomous Initialization and Charging Algorithms

In this section, the algorithms that automate the mundane charging, initialization, and
clean up routines associated with multi-robot experimentation with GTernals are pre-
sented. The first key algorithm for safe automation of these tasks is collision avoidance
as collisions between robots require human intervention to remedy, and they can even
damage the robots. In order to prevent inter-robot collisions during automated initial-
ization and charging routines, GTernals utilize control barrier functions (CBFs) [20,7]
to ensure that the distance between any pair of robots does not become lower than a
specified threshold. However, these CBFs can often lead the robots to a state known
as deadlock [21] where the robots do not further progress towards its main objective to
avoid collisions with other robots. Since collision avoidance between GTernals needs to
be enforced during initialization and charging processes, a deadlock resolution strategy
is needed to allow their long term operation.

Algorithm 1: check deadlock
Input: xi, x

old
i , gi, t, t

old
i

Output: deadlock flag
1 Initialize deadlock flag = false
2 if kxi � gik > ✏ then

3 if kxi � xold
i k > � then

4 xold
i = xi;

5 told
i = t;

6 end

7 if t� told
i > � then

8 deadlock flag = true;
9 end

10 end

11 Return: deadlock flag

8 Soobum Kim et al.

Algorithm 2: initialize robots
Input: x, xinit,N

1 Initialize g = xinit, xold = 0, t = 0, told = 0, tdeadlock = 0;
2 Start counting t;
3 while t < tforward do

4 for i 2 N do

5 ui = (vmax, 0);
6 end

7 end

8 while kxi � xinit
i k > ✏, for any i 2 N do

9 for i 2 N do

10 if check deadlock(xi, x
old
i , gi, t, t

old
i) then

11 if t� tdeadlock
i > � then

12 gi = uniformDistribution(testbedDimension);
13 tdeadlock

i = t;
14 end

15 else

16 gi = xinit
i ;

17 end

18 ui = poseControl(gi, xi);
19 end

20 u = barrier(u, x);
21 end

To this end, Algorithm 1 identifies deadlocks by checking if a robot is stuck at a
position and not moving towards its goal point. The algorithm is used to temporarily
change the goal point of a robot to a random point drawn from a uniform distribution
within the testbed during initialization and charging processes. This small addition to
the standard CBF algorithm results in safe robot motion that always reaches the desired
goal pose given the goal poses are feasible. In the algorithm, xi, xold

i , gi 2 R3 are the
current, previous, and goal poses of robot i, respectively, where each pose is a vector
containing an X-coordinate, Y-coordinate, and heading; t, told

i , tdeadlock
i , ✏, �, � > 0 are

the current time, previous time, previous deadlock time, tolerance for position control
to a goal pose, deadlock tolerance distance, and timeout for deadlock detection.

Before executing a multi-robot experiment, robots must be initialized to specified
or random positions within the testbed. Algorithm 2 is used to bring robots to a starting
configuration from their charging locations. Assuming all robots are at their charging
stations, and given the set of indices of robots N needed for the experiment, the initial-
ization algorithm drives the robots onto the testbed by making them move forward at
their maximum linear velocity vmax for tforward seconds. Then, the algorithm drives the
robots to the initial poses required for the experiment, xinit = [xinit

1
>
, · · · , xinit

|N |
>
]> 2

R3|N |, using a proportional pose controller that is augmented for safety using CBFs
with the deadlock detection algorithm to resolve deadlocks.

To alleviate the labor involved in removing and charging robots after an experiment,
Algorithm 3 autonomously navigates the robots to the wireless charging stations and
precisely positions them on the emitters to initiate the Qi ‘handshake’, thereby begin-

GTernal 9

Algorithm 3: automatic charging
Input: x, c, capproach

1 Initialize g = capproach, c0 = c, xold = 0, t = 0, told = 0;
2 Start counting t;
3 while not all robots being charged do

4 for i 2 N not being charged do

5 State 1 (drive to charging approach pose);
6 if check deadlock(xi, x

old
i , gi, ti, t

old
i) then

7 if ti � tdeadlock
i > � then

8 gi = uniformDistribution(testbedDimension);
9 tdeadlock

i = ti;
10 end

11 else

12 gi = capproach
i ;

