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A method for constructing homogeneous polynomial Lyapunov functions is presented for

linear time-varying or switched-linear systems and the class of nonlinear systems that can be

represented as such. The method uses a simple recursion based on the Kronecker product to

generate a hierarchy of related dynamical systems, whose first element is the system under study

and the second element is the well-known Lyapunov differential equation. It is then proven that

a quadratic Lyapunov function for the system at one level in the hierarchy, which can be found

via semidefinite programming, is a homogeneous polynomial Lyapunov function for the system

at the base level in the hierarchy. Searching for Lyapunov functions of the foregoing kind is

equivalent to searching for homogeneous polynomial Lyapunov functions via the formulation of

sum-of-squares programs. The quadratic perspective presented in this paper enables the easy

development of procedures to compute bounds on pointwise-in-time system metrics, such as

peak norms, system stability margins, and many other performance measures. The applications

of the theory to analyzing an aircraft model, on the one hand, and an experimental aerospace

vehicle, on the other hand, are presented. The theory can be comprehended with a first course

on state-space control systems and an elementary knowledge of convex programming.

I. Introduction

Linear time- and parameter-varying representations of dynamical systems are prevalent in aerospace control

applications. For example, they form the basis for the development of the ubiquitous gain-scheduling methods

used in flight control systems, including the control of aircraft engines. They are also used to capture the linearized

dynamics of a nonlinear dynamical system in the vicinity of one of its trajectories [1, p 59] or to analyze its transverse
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dynamics [2, 3]. Last, linear and parameter-varying systems can be used to conservatively capture the dynamics of

nonlinear systems when the nonlinearity is sector-bounded [4].

Influenced by theorems stating the equivalence between the stability of a linear system and the existence of a

quadratic Lyapunov function that proves it [5, p277], linear time- and parameter-varying systems are often associated

with the computation of quadratic Lyapunov functions to prove their stability or provide valuable bounds on their

performance. Early analytical works on systems that exhibit sector-bounded nonlinearities and the identification of

quadratic Lyapunov functions that prove their stability include, for example, those of Yakubovitch, who established the

celebrated lemma linking the existence of a quadratic Lyapunov function proving the stability of such systems with testing

specific properties of a related transfer function in the frequency domain [6]. Since then, the formulation of aerospace

control systems as time-varying linear systems whose stability is proved by means of quadratic Lyapunov functions

has been spreading to many applications, helped by the parallel development of efficient computational procedures,

notably based on convex optimization [4]. Close to the authors, a gain-scheduled control system for a gas-turbine

engine leverages such a construction in [5] to prove closed-loop quadratic stability. In [6], a novel triple-integrator

maneuver-regulation controller is used to produce a reduced-gravity environment on board an experimental quadrotor

vehicle. A parameter-varying representation of the system’s transverse dynamics is used to guarantee that the maneuver

is stable via the identification of a suitable quadratic Lyapunov function. These are, by far, not the first or only aerospace

applications of time- or parameter-varying systems whose stability and performance is supported by quadratic Lyapunov

functions: The research literature contains many other aerospace applications of quadratic Lyapunov functions for

control system design and analysis; see for example [7–11]. Among them, pioneering works [12] go as far as using a

linear parameter-varying representation of aerospace systems to simultaneously design control laws and the quadratic

Lyapunov functions that prove their closed-loop stability and their performance using convex optimization techniques.

The popularity of quadratic Lyapunov functions in system stability and performance analysis should not hide,

however, the fact that they form a conservative analysis framework: Given a time-varying linear system, the non-

existence of a quadratic Lyapunov function does not imply that the system is not stable. This conservatism has led

researchers to look for less conservative ways to establish the stability of linear, time-varying and related systems.

Among them, some of the more attractive methods have focused on the computer-assisted computation of higher-order

polynomial Lyapunov functions as far back as 1994, see [13], where the search for polynomial Lyapunov functions

proving the stability of uncertain linear systems is shown to be computationally manageable via convex optimization.

Moreover, in [14], the robust stability of linear systems subject to constant parametric uncertainties is studied using

polynomial parameter-dependent Lyapunov functions, which are quadratic in the states and higher order homogeneous

in the parameters. Presently, one of the best-known methods for computing nonquadratic Lyapunov functions and

various stability, performance, and robustness guarantees comes from applying the sum-of-squares (SOS) optimization

framework [15, 16] to control system problems, such as described in [17]. The SOS optimization framework provides a
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powerful set of tools for broad classes of systems and control verification problems. An alternative approach that leads to

similar results for system analysis problems comes from applying the generalized moment problem framework [18–20],

which leverages the Liouville equations used to obtain the infinite-dimensional linear differential equations that drive

the evolution of probability density functions, in a way similar to the Chapman-Kolmogorov equations for Markov

chains [21, Chapter 16]. This SOS-moment hierarchy fashions its search for guarantees in a manner similar to the SOS

optimization-based search for dual Lyapunov-like certificates.

The work presented here streamlines that of Zelentovsky [13] by introducing, for a given linear, time-varying

system, a hierarchy of related systems with increasingly high state-space dimension, whose stability analysis by means

of quadratic Lyapunov functions leads directly to the computation of polynomial Lyapunov functions for the original

system. While the search for quadratic Lyapunov functions for these higher-order systems is shown to be equivalent to

the computation of polynomial Lyapunov functions using SOS techniques, we believe the present work leads the reader

to streamlined and intuitive analysis procedures relying only on elementary linear systems theory and the knowledge of

convex optimization procedures, which the authors believe is the core contribution of this paper.

The paper then extends the use of the foregoing framework to address related problems. First, the computation of

reachable sets from a given initial condition for uncertain, linear time-varying systems is discussed. The ability for

invariant and homogeneous polynomials to capture such reachable sets is illustrated on a second-order example for

which graphical illustrations are provided. Another set of applications of the proposed framework is then considered,

where the system under consideration can be as simple as a single linear, time-invariant system, and its pointwise-in-time

performance is the subject of concern. More precisely, we look at using the framework of this paper to compute bounds

on impulse and step responses, and we show that the framework of the paper allows the analyst to develop much more

accurate bounds than can be obtained from quadratic Lyapunov functions alone.

The paper then proceeds with the computation of stability margins for the systems under consideration, which is the

natural complement to the stability analyses discussed above. The problem under consideration is the continuous-time

equivalent of computing the joint spectral radius, which can be thought of as the worst-case norm of an infinite product

of matrices chosen from a finite set as addressed in [22] by using a Kronecker product-based lifting of the matrix set

and improved upon in [23] by computing a certificate of contractibility using SOS optimization. In Section V, theory

from [24], which characterizes the set of asymptotically stable trajectories for an LTV system, is leveraged in order to

find periodic trajectories and bound the system’s stability margin using homogeneous polynomial Lyapunov functions.

Supporting the computation of upper and lower bounds on stability margins, the paper also focuses on computing

"worst-case trajectories", by computing trajectories that make the computed Lyapunov functions decay as slowly as

possible.

Last, the concepts described in this paper are illustrated on the stability analysis of an aerospace test article designed

and flown by the second author’s team for the purpose of creating reduced gravity conditions. It is shown that relying on
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higher-order, homogeneous polynomial Lyapunov functions considerably extends the range of conditions under which

the system, a high-performance quadrotor, can be proven closed-loop stable.

Summarizing, the contributions of this paper are

1) a lifting process leading to the formulation of the search for quadratic Lyapunov functions in larger state-spaces as

an elementary mechanism to search for polynomial homogeneous Lyapunov functions in the original state-space,

2) the introduction of a large number of system performance metrics that may be easily bounded by using such

quadratic Lyapunov functions,

3) the computation of stability margins for time-varying linear systems expressed in continuous time,

4) the illustration of the framework on problems of aerospace interest.

II. Notation
Denote by R the set of real numbers and denote by R+ the set of non-negative real numbers. Denote by 𝑆𝑛++ ⊂ R𝑛×𝑛

the set of symmetric positive definite 𝑛 × 𝑛 matrices. For 𝑃 ∈ R𝑛×𝑛, 𝑃 ≻ 0 means 𝑃 ∈ 𝑆𝑛++ such that the quadratic form

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 is positive for all nonzero 𝑥 ∈ R𝑛. Last, denote by 𝐼𝑛 the 𝑛 × 𝑛 identity matrix, and by 0𝑛 ∈ R𝑛 the zero

vector in R𝑛.

For matrices 𝐴 ∈ R𝑛×𝑚 and 𝐵 ∈ R𝑙×𝑘 , denote by 𝐴 ⊗ 𝐵 ∈ R𝑛𝑙×𝑚𝑘 the Kronecker product of 𝐴 and 𝐵, as given by

𝐴 ⊗ 𝐵 :=



𝐴1,1𝐵 · · · 𝐴1,𝑚𝐵

...
. . .

...