13 end

14 ui = poseControl(gi, xi);
15 ui = barrier(u, x);
16 State 2 (drive towards charger);
17 while kc0i � xik > ✏ do

18 ui = poseControl(c0i, xi);
19 end

20 if not being charged then

21 go to State 3;
22 end

23 State 3 (drive back to approach pose);
24 c0i = normalDistribution(ci,�);
25 while kcapproach

i � xik > ✏ do

26 ui = poseControl(capproach
i , xi)

27 end

28 go to State 2;
29 end

30 end

ning the charging process. The algorithm is a state machine comprised of three states.
Similar to the initialization phase, the first state safely drives each robot that is not
currently being charged to a designated point near the charging stations. In the second
state, each robot is driven to the recorded location of its charging station without CBFs
to make contact with the charging coil. Considering a typical multi-robot testbed design
where multiple charging coils are positioned closely to facilitate side-by-side charging,
the docking motion proceeds without safety guarantees. This is to prevent CBFs from
influencing the motions of robots, ensuring they accurately reach their designated emit-
ter coil locations.

Wireless charging requires a pair of transmitter and receiver to align with minimal
error. In practice, a robot can often fail to connect at this location due to tracking errors
and actuator errors. Therefore, in order to make the autonomous wireless charging sys-

10 Soobum Kim et al.

tem work reliably, Algorithm 3 repeats the docking process if its charging attempt fails.
However, instead of using the fixed charger location, the algorithm chooses slightly dif-
ferent locations for the charger given by a Gaussian distribution around the predefined
position of the charging station.

5 Onboard Collision Avoidance

Collision avoidance is an important factor to consider when operating a multi-robot
testbed as collisions can damage robots. In the Robotarium, with the predecessors of
GTernal, GRITSBot [4] and GRITSBot X [7], inter-robot collision avoidance is im-
plemented using control barrier functions [7]. However, the implementation relies on
the proper functioning of a central tracking system and communication networks be-
tween a central computer and the robots on the testbed. The predecessor robots of the
GTernal do not offer a standalone onboard collision avoidance feature. This is due to
the lack of precision and consistency in their onboard infrared (IR) distance sensor
measurements and limited computational capabilities. Although the collision avoid-
ance achieved through a central tracking system effectively prevents collisions between
robots, an onboard collision avoidance feature on a robot can add a layer of protection if
the central tracking system fails, which can be beneficial in various multi-robot studies.
For instance, one can test a decentralized algorithm using real robots without explicitly
considering collision avoidance even in the absence of a tracking system. Also, arbitrary
obstacles can be introduced into the environment to test the robustness or resilience of
an algorithm under the presence of unknown obstacles.

Fig. 3. Top view of a GTernal in the robot coordinate frame where the origin is located at the
center of the robot, p. The position of the ith ToF sensor is psi which is distance dsi away from
the origin. The angle of the ith sensor with respect to p is ✓si , and �si is its mount angle.

GTernal is equipped with an onboard collision avoidance feature fully utilizing its 7
onboard Time-of-Flight (ToF) sensors. Consider the robot coordinate frame described
in Fig. 3 where the origin is at the center of the robot, i.e., p = [0, 0]>, and the yaw
angle origin is with respect to the 4th sensor, i.e., ✓s4 = 0. The position of each sensor i
can be expressed as psi = dsi [cos(✓si), sin(✓si)]

> 2 R2 where dsi > 0 is the distance
between the center of the robot and the ith sensor, and ✓si is the angle of the sensor
with respect to p. The sensor angle ✓si follows the convention of the unicycle dynamics
where the counter-clockwise direction is positive.

GTernal 11

With the sensor positions defined in the robot coordinate frame, a control barrier
function [20] that prevents collisions between each sensor and its detected obstacle can
be defined as

hsi(p, oi) = kpsi � oik2 � d2safe � 0 (1)

where oi 2 R2 is the position of the obstacle detected by the ith sensor, and dsafe
is a desired safety distance to obstacles. Since the ith sensor has the mount angle of
�si , the position of the obstacle based on the sensor measurement is given as oi =
psi + ei[cos(�si), sin(�si)]

> where ei > 0 is the distance measurement provided by
the sensor. In order for (1) to hold in forward time, which implies that the robot does
not collide with the detected obstacle, the time derivative of the barrier function needs
to satisfy that

ḣsi(p, oi) = 2(psi � oi)
>(ṗsi � ȯi) � �↵(hsi(p, oi))

for all psi where ↵ is a class K function. Since GTernal is a rigid body, it holds that
ṗsi = ṗ. Accordingly, assuming single integrator dynamics for the robot, i.e., ṗ = u,
similar to what has been done in [22], the controller that prevents collisions between
the robot and its detected obstacles is given by the following quadratic program (QP)
controller

u⇤ = argmin
u

ku� ûk2

s.t. � 2ei[cos(�si), sin(�si)]u � �↵(hsi(p, oi)), 8i 2 {1, · · · , 7}
(2)

where û is a nominal control input for the robot. Note that the QP minimally modifies
the nominal control input of the robot in the sense of l2 norm to avoid collisions with
its detected obstacles. Here, the velocity of each obstacle, ȯi, is assumed to be 0, which
seems to imply that the collision avoidance is ensured only with respect to static obsta-
cles. However, collision avoidance between multiple GTernals can also be established
with a proper constant multiplied to the class K function as every GTernal is driven by
the controller in (2), which effectively creates the decentralized implementation of the
multi-robot collision avoidance barrier certificates discussed in [21].

In fact, GTernal is a differential drive robot which is modeled using unicycle dy-
namics. Therefore, the single integrator control, u⇤, given by the QP controller in (2)
needs to be converted to unicycle dynamics. Using near-identity diffeomorphism [23],
the single integrator control u⇤ can be converted to linear and angular velocities of a
unicycle as

v
!

�
=

1 0
0 1

l

�
cos(✓) sin(✓)
�sin(✓) cos(✓)

�
u⇤

where l > 0 is a small distance from the center of the robot to the virtual point projected
in front of the center point, and ✓ is the yaw angle of the robot which is set to 0 as the
control input is computed in the robot coordinate frame.

6 Experiments

In order to validate the efficacy of GTernal design and associated algorithms for multi-
robot testbed automation, two experiments are discussed. First, we present experiments

12 Soobum Kim et al.

that demonstrate the effectiveness of the onboard collision avoidance algorithm, show-
casing GTernal’s ability to operate safely and independently without a central control
authority. Then, an experiment demonstrating the ability of the GTernal platform to au-
tonomously execute large numbers of different experiments over long periods of time
is discussed.

6.1 Onboard Collision Avoidance

In this set of experiments, the onboard collision avoidance algorithm of GTernal is
demonstrated to be successful in avoiding collisions with unknown obstructions in the
testbed as well as inter-robot collisions. In the first experiment, 4 robots were tasked
with navigating from one end of the 3.2m ⇥ 2m testbed to the other without colliding
with unknown obstacles in their way, as shown in Fig. 4. The 4 robots continuously re-
ceived control inputs from the testbed computer driving them straight from their initial
positions to their goal positions across the testbed. The nominal control for each robot i
was calculated using a proportional controller, ûi = pi,goal � pi, where pi,goal is the sta-
tionary goal position of the robot, and pi is the robot’s current position obtained through
Vicon tracking system. In the arena, 3 obstacles that cannot be detected by the Vicon
system were placed so that the robots collide with them if they directly execute their
received control inputs from the central computer. However, the robots’ onboard col-
lision avoidance algorithm allows them to reach their goal positions without colliding
with the obstacles as described in Fig. 4.

Fig. 4. Four GTernal robots successfully navigating to their goal positions without colliding with
unknown obstacles in the arena utilizing their onboard collision avoidance algorithm.

Fig. 5. Three GTernal robots successfully navigating to their goal positions without colliding with
each other utilizing their onboard collision avoidance algorithm.

In the second experiment, inter-robot collision avoidance is demonstrated using 3
GTernals as shown in Fig. 5. Initially, the robots are positioned on a circle equally
spaced from each other. During the experiment, each robot continuously received its
nominal control input from the testbed computer that tries to drive it to the opposite
side of the circle in a straight line. As can be seen in Fig. 5, the robots successfully
reach their destinations without colliding with each other.