𝐴𝑛,1𝐵 · · · 𝐴𝑛,𝑚𝐵


, (1)

where matrix entries are given via subscript. Given 𝐴 ∈ R𝑛×𝑚 and integer 𝑖 ≥ 1, denote by ⊗𝑖𝐴 ∈ R𝑛𝑖×𝑚𝑖 the

𝑖th-Kronecker power of 𝐴, as defined recursively by

⊗1𝐴 := 𝐴,

⊗𝑖𝐴 := 𝐴 ⊗ (⊗𝑖−1𝐴), 𝑖 ≥ 2.
(2)

An important property of the Kronecker product that we utilize in this work, often without referring directly to it, is

(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷 (3)

holds for all matrices 𝐴, 𝐵, 𝐶, 𝐷 with dimensions permitting the formation of products 𝐴𝐶 and 𝐵𝐷.

The time derivative of a vector function of time 𝑥 : 𝑡 → 𝑥(𝑡) ∈ R𝑛 is denoted ¤𝑥 : 𝑡 → 𝑑
𝑑𝑡
𝑥(𝑡) ∈ R𝑛, and we extend

this notation to matrices so that ¤𝐴 ∈ R𝑛×𝑚 denotes the time-derivative of 𝐴(𝑡). Last, for a set M ⊂ R𝑛×𝑛, denote by
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conv(M) ⊂ R𝑛×𝑛 the convex hull of M, which is the intersection of all convex subsets of R𝑛×𝑛 which contain M.

III. Stability of Linear Time-Varying Systems

A. Preliminaries

Consider the linear time-varying system

¤𝑥 = 𝐴(𝑡)𝑥, (4)

where 𝑥 := 𝑥(𝑡) ∈ R𝑛 is the system state. We assume throughout this work that 𝐴(𝑡) ∈ R𝑛×𝑛 evolves inside a set

𝐴(𝑡) ∈ conv(M) ⊂ R𝑛×𝑛 for all 𝑡 ≥ 0, where

M := {𝐴1, 𝐴2, . . . , 𝐴𝑁 }. (5)

The system (4) is studied in the context of Lyapunov’s stability theory. A common Lyapunov function is a sufficiently

smooth mapping 𝑉 : R𝑛 → R with 𝑉(0) = 0 such that for all 𝑥 ∈ R𝑛\{0} and for 𝑗 ∈ {1, · · · , 𝑁} we have

𝑉(𝑥) > 0 and ¤𝑉(𝑥) = ⟨𝜕𝑉
𝜕𝑥

, 𝐴 𝑗𝑥⟩ ≤ 0. (6)

The system (4) is globally stable if and only if there exists a radially unbounded 𝑉(𝑥) satisfying (6), and the system is

globally asymptotically stable if we also have

¤𝑉(𝑥) = ⟨𝜕𝑉
𝜕𝑥

, 𝐴 𝑗𝑥⟩ < 0 ∀𝑥 ̸= 0. (7)

In [25, Theorem 4.5] and [26] it is shown that stability and asymptotic stability (we often neglect use of the word global,

but any stability property for systems studied in this paper holds globally) for (4) are each equivalent to the existence of

a homogeneous polynomial Lyapunov function 𝑉(𝑥) that satisfies (6) and (7) for each respective case.

When there exists a 𝑉(𝑥) satisfying (6) or (7) that is quadratic in the entries of 𝑥, we say that the system (4) is

quadratically stable or quadratically asymptotically stable, respectively [27]. Such a Lyapunov function will take the

form 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 where 𝑃 ∈ 𝑆𝑛++. Then (6) becomes

𝐴𝑇
𝑗 𝑃 + 𝑃𝐴 𝑗 ⪯ 0 (8)

and (7) becomes

𝐴𝑇
𝑗 𝑃 + 𝑃𝐴 𝑗 ≺ 0 (9)

for all 𝑗 ∈ {1, · · · , 𝑁}. Quadratic Lyapunov functions are the simplest instantiation of homogeneous polynomial
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Lyapunov functions. Hence, the search for a quadratic Lyapunov function for (4) has computational advantages in

comparison to other strategies for stability analysis [28]. The search can be reduced to solving a convex feasibility

problem involving linear matrix inequalities (LMI), and many efficient solvers exist to solve such problems.

The equivalence of stability and quadratic stability for LTI systems is a well-known result [29, Chapter 4]. If the

system (4) is time-invariant, i.e., 𝑁 = 1, then (4) is stable if and only if there exists a matrix 𝑃 satisfying (8). This is not

true, however, in the general setting of 𝑁 ≥ 2; indeed, stable systems exist for which there is no quadratic Lyapunov

function [30, Section 3]. For this reason, we establish tools to compute a homogeneous polynomial Lyapunov function

which can prove stability in the general setting of (4). We next present the time-varying Lyapunov differential equation

¤𝑋 = 𝐴(𝑡)𝑋 + 𝑋𝐴(𝑡)𝑇 , (10)

where 𝑋 := 𝑋(𝑡) ∈ R𝑛×𝑛 is the state and 𝐴(𝑡) retains its definition from (4).

Proposition 1. The Lyapunov differential equation (10) is asymptotically stable if and only if the system (4) is

asymptotically stable.

Proof. ⃝⇒ Assume the system (10) is asymptotically stable. Let 𝑥(𝑡) be the solution of (4) starting from any initial

condition 𝑥(0) = 𝑥0. Define 𝑋(𝑡) = 𝑥(𝑡)𝑥(𝑡)𝑇 . Then

¤𝑋 = ¤𝑥𝑥𝑇 + 𝑥 ¤𝑥𝑇

= 𝐴(𝑡)𝑥𝑥𝑇 + 𝑥𝑥𝑇 𝐴(𝑡)𝑇

= 𝐴(𝑡)𝑋 + 𝑋𝐴(𝑡)𝑇 .

It follows that 𝑋(𝑡) converges to zero by the assumed asymptotic stability of (10). Hence 𝑥(𝑡) converges to zero for any

initial condition ans it follows that (4) is globally asymptotic stable.

⃝⇐ Assume the system (4) is stable, and define 𝑋(𝑡) ∈ R𝑛×𝑛 with initial condition 𝑋(0) = 𝑋0. Any matrix can be written

as the sum of diads; therefore, there exist 𝑝1,0, · · · , 𝑝𝑁,0, 𝑞1,0, · · · , 𝑞𝑁,0 ∈ R𝑛 such that

𝑋0 =
𝑁∑︁
𝑗=1

𝑝 𝑗 ,0𝑞
𝑇
𝑗,0.

Next, consider the 2𝑁 trajectories that satisfy

¤𝑝 𝑗 = 𝐴(𝑡)𝑝 𝑗 , 𝑝 𝑗 (0) = 𝑝 𝑗 ,0, ¤𝑞 𝑗 = 𝐴(𝑡)𝑞 𝑗 , 𝑞 𝑗 (0) = 𝑞 𝑗 ,0 (11)

where 𝑗 ∈ {1, · · · , 𝑁}, and note that if (4) is asymptotically stable then (11) converges to zero.
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Taking 𝑋 = ∑𝑁
𝑗=1 𝑝 𝑗𝑞

𝑇
𝑗

then yields

¤𝑋 =
𝑁∑︁
𝑗=1

(
¤𝑝 𝑗𝑞

𝑇
𝑗 + 𝑝 𝑗 ¤𝑞𝑇𝑗

)
= 𝐴(𝑡)

(
𝑁∑︁
𝑗=1

𝑝 𝑗𝑞
𝑇
𝑗

)
+
(

𝑁∑︁
𝑗=1

𝑝 𝑗𝑞
𝑇
𝑗

)
𝐴(𝑡)𝑇 = 𝐴(𝑡)𝑋 + 𝑋𝐴(𝑡)𝑇 .

𝑋 = ∑𝑁
𝑗=1 𝑝 𝑗𝑞

𝑇
𝑗

is the (unique) solution to the differential equation (10) with initial condition 𝑋0, and 𝑝 𝑗 and 𝑞 𝑗 converge

to zero for all 𝑗 ∈ {1, · · · , 𝑁}. Therefore, 𝑋(𝑡) also converges to zero along trajectories of (10). □

Remark 1. The proposition proves that asymptotic stability is equivalent for systems (4) and (10), but equivalence

applies to stability as well.

In the following section we build on (10) to create a hierarchy of Lyapunov differential equations for the system (4),

and stability of a system at one level in the hierarchy is shown to be equivalent to stability of a system at all levels in the

hierarchy.

B. Establishing the Hierarchy of LTV Systems

The system hierarchy is built by leveraging the equivalent stability properties of (4) and (10) as presented in

Proposition 1. The Lyapunov differential equation (10) can be rewritten as

¤®𝑋 = A(𝑡) ®𝑋 (12)

by taking ®𝑋 to be the vectorization of 𝑋 , i.e. ®𝑋 = vec(𝑋) ∈ R𝑛2 . In this case, A(𝑡) ∈ R𝑛2×𝑛2 evolves nondeterministically

in the set A(𝑡) ∈ {A1, · · · ,A𝑁 } where, for 𝑗 ∈ {1, · · · , 𝑁}, we define A 𝑗 := 𝐼𝑛 ⊗ 𝐴 𝑗 + 𝐴 𝑗 ⊗ 𝐼𝑛. Using the Kronecker

product to define A 𝑗 and letting ®𝑋 = vec(𝑥𝑥𝑇 ) = 𝑥 ⊗ 𝑥, as in the proof of Proposition 1, means that (12) contains

redundant expressions; for the case when 𝑛 = 2, a simple procedure for eliminating these redundancies is given in [31].

We refer to (12), which is also linear time-varying, as the lifted or augmented system relative to system (4). Applying

concepts of quadratic stability to the lifted-system, the system (12) is stable if there exists a positive definite 𝑃 ∈ R𝑛2×𝑛2

so that

A𝑇
𝑗 𝑃 + 𝑃A 𝑗 ⪯ 0, (13)

for all 𝑗 ∈ {1, · · · , 𝑁}. These constraints correspond to the existence of a Lyapunov function V( ®𝑋) = ®𝑋𝑇𝑃 ®𝑋 for (12),

which is quadratic in the entries of ®𝑋 . The following proposition relates the quadratic stability of a system and its

augmentation.

Proposition 2. If the system (4) is quadratically stable, then the system (12) is also quadratically stable. In particular, if

𝑉(𝑥) = 𝑥𝑇𝑃1𝑥 is a quadratic Lyapunov function for (4), then V( ®𝑋) = ®𝑋𝑇 (𝑃1 ⊗ 𝑃1) ®𝑋 is a quadratic Lyapunov function

for (12), i.e., 𝑃2 = 𝑃1 ⊗ 𝑃1 solves (13).
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It is of course possible to repeat the process by constructing the vectorization of the Lyapunov differential equation

of (12), which would be

¤𝜉 = (𝐼𝑛2 ⊗ A(𝑡) + A(𝑡) ⊗ 𝐼𝑛2 )𝜉, (14)

with 𝜉 ∈ R𝑛4 . By finding a quadratic Lyapunov function for this new system and applying Proposition 1 twice, we see

that the quadratic stability of (14) establishes the stability of both (12) and (4). It is therefore possible to construct a

“hierarchy" of Lyapunov differential equations whose state space dimensions are 𝑛𝑙 , 𝑙 = 2(𝑖−1), where 𝑖 is an integer

greater than or equal to 1 and where 𝑖 = 1 gives the dimension of the “base" level system (4). The following proposition

formalizes the relationship between a lifted system of dimension 𝑛𝑙 and the system (4).

Proposition 3. System (4) is stable if there exists 𝑖 ∈ N≥1 and 𝑃𝑖 ∈ R𝑛
𝑙×𝑛𝑙 , 𝑙 = 2(𝑖−1), positive definite such that

(A𝑖
𝑗 )
𝑇𝑃𝑖 + 𝑃𝑖A𝑖

𝑗 ⪯ 0 (15)

for all 𝑗 ∈ {1, · · · , 𝑁}, where

A𝑖
𝑗 := 𝐼

𝑛2(𝑖−2) ⊗ A𝑖
𝑗 + A𝑖

𝑗 ⊗ 𝐼
𝑛2(𝑖−2) , 𝑖 ≥ 2

A1
𝑗 = 𝐴 𝑗 .

(16)

Building the hierarchy using the Lyapunov differential equation by applying the recursive operation given by (16)

quickly produces systems of dimension 𝑛𝑙 . A more general system hierarchy can be constructed, where the system

dimension at level 𝑖 is 𝑛𝑖 . Taking (4) as the system 𝐻1 with state 𝜉1 = 𝑥, we build the hierarchy 𝐻 according to

𝐻1 :



¤𝜉1 = A1(𝑡)𝜉1

A1(𝑡) ∈ conv(M1)

M1 = {A1
1 , · · · , A

1
𝑁
}

A1
𝑗

= 𝐴 𝑗

𝐻𝑖 :



¤𝜉𝑖 = A𝑖(𝑡)𝜉𝑖

A𝑖(𝑡) ∈ conv(M𝑖)

M𝑖 = {A𝑖
1, · · · , A

𝑖
𝑁
}

A𝑖
𝑗

= 𝐼𝑛 ⊗ A𝑖−1
𝑗

+ 𝐴 𝑗 ⊗ 𝐼𝑛𝑖−1

(17)

The system at level 𝐻𝑖 has dimension 𝑛𝑖 × 𝑛𝑖 . Again, constructing system 𝐻𝑖 from 𝐻1 is described as lifting or

augmenting, and 𝐻𝑖 is referred to as the lifted or augmented system.

Proposition 4. If 𝑥 is a trajectory of (4), then 𝜉𝑖 is a trajectory of 𝐻𝑖 when 𝜉𝑖 = ⊗𝑖𝑥.

Proof. We first show that if 𝐴(𝑡) = 𝜃1(𝑡)𝐴1 + · · · + 𝜃𝑁 (𝑡)𝐴𝑁 for scalar functions 𝜃 𝑗 (𝑡) ∈ [0, 1] and ∑
𝑗 𝜃 𝑗 (𝑡) = 1 for all 𝑡

with 𝑗 = 1, . . . , 𝑁 , then A𝑖(𝑡) = 𝜃1(𝑡)A𝑖
1 + · · · + 𝜃𝑁 (𝑡)A𝑖

𝑁
. This follows from the bilinearity of the Kronecker product,
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and only the inductive step is shown:

A𝑖(𝑡) = 𝐼𝑛 ⊗ (𝜃1(𝑡)A𝑖−1
1 + · · · + 𝜃𝑁 (𝑡)A𝑖−1

𝑁 ) + (𝜃1(𝑡)𝐴1 + · · · + 𝜃𝑁 (𝑡)𝐴𝑁 ) ⊗ 𝐼𝑛𝑖−1

= 𝐼𝑛 ⊗ 𝜃1(𝑡)A𝑖−1
1 + · · · + 𝜃𝑁 (𝑡)A𝑖−1

𝑁 + 𝜃1(𝑡)𝐴1 ⊗ 𝐼𝑛𝑖−1 + · · · + 𝜃𝑁 (𝑡)𝐴𝑁 ⊗ 𝐼𝑛𝑖−1

= 𝜃1(𝑡)A𝑖
1 + · · · + 𝜃𝑁 (𝑡)A𝑖

𝑁 .

Now let 𝜉𝑖 = ⊗𝑖𝑥. Then

¤𝜉𝑖 =
𝑑

𝑑𝑡
(⊗𝑖𝑥) = (

𝑑

𝑑𝑡
𝑥) ⊗ (⊗𝑖−1𝑥) + 𝑥 ⊗ 𝑑

𝑑𝑡
(⊗𝑖−1𝑥)

= 𝐴(𝑡)𝑥 ⊗ 𝜉𝑖−1 + 𝑥 ⊗ A𝑖−1(𝑡)𝜉𝑖−1

= (𝐴(𝑡) ⊗ 𝐼𝑛𝑖−1 + 𝐼𝑛 ⊗ A𝑖−1(𝑡))𝜉𝑖

= A𝑖(𝑡)𝜉𝑖 .

Therefore, 𝜉𝑖(𝑡) solves 𝐻𝑖 . □

The following two theorems generalize Propositions 2 and 3 for the hierarchy 𝐻.

Theorem 1. If system (4) is quadratically stable, then for every 𝑖 ≥ 1 there exists a quadratic Lyapunov function which

proves stability for the system 𝐻𝑖 . Moreover, if 𝑃1 satisfies (8), then 𝑃𝑖 = ⊗𝑖𝑃1 satisfies

(A𝑖
𝑗 )
𝑇𝑃𝑖 + 𝑃𝑖A𝑖

𝑗 ⪯ 0 (18)

for the system 𝐻𝑖 .

Proof. Without loss of generality, let M1 = {𝐴}. Then

(A𝑖)𝑇𝑃𝑖 = (𝐼𝑛 ⊗ A𝑖−1
𝑗 + 𝐴 𝑗 ⊗ 𝐼𝑛𝑖−1 )𝑇 (𝑃1 ⊗ 𝑃𝑖−1)

= 𝑃1 ⊗ (A𝑖−1)𝑇𝑃𝑖−1 + 𝐴𝑇𝑃1 ⊗ 𝑃𝑖−1,

𝑃𝑖A𝑖 = (𝑃1 ⊗ 𝑃𝑖−1)(𝐼𝑛 ⊗ A𝑖−1 + 𝐴 ⊗ 𝐼𝑛𝑖−1 )

= 𝑃1 ⊗ 𝑃𝑖−1A𝑖−1 + 𝑃1𝐴 ⊗ 𝑃𝑖−1.