GTernal 13

In these experiments, deadlock situations where all robots stop and not progress to-
wards their objectives to avoid collisions did not occur. However, it is worth noting that
the onboard collision avoidance algorithm does not guarantee deadlock-free operations
as the purpose of this algorithm is to prevent each robot from collisions by minimally
modifying the original control when the central avoidance algorithms fail or unknown
objects are present on the testbed.

6.2 Testbed Automation

To validate the ability of the presented robot design and associated algorithms to enable
the autonomous execution of many multi-robot experiments over long periods of time
with minimal human intervention, 10 GTernals with full sensor kits and Raspberry Pi 4s
(the highest power draw version) were deployed in the Robotarium to continuously op-
erate for three days. GTernals were connected to the central testbed computer that runs
Python or MATLAB scripts. The robots receive linear and angular velocity commands
produced by the scripts running on the testbed computer, and the robots send their bat-
tery voltage measurements back to the computer along with any other user experiment
data. The localization of the robots was done using Vicon tracking system.

During their three day deployment, the robots executed unknown experiments sub-
mitted by random Robotarium users as well as two default experiments involving 5
robots if the experiment queue of remote user submissions was empty. For each ex-
periment, the robots autonomously drove themselves onto the testbed using Algorithm
2 and used Algorithm 3 to drive robots off the testbed and recharge the batteries of
the robots. This constant experimentation execution tested the effectiveness of the pro-
posed GTernal robot running the automated initialization and charging routines. The
only times experiments would not be executed continuously is when the number of
robots with a suitable voltage (3.7 V while charging) is less than the required number
of robots for the experiment. In this low voltage case, the testbed would allow the robots
to charge for 5 minutes before checking voltages again to run the experiment.

The first default experiment used in between user submitted experiments is cov-
erage control [24] where the robots aim to cover a Gaussian distribution with a mean
randomly generated within the testbed. The second default experiment used in between
user submitted experiments is swapping positions on a circle safely using control bar-
rier functions (CBFs) [7] for collision avoidance. These experiments were chosen due
to the non-predetermined nature of the trajectories of the robots in these experiment
which randomizes the power consumption and final positions of the robots.

The battery voltage level of 10 GTernals were monitored through the robots’ INA260
power monitoring chip during the 3 days of experiment. Figure 7 shows the evolution
of the battery voltage level of all robots. During the experiment, work was being done
on the building housing the testbed causing periodic Vicon errors. These Vicon tracking
errors caused 6 charging failures that required human intervention to alleviate over the
three day period, shown as annotations in Figure 7. It is worth noting that the charging
failure, which occurred around 30 hours of operation, was not addressed for three hours,
leading to the complete discharge of a robot. This allowed other robots to recharge as
the autonomous experiment execution was halted during this time due to the charging
error. Outside of this event the robots remained operational while executing 453 total

14 Soobum Kim et al.

(a) Robots at charging stations (b) Robots being initialized (c) Beginning of an experiment

(d) End of an experiment (e) Robots returning to chargers (f) Robots charging

Fig. 6. Autonomous initialization, charging, and execution of an experiment where 5 GTernals
executing the coverage control algorithm with a Gaussian density function.

Tracking
Failure

Fig. 7. Battery voltages of 10 GTernals during their continuous experiment execution over 3 days.

experiments consisting of 211 Robotarium user experiments and 242 default experi-
ments.

7 CONCLUSIONS

Operating a multi-robot testbed is extremely labor intensive. This paper presents the
GTernal robot and necessary algorithms to automate the tasks of initializing robots onto
a tesbed, removing them from a testbed, and maintaining their charge. The robot design
and algorithms are validated through continuous experiment execution over three days
resulting in 453 experiments run with only 6 failures requiring human intervention.

ACKNOWLEDGMENT

The authors would like to thank Sixing Chen, Chih-Chun Huang, and Jacob Skinner for
their contributions to the development and testing of GTernal.

GTernal 15

References

1. M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot system for
collective behaviors,” in 2012 IEEE International Conference on Robotics and Automation,
2012, pp. 3293–3298.