Then the stability requirement (18) is

(A𝑖)𝑇𝑃𝑖 + 𝑃𝑖A𝑖 = 𝑃1 ⊗ ((A𝑖−1)𝑇𝑃𝑖−1 + 𝑃𝑖−1A𝑖−1) + (𝐴𝑇𝑃1 + 𝑃1𝐴) ⊗ 𝑃𝑖−1. (19)

For two square matrices 𝐿 and 𝑀 of dimensions 𝑙 and 𝑚 with eigenvalues 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑙 and 𝜇𝑘 , 𝑘 = 1, . . . , 𝑚
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respectively, the eigenvalues of 𝐿 ⊗ 𝑀 are

𝜆 𝑗𝜇𝑘 , 𝑗 = 1, . . . , 𝑙, 𝑘 = 1, . . . , 𝑚.

Additionally, (𝐿 ⊗ 𝑀)𝑇 = 𝐿𝑇 ⊗ 𝑀𝑇 . If 𝐿 is negative-(semi)definite and 𝑀 positive-(semi)definite, 𝐿 ⊗ 𝑀 is

negative-(semi)definite. Therefore, (𝐴𝑇𝑃1 + 𝑃1𝐴) ⊗ 𝑃𝑖−1 ⪯ 0 since 𝑃𝑖−1 is positive-definite. It can easily be shown by

induction that the term 𝑃1 ⊗ ((A𝑖−1)𝑇𝑃𝑖−1 + 𝑃𝑖−1A𝑖−1) is also negative-semidefinite; therefore, (18) is satisfied with

𝑃𝑖 = ⊗𝑖𝑃1. □

Theorem 2. System (4) is asymptotically stable if there exists 𝑖 ∈ N≥1 and 𝑃𝑖 ∈ 𝑆𝑛
𝑖

++ such that (A𝑖
𝑗
)𝑇𝑃𝑖 + 𝑃𝑖A𝑖

𝑗
≺ 0 is

satisfied for all 𝑗 ∈ {1, · · · , 𝑁}, where 𝐴𝑖
𝑗

is given by (17).

Proof. Assume that, for some 𝑖, there exists a 𝑃𝑖 which satisfies the inequality in the theorem, proving that the system

𝐻𝑖 is asymptotically stable. Take 𝜉𝑖 = ⊗𝑖𝑥. Proposition 4 shows that ¤𝜉𝑖 = A(𝑡)𝜉𝑖 . Then lim𝑡→∞ 𝜉𝑖(𝑡) = 0𝑛𝑖 =⇒

lim𝑡→∞ 𝑥(𝑡) = 0𝑛. □

Next comes an important theorem, because it states that the approach described in this paper is not more, nor less

powerful than "Sum-of-Squares" methods as far as stability analyses are concerned.

Theorem 3. The system (4) is proven stable via the conditions stated in Theorem 2 if and only if it is proven stable by

means of a Sum-of-Squares Lyapunov function as described in [25] and [26].

Proof. The proof is available in [31] and will not be repeated here. □

Remark 2. As with Proposition 1, Theorem 2 can also be easily extended to the case of stability (rather than asymptotic

stability) when 𝑃𝑖 satisfies (18).

The following corollary will be used extensively to produce Lyapunov functions for the applications and examples in

the remainder of the paper.

Corollary 1. Given a 𝑃𝑖 which satisfies (18) for system 𝐻𝑖 , the function

𝑉(𝑥) = 𝜉𝑇𝑖 𝑃𝑖𝜉𝑖 (20)

with 𝜉𝑖 = ⊗𝑖𝑥 is a homogeneous polynomial Lyapunov function for 𝐻1 of order 2𝑖.
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IV. Applications in System Analysis for Linear Time Varying Systems

A. Stability Analysis and Construction of Invariant Sets

When the switching or time-varying nature of a system is nondeterministic, many possible trajectories can result

from a given initial condition. Therefore, bounds on the set of possible trajectories is of interest, even when the system

is stable.

Definition 1 (Invariant Set). A set X ⊂ R𝑛 is said to be invariant w.r.t (4) if for every trajectory that starts with initial

condition 𝑥(0) ∈ X and under the dynamics (4), 𝑥(𝑡) ∈ X for all 𝑡 > 0.

Proposition 5. For a 𝑃𝑖 ∈ 𝑆𝑛
𝑖

++ that satisfies (18) for some 𝑖 ≥ 1 and for all A𝑖
𝑗
∈ M𝑖 , the set

X = {𝑥 | 𝜉𝑇𝑖 𝑃𝑖𝜉𝑖 ≤ 𝜉𝑖(0)𝑇𝑃𝑖𝜉𝑖(0), 𝜉𝑖 = ⊗𝑖𝑥} (21)

is invariant under (4).

Remark 3. Proposition 5 presents a convex feasibility problem which provides a sufficient condition for constructing

the invariant set X; however, a measure of this set’s “quality" is subjective. Generally, some kind of set optimality is

sought. A set which fits tightly around possible trajectories can usually be obtained by minimizing a convex objective

function such as trace(𝑃) or log(det(𝑃−1)).

A numerical example is presented which illustrates that higher levels 𝑖 of the hierarchy can significantly improve the

invariant set produced using Proposition 5.

Example 1. Consider the system (4) with M1 = {𝐴1, 𝐴2} and

𝐴1 =


−0.5 0.5

−0.5 −0.5

 , 𝐴2 =


−2.5 2.5

−2.5 1.5

 . (22)

The system is stable, and forward invariant regions are computed by applying Proposition 5 with quadratic Lyapunov

functions for four systems in the hierarchy (17) using levels 𝑖 = 1, 5, 8, and 13. Consider the initial condition 𝑥0 = [1, 0]𝑇 .

These Lyapunov functions are computed using the convex program

minimize ⊗𝑖 𝑥𝑇0 𝑃𝑖 ⊗𝑖 𝑥0 = 𝑃𝑖(1, 1),

subject to (18) and 𝑃𝑖 ≥ 𝐼𝑛𝑖

for 𝑗 = 1 and 2, where the objective function is added to favor tight invariant regions. The results of this example are

plotted graphically in Figure 1. The convex programs in this example and those that follow are computed using the

11



−1 0 1
−2

−1

0

1

𝑥1

𝑥
2

Possible Trajectories 2nd order
10th order 16th order
26th order Initial State

Fig. 1 Simulated system response of (4) with parameters given by (22). With initial condition 𝑥0 = [1, 0]𝑇 , the
system can only reach the region shown in light yellow, which was computed via simulation. The dark blue,
light blue, orange and red regions represent invariant sets calculated using polynomial homogeneous Lyapunov
functions of degree 2, 10, 16, and 26, respectively.

SDPT3 solver supported by CVX [32], a convex optimization toolbox made for use with MATLAB. As the order of the

homogeneous Lyapunov functions increase, the Lyapunov functions level sets appear to converge to the union of the

possible trajectories from the initial condition [1, 0]𝑇 and its symmetric about the origin [−1, 0]𝑇 as shown in Fig. 2.

Clarifying this conjecture is left for later work.

Homogeneous higher order Lyapunov functions can be used to capture better and more accurate bounds for peak

norms of the LTI systems. The bounds obtained using higher order Lyapunov functions also reduces the conservatism

of the bounds resulted from using quadratic Lyapunov functions.

In the next section, the hierarchy of quadratic lyapunov functions is used to analyze and get accurate bounds for the

impulse and step responses for the class of LTI systems.

B. Pointwise-in-Time Analysis

Classical analyses of LTI and LTV system impulse- and step-responses can be improved by lifting the system using

the hierarchy (17). We investigate peak-response properties of the system

¤𝑥 = 𝐴(𝑡)𝑥 + 𝑏𝑢, 𝑦 = 𝑐𝑥 (23)

12



Fig. 2 Simulated system response of (4) with parameters given by (22). With initial conditions 𝑥0 ∈{
[1, 0]𝑇 , [−1, 0]𝑇

}
the system can only reach the symmetric reachable set shown in light yellow. As the

degree of the computed invariant sets go up, they appear to converge to this reachable set.

with scalar input 𝑢 = 𝑢(𝑡), 𝑏 ∈ R𝑛, and 𝑐𝑇 ∈ R𝑛. 𝐴(𝑡) ∈ M1, as with the system (4).

Proposition 6. The impulse response of (23), denoted by ℎ(𝑡), is given by the output of the following LTV system [33]:

¤𝜑 = 𝐴(𝑡)𝜑, ℎ(𝑡) = 𝑐𝜑(𝑡) 𝜑(0) = 𝑏. (24)

The proposition allows us to study the impulse response of (23) by properly augmenting the system (24) with the

hierarchy (17). Define b𝑖 ∈ R𝑛
𝑖 and c𝑇

𝑖
∈ R𝑛𝑖 by

b𝑖 = ⊗𝑖𝑏, c𝑖 = ⊗𝑖𝑐 (25)

for an integer 𝑖 ≥ 1. The system (24) when lifted to 𝐻𝑖 in the hierarchy has 𝜉𝑖(0) = b𝑖 and output h𝑖(𝑡) = c𝑖𝜉𝑖(𝑡) = ℎ(𝑡)𝑖 .

Theorem 4. The impulse response of (23) satisfies |ℎ(𝑡)|≤ ℎ for all 𝑡, where

ℎ̄ = (c𝑖𝑃−1
𝑖 c𝑇𝑖 )1/(2𝑖)(b𝑇

𝑖 𝑃𝑖b𝑖)1/(2𝑖) (26)

13



for any 𝑃𝑖 ∈ 𝑆𝑛
𝑖

++ that satisfies (18).

Proof. The optimization problem

h𝑖 = max
𝜉𝑖∈R𝑛𝑖

c𝑖𝜉𝑖 , subject to 𝜉𝑇𝑖 𝑃𝑖𝜉𝑖 = b𝑇
𝑖 𝑃𝑖b𝑖 (27)

finds the point on the boundary of the set {𝜉𝑖 | 𝜉𝑇𝑖 𝑃𝑖𝜉𝑖 ≤ b𝑇
𝑖
𝑃𝑖b𝑖} that is in the direction ±c𝑖 . The set is invariant under

the dynamics 𝐻𝑖 since 𝑃𝑖 satisfies (18). The optimization problem is solved by

h𝑖 = (c𝑖𝑃−1
𝑖 c𝑖)1/2(b𝑇

𝑖 𝑃𝑖b𝑖)1/2.

Since h𝑖(𝑡) = ℎ(𝑡)𝑖 , we have |ℎ(𝑡)|𝑖= |h(𝑡)|≤ h(1/𝑖)
𝑖 = ℎ, which is therefore given by (26). □

Remark 4. Theorem 4, as well as those that follow, can utilize any Lyapunov parameter 𝑃𝑖 which satisfies (18). The

results can be improved by computing 𝑃𝑖 via the following convex program,

𝑃𝑖 = arg min
𝑄∈𝑆𝑛𝑖

++

c𝑖𝑄−1c𝑖𝑇

s.t. b𝑖
𝑇𝑄b𝑖 ≤ 1

(A𝑖
𝑗
)𝑇𝑄 + 𝑄A𝑖

𝑗
⪯ 0,

(28)

which computes a 𝑃𝑖 that minimizes h𝑖 while adhering to the stability constraints.

Example 2. Theorem 4 is particularly useful for systems with stiff dynamics. Consider the system (23) with

𝐴 =


−(𝑚)𝑘−1 for diagonal entry in row 𝑘 = 1, . . . , 𝑛

0 otherwise,

𝑏 = [1, . . . , 1]𝑇 ,

𝑐 =


1 for first entry

2(−1)𝑘+1 for entries 𝑘 = 2, . . . , 𝑛

(29)

for some 𝑚 >> 1. This system is stable, and |ℎ(𝑡)| ≤ 1 for all 𝑡 ≥ 0. However, it was shown in [34] that the gap between

the actual maximum impulse response and the upper bound obtained with a quadratic Lyapunov function grows to 2𝑛− 1

when 𝑚 tends toward infinity. With 𝑛 = 2 and 𝑚 = 100, we study the impulse response by using (26) with 𝑖 = 1, 2, and
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Fig. 3 Example 2. (a) Phase portrait of the impulse response for the stiff system from Example 2 where
𝑛 = 2, 𝑚 = 100. The impulse response is shown in blue, and 𝑥(0) = 𝑏 is shown as a blue dot. A vector in the
direction of 𝑐𝑇 is shown in black. The invariant level sets of the 2nd, 4th and 10th order homogeneous polynomial
Lyapunov functions that are computed in this study are shown in red, orange and green, respectively. (b) The
impulse response is shown in blue, and the magnitude bounds derived using 𝑃𝑖 for 𝑖 = 1, 2, and 5 are shown in
red, orange and green, respectively. (c) The same impulse response is plotted over a longer time horizon, where it
can be seen that ℎ(𝑡) decays to 0.

5, where 𝑃𝑖 is computed with (28). Figure 3 shows that increasing the level of the hierarchy can significantly improve

the impulse response bound for this system.

Next, a time-dependent bound on the impulse response of (23) is sought.

Theorem 5. For 𝛼 ∈ R, if 𝑃𝑖 ∈ 𝑆𝑛
𝑖

++ satisfies (18) for some 𝑖 using the shifted set M1 = {𝐴 𝑗 + 𝛼𝐼𝑛 | 𝐴 𝑗 ∈ M1} in (17),

then the impulse response of (23) satisfies |ℎ(𝑡)|≤ 𝑒−𝛼𝑡ℎ for all 𝑡, where ℎ is given by (26).

Proof. Consider the system

¤𝜑𝛼 = (𝐴(𝑡) + 𝛼𝐼𝑛)𝜑𝛼 .

The solution is 𝜑𝛼(𝑡) = 𝑒𝛼𝑡𝜑(𝑡), where 𝜑(𝑡) solves (24). Therefore, ℎ(𝑡) = 𝑐𝜑(𝑡) = 𝑒−𝛼𝑡𝑐𝜑𝛼(𝑡) ≤ 𝑒−𝛼𝑡ℎ. □

Example 3. Consider the uncertain system (23) where M1 = {𝐴 − Δ, 𝐴 + Δ} with system parameters
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Fig. 4 Example 3. Three impulse response simulations are conducted, plotted in blue. A global norm bound on
ℎ(𝑡) is computed using Theorem 4 for 𝑖 = 6 and is shown in red. Two exponential bounds on ℎ(𝑡) are constructed
from Theorem 5 with 𝛼 = −0.5, 0.15 and 𝑖 = 6, and the bounds are shown in orange and green, respectively. A
complete envelope can be obtained by combining the three bounding curves.

𝐴 =


0 1

−0.6 −0.5

 , Δ =


0 0

0.1 −0.1

 , 𝑏 =


0

1

 , 𝑐𝑇 =


1

0

 . (30)

The optimization problem (28) is solved for 𝑖 = 6, and the resulting Lyapunov parameters 𝑃6 are used to generate

bounds on the impulse response using (26). Next, Theorem 5 is employed using 𝑖 = 6, and exponential bounds

are generated for 𝛼 = −0.5 and 0.15. The exponential and global norm bounds are plotted in Figure 4 alongside

several sample impulse responses. Applying the hierarchy and using higher-order Lyapunov functions provides some

improvement over using quadratic Lyapunov functions in this example. For instance, when 𝛼 = 0, ℎ̄ = 0.99 when using

a quadratic Lyapunov function, and ℎ̄ = 0.90 with a 12𝑡ℎ order Lyapunov function. A tighter envelope is therefore

readily available for the system impulse response.

An alternative method for studying the impulse response of an uncertain system involves comparing it to a system

whose impulse response is known. Consider the system

¤̃𝑥 =


𝐴(𝑡) 0

0 𝐴

 𝑥̃ +


𝑏

𝑏

 𝑢, 𝑦 =
[
𝑐 −𝑐

]
𝑥̃, (31)

with impulse response ℎ̃(𝑡) = ℎ(𝑡) − 𝑐𝑒𝐴𝑡𝑏, where ℎ(𝑡) is the impulse response of (23), which is considered to be a

“subsystem" of (31). A new time-varying bound on ℎ(𝑡) is derived using the previous results. Define 𝐴 𝑗 ∈ R2𝑛×2𝑛, and

b𝑖 , c𝑇𝑖 ∈ R(2𝑛)𝑖 by

𝐴 𝑗 =


𝐴 𝑗 0

0 𝐴

 with 𝐴 𝑗 ∈ M1, b𝑖 = ⊗𝑖


𝑏

𝑏

 , c𝑖 = ⊗𝑖

[
𝑐 −𝑐

]
. (32)
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Theorem 6. For 𝛼 ∈ R, if 𝑃𝑖 ∈ 𝑆
(2𝑛)𝑖
++ satisfies (18) for some 𝑖 with the shifted set M1 = {𝐴 𝑗 + 𝛼𝐼2𝑛 | 𝐴 𝑗 ∈ M1}, then

|ℎ(𝑡) − 𝑐𝑒𝐴𝑡𝑏 | ≤ 𝑒−𝛼𝑡h (33)

for all 𝑡 where h is given by

h = (c𝑖𝑃−1
𝑖 c𝑇𝑖 )1/(2𝑖)(b𝑇

𝑖 𝑃𝑖b𝑖)1/(2𝑖). (34)

Moreover, the parameter 𝑃𝑖 which minimizes h can be computed with (28) by using A𝑖

𝑗 ∈ M𝑖 , b𝑖 , c𝑖 , and decision

variables 𝑄 ∈ 𝑆
(2𝑛)𝑖
++ .

The proof follows directly from applying Theorem 5 to system (31).

Remark 5. The analysis in Theorem 6 is observed to provide a tighter bound when 𝐴 is chosen to be the centroid of M1.