2. J. McLurkin, A. J. Lynch, S. Rixner, T. W. Barr, A. Chou, K. Foster, and S. Bilstein, A Low-
Cost Multi-robot System for Research, Teaching, and Outreach. Springer Berlin Heidelberg,
2013, pp. 597–609.

3. M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and S. Follmer, “Zooids:
Building blocks for swarm user interfaces,” in Proceedings of the 29th Annual Symposium on
User Interface Software and Technology, ser. UIST ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 97–109.

4. D. Pickem, M. Lee, and M. Egerstedt, “The gritsbot in its natural habitat - a multi-robot
testbed,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015,
pp. 4062–4067.

5. K. Eshaghi, Y. Li, Z. Kashino, G. Nejat, and B. Benhabib, “mroberto 2.0 – an autonomous
millirobot with enhanced locomotion for swarm robotics,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 962–969, 2020.

6. S. Wilson, R. Gameros, M. Sheely, M. Lin, K. Dover, R. Gevorkyan, M. Haberland,
A. Bertozzi, and S. Berman, “Pheeno, a versatile swarm robotic research and education plat-
form,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 884–891, 2016.

7. S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerstedt, “The
robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-
access, distributed control of multirobot systems,” IEEE Control Systems Magazine, vol. 40,
no. 1, pp. 26–44, 2020.

8. S. Wilson, P. Glotfelter, S. Mayya, G. Notomista, Y. Emam, X. Cai, and M. Egerstedt, “The
robotarium: Automation of a remotely accessible, multi-robot testbed,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2922–2929, 2021.

9. F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. M. Cianci, A. Klaptocz, S. Magnenat, J.-C.
Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for education in
engineering,” 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:16705005

10. K-Team. Khepera iv. [Online]. Available: https://www.k-team.com/khepera-iv
11. Pololu. 3pi. [Online]. Available: https://www.pololu.com/category/76/

3pi-robots-and-accessories
12. O. S. R. Foundation. Turtlebot. [Online]. Available: https://www.turtlebot.com
13. W. Jo, J. Kim, R. Wang, J. Pan, R. K. Senthilkumaran, and B.-C. Min, “Smartmbot: A ros2-

based low-cost and open-source mobile robot platform,” 2022.
14. Jetbot. [Online]. Available: https://jetbot.org/master/index.html
15. e-puck 2 documentation. [Online]. Available: http://www.gctronic.com/doc/index.php/

e-puck2
16. NVidia. Jetson nano. [Online]. Available: https://developer.nvidia.com/embedded/

jetson-nano-developer-kit
17. Robotarium Organization. GTernal GitHub Repository. [Online]. Available: https:

//github.com/robotarium/GTernal
18. Raspberry pi. [Online]. Available: https://www.raspberrypi.com
19. PJRC. Teensy 4.0. [Online]. Available: https://www.pjrc.com/store/teensy40.html
20. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Con-

trol barrier functions: Theory and applications,” in 2019 18th European Control Conference
(ECC), 2019, pp. 3420–3431.

https://api.semanticscholar.org/CorpusID:16705005
https://www.k-team.com/khepera-iv
https://www.pololu.com/category/76/3pi-robots-and-accessories
https://www.pololu.com/category/76/3pi-robots-and-accessories
https://www.turtlebot.com
https://jetbot.org/master/index.html
http://www.gctronic.com/doc/index.php/e-puck2
http://www.gctronic.com/doc/index.php/e-puck2
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://github.com/robotarium/GTernal
https://github.com/robotarium/GTernal
https://www.raspberrypi.com
https://www.pjrc.com/store/teensy40.html

16 Soobum Kim et al.

21. L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free mul-
tirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017.

22. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic
programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62,
no. 8, pp. 3861–3876, 2017.

23. R. Olfati-Saber, “Near-identity diffeomorphisms and exponential /spl epsi/-tracking and /spl
epsi/-stabilization of first-order nonholonomic se(2) vehicles,” in Proceedings of the 2002
American Control Conference (IEEE Cat. No.CH37301), vol. 6, 2002, pp. 4690–4695 vol.6.

24. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing net-
works,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.

	GTernal: A Robot Design for the Autonomous Operation of a Multi-Robot Research Testbed