We next compute a bound on the step response of (23) when it is LTI, as in, 𝐴(𝑡) ≡ 𝐴. The step response (where

𝑢 = 1) is given by

𝑠(𝑡) = 𝑐𝐴−1(𝑒𝐴𝑡 − 𝐼𝑛)𝑏. (35)

where 𝑥(0) = 0𝑛. In the following theorem, we will use the notation A−1
𝑖

= ⊗𝑖(𝐴−1) and b𝑖 = ⊗𝑖(𝐴−1𝑏).

Theorem 7. If 𝑃𝑖 ∈ 𝑆𝑛
𝑖

++ satisfies (18) for some 𝑖, then the step response of (23) is bounded such that |𝑠(𝑡) + 𝑐𝐴−1𝑏 |≤ 𝑠

for all 𝑡, where

𝑠 = (c𝑖𝑃−1
𝑖 c𝑇𝑖 )1/(2𝑖)(b𝑇

𝑖 𝑃𝑖b𝑖)1/(2𝑖) (36)

Proof. The step response of (23) is equivalent to the impulse response of the system

¤̄𝑥 = 𝐴𝑥 + 𝐴−1𝑏𝑢, 𝑦̄ = 𝑐𝑥 − 𝑐𝐴−1𝑏.

Thus, the bound (36) is derived using Theorem 4. □

As in expression (28), a tighter bound on the step response can be computed using 𝑃𝑖 from

𝑃𝑖 = arg min
𝑄∈𝑆𝑛𝑖

++

c𝑖𝑄−1c𝑖𝑇

s.t. b𝑇

𝑖 𝑃𝑖b𝑖 ≤ 1

(A𝑖)𝑇𝑄 + 𝑄A𝑖 ⪯ 0

(37)
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Fig. 5 Example 4. The step response 𝑠(𝑡) is shown in blue, and the magnitude bounds derived using 𝑃𝑖 for
𝑖 = 1, 3 are shown in red and green, respectively. At time 𝑡 = 4, a new bound is computed via (36) using 𝑖 = 1 and
is shown in red.

Example 4. Consider the system (23) with

𝐴 =



−1 0 2

0 −10 1

0 −2 −1


, 𝑏 =



−2

1

1


, 𝑐𝑇 =



1

−2

2


Solving (36) for 𝑖 = 1 and 3 then applying Theorem 7, a bound on the step response from 𝑡 = 0 is produced. At time

𝑡 = 4, a new bound on the step response is computed via (36) by setting 𝑏 = 𝑥(4), and this creates a norm bound on the

tail of 𝑠(𝑡). The results are shown in Figure 5.

V. Discovering Worst-Case Trajectories and Bounding the Stability Margin
The aforementioned analyses of (4) provide over-approximating characterizations of the systems’ behavior. The use

of the hierarchy (17) provides an elegant and intuitive way to reduce conservatism of analyses that are traditionally

performed using quadratic Lyapunov functions. While plots of simulations of a system can provide an idea of how

overapproximating a bound is, some measure of distance between a computed bound and a worst-case trajectory would

provide a helpful way to bound stability and performance margins from above and from below. In this section, we

present a procedure to bound the conservativeness of the analyses presented above. Computing a marginally stable or

destabilizing trajectory for (4) is similar to the problem of over-approximating the joint spectral radius of a discrete-time

uncertain linear system [23].

Several theorems developed by Pyatnitskiy and Rapoport [24] formalize the intuition that motivates the work in this

section. The authors study the case when the system (4) can admit a trajectory where the system state never goes to zero

but does not admit a trajectory that diverges. If (4) can produce this trajectory, we informally say that the system is
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marginally stable and we refer to this trajectory as a marginally stable trajectory (even though the system can often

produce trajectories that will go to zero as well). Marginal stability for (4) is a property of the set (5) and is defined

formally in [24] as well as in Section V.B for a special case of (4). In [24, Theorem 1], the authors prove that there exists

a positive convex function 𝑣(𝑥) for which ¤𝑣(𝑥) = 0 for almost all 𝑡 > 0 along a marginally stable trajectory. It is well

known that for systems with 𝑛 = 2 and 𝑛 = 3, this trajectory becomes periodic. The fact that an invariant function 𝑣(𝑥)

exists when the system can produce a marginally stable trajectory motivates us to approximate 𝑣(𝑥) using a high-order

homogeneous polynomial Lyapunov function𝑉(𝑥); we can then discover a case when (4) can approach marginal stability

by constructing a trajectory that maximizes ¤𝑉(𝑥). By perturbing (4) to the point where it is marginally stable, we can

approximate a measure of the system’s stability margin.

A. Computing a Worst-Case Trajectory

A worst-case trajectory is one that results from choosing an 𝐴(𝑡) for each 𝑡 which “pushes" the system close to

instability for a given initial condition. Such a trajectory can be defined using a Lyapunov-like function to guide the

choice of 𝐴(𝑡).

Definition 2 (Worst-case trajectory). A trajectory 𝜙(𝑡; 𝑥0) which solves (4) with 𝑥(0) = 𝑥0 and 𝐴(𝑡) given by

𝐴𝑤(𝑡;𝑉) = arg max
𝐴(𝑡)∈conv(M1)

¤𝑉(𝜙(𝑡; 𝑥0)), (38)

where 𝑉(𝑥) is a continuously differentiable function, is a worst-case trajectory.

Any 𝑉(𝑥) can produce a worst-case trajectory, but the insight provided by (38) is most enlightening for system

analysis when 𝑉(𝑥) is a Lyapunov function due to the observations in [24]. A system that can produce a trajectory that

evolves about the level set of a Lyapunov function is close to instability, and such a trajectory can be constructed using

(38).

Proposition 7. Given a positive-definite function 𝑉(𝑥) = 𝜉𝑇
𝑖
𝑃𝑖𝜉𝑖 at level 𝑖 in the hierarchy (17), 𝐴𝑤(𝑡;𝑉) can be

computed by

𝐴𝑤(𝑡;𝑉) = arg max
𝐴𝑘 ∈M1

𝜉𝑇𝑖 ((A𝑖
𝑘)𝑇𝑃𝑖 + 𝑃𝑖A𝑖

𝑘)𝜉𝑖 (39)

where 𝜉𝑖 = ⊗𝑖𝑥 solves the system 𝐻𝑖 from (17) with some initial condition 𝜉𝑖(0).

Proof.

¤𝑉(𝑡) = 𝜉𝑇𝑖 (A𝑖(𝑡)𝑇𝑃𝑖 + 𝑃𝑖A𝑖(𝑡))𝜉𝑖

= 𝜉𝑇𝑖 ((𝜃1A𝑖
1 + · · · + 𝜃𝑁A𝑖

𝑁 )𝑇𝑃𝑖 + 𝑃𝑖(𝜃1A𝑖
1 + · · · + 𝜃𝑁A𝑖

𝑁 ))𝜉𝑖
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for ∑𝑁
𝑘=1 𝜃𝑘 , 𝜃𝑘 = 1. Then

¤𝑉(𝑡) = 𝜃1

[
𝜉𝑇𝑖 ((A𝑖

1)𝑇𝑃𝑖 + 𝑃𝑖A𝑖
1)𝜉𝑖

]
+ · · · + 𝜃𝑁

[
𝜉𝑇𝑖 ((A𝑖

𝑁 )𝑇𝑃𝑖 + 𝑃𝑖A𝑖
𝑁 )𝜉𝑖

]
is maximized for some 𝜃𝑘 = 1, 𝑘 = 1, . . . , 𝑁 . Therefore all other 𝜃𝑙 = 0, 𝑙 ̸= 𝑘 and we have A𝑖(𝑡) = A𝑖

𝑘
=⇒ 𝐴(𝑡) =

𝐴𝑘 . □

Remark 6. Proposition 7 simply amounts to selecting the A𝑖
𝑘
, 𝑘 ∈ 1, . . . , 𝑁 which maximizes the expression for ¤𝑉(𝑥)

at each point on the trajectory 𝑥(𝑡). This can be done in practice by simulating the system from an initial condition

𝑥0 with discrete time steps and selecting 𝐴 ∈ M1 at each time step based on the maximization criteria. Whether (4)

is a switching system with a finite set of possible system matrices 𝐴𝑘 ∈ M1 or an LTV system with 𝐴(𝑡) ∈ conv(M1),

the worst-case trajectory is the same. To see this, let each 𝜃𝑘 be a time-dependent function 𝜃𝑘(𝑡). Then ¤𝑉(𝑡) is still

maximized when 𝜃𝑘(𝑡) = 1 at each 𝑡 for some 𝑘 = 1, . . . , 𝑁 .

A worst-case trajectory is used to produce an upper bound on the conservatism of a stability analysis.

B. Bounding the Stability Margin from Above

In order to measure the conservativeness of a bound on system behavior, a notion of stability margin is needed. A

special case of (4) is constructed in order to present this analysis. In this special case, M1 = {𝐴, 𝐴 + 𝛿𝐴0} for some

𝛿 ≥ 0 so that

¤𝑥 = 𝐴(𝑡)𝑥

𝐴(𝑡) = 𝐴 + Δ(𝑡)𝐴0

Δ(𝑡) ∈ [0, 𝛿]

(40)

We study the stability margin of (40) by perturbing a nominal system matrix 𝐴 by Δ(𝑡)𝐴0. This formulation can

encapsulate the widely-studied Lur’e system [4], which has the form

¤𝑥 = 𝐴𝑥 + 𝐵𝑝

𝑦 = 𝐶𝑥

𝑝 = 𝜙(𝑡, 𝑦)

for a memoryless nonlinearity 𝜙(𝑡, ·) : R→ R which belongs to the sector [0, 𝛿] for each 𝑡. In this case, 𝐴0 = 𝐵𝐶. The

construction (40) suggests a straightforward definition for stability margin

Definition 3 (Stability margin). Given 𝐴0, 𝐴 ∈ R𝑛×𝑛, with 𝐴 Hurwitz, and 𝛿 ∈ R+, the system (40) is stable with
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respect to 𝛿 if (40) is stable for all Δ(𝑡) such that Δ(𝑡) ∈ [0, 𝛿] for all 𝑡 ≥ 0. The stability margin for (40) is the unique

𝛿 ∈ [0,∞] such that (40) is stable with respect to all 𝛿 ∈ [0, 𝛿] and such that (40) is not stable with respect to 𝛿 + 𝜀 for

any 𝜀 > 0.

The stability of (40) can be studied via the eigenvalues of a discrete transition matrix that has been constructed from

a worst-case trajectory, as suggested by an observation by Pyatnitskiy and Rapoport.

Proposition 8. [24, Theorem 5]. Let Φ(𝑡, 𝑡0) be the fundamental matrix of solutions for (40) such that Φ(𝑡0, 𝑡0) = 𝐼 and

𝑥(𝑡) = Φ(𝑡, 𝑡0)𝑥(𝑡0). Denote the spectral radius of Φ(𝑡, 𝑡0) by 𝜌(Φ) and define

ℜ(M1) := lim sup
𝑡→∞

max
𝐴(𝑡)∈M1

𝜌(Φ(𝑡, 𝑡0)). (41)

Then for (40) we have

ℜ(M1) = 0 for 𝛿 < 𝛿

ℜ(M1) = 1 for 𝛿 = 𝛿

ℜ(M1) = ∞ for 𝛿 > 𝛿.

It is not known how to compute 𝛿 in general, but numerical procedures can bound 𝛿 from above and below.

Remark 7. A lower bound 𝛿 for 𝛿 can be improved by finding the largest 𝛿 for which there exists an 𝑖 ≥ 1 and a 𝑃𝑖 such

that Theorem 2 is satisfied for (40).

Proposition 8 suggests a simple numerical procedure to bound 𝛿 from above by constructing worst-case trajectories

and studying the eigenvalues of the resulting discrete transition matrix.

Proposition 9. If there exists a finite sequence (𝑡𝑘) for some 𝑘 = 𝑚, 𝑚 + 1, . . . , 𝐿, where 𝑚 ≥ 0, such that 𝐴𝑤(𝑡𝑘 ;𝑉) is

given by (39) for some 𝑉(𝑥) along a trajectory of (40), and if

𝐴𝑑 = 𝑒𝐴𝑤 (𝑡𝐿−1;𝑉)(𝑡𝐿−𝑡𝐿−1) · · · 𝑒𝐴𝑤 (𝑡0;𝑉)(𝑡𝑚+1−𝑡𝑚) (42)

has an eigenvalue with magnitude 1 (and the rest less than or equal to 1 in magnitude), then 𝛿 = 𝛿 ≥ 𝛿.

A simple numerical procedure can search over trajectories of (40) to produce an 𝐴𝑑 which satisfies Proposition 9

within some tolerance. We leverage the Lyapunov function hierarchy since the tightest bound on the stability margin of

(40) is achieved by using a Lyapunov function for (40) of the highest order that is computationally tractable.

1) Find the largest level 𝑖 for which 𝛿 can be computed via the procedure suggested in Remark 7 when (40) is stable.
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2) Increase 𝛿 so that 𝛿 = 𝛿 + 𝜀. Simulate a trajectory over a discrete sequence of times (𝑡𝑛) with 𝑥𝑛+1 =

𝑒𝐴𝑤 (𝑡𝑛;𝑉)(𝑡𝑛+1−𝑡𝑛)𝑥𝑛, where 𝐴𝑤(𝑡𝑛;𝑉) is computed at each time step 𝑡𝑛 by solving (39) using 𝑥𝑛. Then see

if there is a subsequence (𝑡𝑘) of (𝑡𝑛) such that an 𝐴𝑑 given by (42) can be found that satisfies Proposition

(9). The subsequence that maximizes the spectrum of 𝐴𝑑 will appear by selecting 𝑘 to be the times when

𝐴𝑤(𝑡𝑘 ;𝑉) ̸= 𝐴𝑤(𝑡𝑘−1;𝑉), i.e. the times when 𝐴(𝑡) “switches."

3) If the eigenvalues of 𝐴𝑑 are all less than 1 in magnitude, increase 𝛿 and test the trajectory again. If computationally

tractable, increasing 𝑖 further for the stable system will result in a smaller value of 𝛿.

In practice, the system (40) often transitions from stability to instability through a limit cycle. In other words, for

𝐴(𝑡) ∈ {𝐴, 𝐴 + 𝛿𝐴0} where 𝐴 and 𝐴 + 𝛿𝐴0 are Hurwitz, there exists a function Δ(𝑡) such that, for 𝛿 = 𝛿, (40) can

produce a periodic (but not diverging) trajectory. This is not proven, however; a trajectory for a system with ℜ(M1) = 1

may simply evolve non-periodically about a level set of a positive convex function. Though not an LTV system, a

trajectory of the Lorenz attractor displays this type of behavior [35].

C. Examples

Example 5 (Aircraft Lateral Dynamics). Consider the linearized, non-dimensional lateral dynamics of a fixed-wing

aircraft with the following parameters

𝐴 =



−3.088 0 −1425.042 4.5956

−18.906 −166.878 29.223 0

6.762 4.445 −19.389 0

0 1428.6 0 0


from [36, pp. 188, 361], 𝐴0 =



−1 0 −10 10

−10 −10 10 0

10 10 −10 0

0 10 0 0


(43)

and with non-dimensional state vector 𝑥 = [𝛽 𝑝 𝑟 𝜙]𝑇 representing the sideslip angle, roll rate, yaw rate, and roll angle,

respectively. The nonlinear model is linearized around the equilibrium when the jet airplane is cruising at 40,000 ft.

and 0.8 Mach number, so the linearized model is valid in the flight regime close to the equilibrium. The matrix 𝐴0

represents a notional perturbation, possibly time-varying, of the vehicle’s stability derivatives and mass. The time

variable 𝑡 has also been non-dimensionalized in this representation, and the dynamics have been scaled in order to aid

in visualization. Applying the hierarchy (17) and using the procedure suggested in Remark 7 with 𝑖 = 3 to produce a

6th order Lyapunov function, we find 𝛿 = 0.24. Applying Proposition 9 using this Lyapunov function, a limit cycle is

found along the worst-case trajectory produced by (39) when 𝛿 = 0.27 for (𝑡𝑘) = {0, 0.027, 0.060}. In other words, a
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Fig. 6 Non-dimensional (including time) sample trajectory of aircraft state using 𝐴𝑤(𝑡;𝑉). A limit cycle begins
at about 𝑡 = 0.3.

trajectory which evolves according to

𝐴𝑤(𝑡;𝑉) =


𝐴 + 𝛿𝐴0, for 0 ≤ 𝑡 < 0.027

𝐴 for 0.027 ≤ 𝑡 < 0.060
(44)

is a worst-case trajectory and is approximately marginally stable as certified by constructing the discrete transition

matrix (42), which has four eigenvalues which are approximately 0, 1, and 0.5 ± 0.024𝑖. Therefore, we know that

0.24 < 𝛿 < 0.27. The periodic trajectory that results from using 𝐴𝑤(𝑡;𝑉) seems to combine an undamped spiral mode

with a Dutch Roll-like behavior; a sample trajectory is shown in Figure 6.

It may be possible to bound 𝛿 more tightly, but increasing 𝑖 to attain a higher-order Lyapunov function would make

computation intractable without additionally employing an algorithm to reduce the redundancies produced by the use of

the Kronecker product. This is an item of future work.
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Example 6 (Worst-Case Impulse Response). Consider the system (23) with the parameters

𝐴 =


0 1

−0.15 −0.8

 , 𝐴0 =


0 0

−1 0

 , 𝑏 =


1

1

 , 𝑐 =
[
1 0

]
, (45)

and 𝐴(𝑡) ∈ {𝐴, 𝐴 + 𝐴0}. We study the impulse response of the system by constructing a worst-case trajectory using

Proposition 7 and an exponential bound using Theorem 5. Results using both 𝑖 = 1 and 𝑖 = 7 are compared. First, we

use Proposition 7 with 𝑖 = 7 to generate 𝐴𝑤(𝑡;𝑉7) and produce a worst-case impulse response. We also use Theorem 5

with 𝑖 = 7 and 𝛼 = 0.1 to compute ℎ̄7, which we use to construct an exponential bound on the impulse response. For

comparison, we do the same with 𝑖 = 1, using Proposition 7 to construct 𝐴𝑤(𝑡;𝑉1) and Theorem 5 with 𝛼 = 0.042 to

compute ℎ̄1. For both 𝑖 = 7 and 𝑖 = 1, an exponential bound is computed using the largest possible 𝛼. Figure 7 shows

how the two worst-case impulse responses push the system towards the exponential bound. Clearly, the analysis with

𝑖 = 7 produces a tighter exponential bound and a trajectory that can approach the bound more closely.

VI. Application to Maneuver Analysis of a Microgravity Vehicle
Aerospace vehicles can be used to produce microgravity environments via atmospheric flight. Most famously, the

Vomit Comet flies parabolic trajectories to provide about thirty seconds of weightlessness to passengers. The Vomit

Comet is flown by hand, and automatic control can produce much more accurate microgravity environments. Recently, a

prototype quadcopter was built in order to validate this possibility. This section briefly summarizes the stability analysis

of the quadcopter’s microgravity-tracking maneuver and shows how using the system hierarchy (17) can improve the

stability analysis based on quartic Lyapunov functions for the system. The original work in [37] can be consulted for

additional details about the controller design and analysis. The vehicle and its closed-loop control architecture are

shown in Figure 8.

Given the controller 𝐶(𝑠) = 𝑐𝑇𝑐 (𝑠𝐼 − 𝐴𝑐)𝑏𝑐, propulsion system 𝐺 𝑝(𝑠) = 𝑐𝑇𝑝(𝑠𝐼 − 𝐴𝑝)𝑏𝑝 , and accelerometer dynamics

𝐺𝑎(𝑠) = 𝑐𝑇𝑎 (𝑠𝐼 − 𝐴𝑎)𝑏𝑎, the closed-loop dynamics of the microgravity vehicle are

¤𝑣 = 𝑐𝑇𝑝𝑥𝑝 − 𝜌𝑣2 + 𝑔 (46)

¤𝑥𝑝

¤𝑥𝑐

¤𝑥𝑎


=



𝐴𝑝 𝑏𝑝𝑐
𝑇
𝑐 −𝑏𝑝𝑑𝑐𝑐

𝑇
𝑎

0 𝐴𝑐 −𝑏𝑐𝑐𝑇𝑎

𝑏𝑎𝑐
𝑇
𝑝 0 𝐴𝑎





𝑥𝑝

𝑥𝑐

𝑥𝑎


+



𝑏𝑝𝑑𝑐

𝑏𝑐

0


(𝑎𝑑 − 𝑔) +



0

0

−𝑏𝑎𝜌𝑣2


(47)

where the various linear subsystems of the form 𝐺(𝑠) = 𝑐𝑇 (𝑠𝐼 − 𝐴)𝑏 are expressed by their state space realization and

where 𝜌 is a drag coefficient. The controller is designed to track a trajectory 𝑣(𝑡) = 𝑎𝑑𝑡, where 𝑎𝑑 is a constant that
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Fig. 7 Example 6. Impulse response plots show how using 𝐴𝑤(𝑡;𝑉) can cause the impulse response to approach
an exponential bound and how the trajectory can approach the bound more closely using a larger value of 𝑖. For
the case where a quadratic Lyapunov function is used to construct 𝐴𝑤(𝑡;𝑉1), the trajectory is not time-varying
and in fact lies on top of the impulse response when 𝐴(𝑡) ≡ 𝐴. The best possible exponential bound produced
using ℎ̄1 from a quadratic Lyapunov function is shown; it is clearly not as tight as the best possible bound
produced using 𝑖 = 7, which allows us to use a larger 𝛼.

.
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(a) Autonomous, reduced-g research vehicle during an experimental flight test.

(b) Control architecture. (c) Controller 𝐶(𝑠).

Fig. 8 Microgravity quadcopter produces a low- or zero-gravity environment onboard [37].

specifies the desired acceleration that will produce the target microgravity environment. Clearly, the dynamics of 𝑣(𝑡)

are nonlinear. By selecting a new independent variable and coordinate system, an equivalent linear system can be

derived. The concept of “maneuver regulation," discussed extensively in [38], is used to perform this analysis, and the

derivation of the maneuver-regulating controller is discussed in detail in [37].

An affine transformation of 𝑥𝑝, 𝑥𝑐, and 𝑥𝑎, parameterized by 𝑣, gives a state vector 𝑧 = [𝑧𝑝 𝑧𝑐 𝑧𝑎]𝑇 ∈ R𝑛 that

evolves according to the LTV system

𝑑𝑧

𝑑𝜃
= 𝐴(𝜃)𝑧 (48)

where the “time" variable evolves according to ¤𝜃 = 1 + (1/𝑎𝑑)𝑐𝑇𝑝𝑧𝑝, 𝜃 = 𝑣/𝑎𝑑 . Certifying that the maneuver is

exponentially attractive amounts to proving that 𝑧 → 0 exponentially. To show exponential stability, the condition for

quadratic stability (8) is modified to 𝐴𝑇
𝑗
𝑃 + 𝑃𝐴 𝑗 + 𝑄 ⪯ 0 for some positive-definite 𝑄 ∈ 𝑆𝑛++. In [37], a quadratic

Lyapunov function certifies the stability of the maneuver for a range of 𝑣 = 0 to 280 m/s when 𝑎𝑑 = 9.807 m/s2. Lifting

(48) with the hierarchy (17) improves the analysis. By constructing 𝐻2 from (17) and using Theorem 2 to search for a

4-th order homogeneous polynomial Lyapunov function in 𝑧, the maneuver stability is certified for 𝑣 = 0 to 391 m/s. Of

course, this velocity can easily exceed the speed of sound, but the improved margin and stronger guarantee provided by

analyzing 𝐻2 is apparent. Consider the drag coefficient 𝜌, which is hard to identify precisely for a real system and

which varies with altitude. The value used in this analysis is 𝜌 = 0.06775, but uncertainty can be easily encoded by
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changing M1 to accommodate drag coefficients ranging, for example, from 0.03 ≤ 𝜌 ≤ 0.09. Certifying the maneuver

over a broad range of 𝜌 is particularly important for vehicles that traverse differences in altitude over which the density

variation is appreciable. Using 𝐻2 with this range of 𝜌, the maneuver is still exponentially attractive for a velocity

range from 𝑣 = 0 to 285 m/s; this certificate is not possible to produce with a quadratic Lyapunov function. In practice,

𝑣 = 285 m/s cannot be achieved by the vehicle, suggesting that there still remains a lot of margin to certify maneuver

stability for a realistic velocity range while perturbing many more system parameters in addition to 𝜌.

These computations were performed on a MacBook Pro with a 2 GHz Dual-Core Intel i5 processor. The system

(48) has dimension 𝑛 = 7, and a quadratic Lyapunov function was found using Matlab with CVX in under two seconds.

Augmenting (48) using 𝑖 = 2 results in a system of dimension 𝑛 = 49, and computing 𝑃2 for the case where 𝜌 is constant

takes 22 seconds. Computing a Lyapunov function for the case when 𝜌 varies requires constructing M1 with four

members instead of two; in this case, 𝑃2 takes 26 seconds to compute.

VII. Conclusion
This paper presents an improvement of traditional stability and performance analyses of linear time-varying and

switching linear systems by leveraging higher-order homogeneous polynomial Lyapunov functions, introduced as

quadratic Lyapunov functions for a related hierarchy of linear time-varying systems. These improved analyses are

accessible with only an elementary knowledge of state-space linear systems theory and convex programming formulations

since such Lyapunov functions are merely quadratic Lyapunov functions of a system that has been lifted via a recursive

Kronecker product-based procedure. As a result, optimization-based system analysis tools that compute invariant sets

and peak response norms can be applied in an elegant fashion. To improve performance of the algorithms, further work

can be done to reduce the dimension of the LMI feasibility problems. Indeed, taking the Kronecker product of two

vectors results in a vector with redundant entries. A simple procedure for eliminating redundancies for systems with

𝑛 = 2 is given in [31], and a similar procedure should be developed to address higher dimensional systems.

In addition, a continuous-time analog to the problem of computing the joint spectral radius of an uncertain system is

proposed and addressed by using Lyapunov functions. The procedure developed enables the computation of approximate

worst-case trajectories by finding a time-varying system matrix that can cause the system to become unstable. This

was framed in a way that enables the computation of an upper bound on stability margin; this provides a measure that

bounds the conservatism of a Lyapunov-based stability analysis. Such an analysis can have great practical benefit, as

finding a counterexample or worst-case trajectory can be very time consuming using simulation-based methods.
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