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Abstract— As the decision making responsibilities of au-
tonomous vehicles increase, they will be expected to navigate
complex, unstructured environments such as traffic circles.
These environments necessitate effective safety control algo-
rithms. Control barrier functions provide such a tool for
guaranteeing system safety by ensuring that control actions
render a given safe set forward invariant. However, finding an
appropriate control barrier function is challenging. To alleviate
this challenge, we consider a nominal evasive maneuver for
the system. Then a control barrier function is designed by
considering the closed loop dynamics resulting from this hypo-
thetical evasive maneuver. Using this approach in this paper, we
propose a control algorithm to navigate an autonomous vehicle
through a traffic circle in the presence of other vehicles. The
synthesized control barrier function is able to simultaneously
ensure lane keeping while avoiding collisions with other vehicles.
The solution approach is then physically demonstrated on the
Robotarium remote access testbed.

I. INTRODUCTION

Autonomous vehicles are safety critical systems that have
to operate in scenarios sensitive to the welfare of both
pedestrians and passengers. To avoid the possibility of severe
malfunctions, demonstrably safe control action is necessary
for the design of such systems [1].

A rich literature exists studying the navigation of au-
tonomous vehicles in certain restrictive environments such as
lane-keeping and adaptive cruise control; see, e.g., [2]–[4].
Formal methods have been applied for safety verification in
autonomous vehicles [5]–[7]. Variations of Model Predictive
Control have also been an approach for safe autonomous
navigation [8].

While the construction of controllers for these restrictive
environments is maturing, the development of provably cor-
rect controllers to tackle more general environments, where
correct driving behavior is not well-defined, is also necessary
to achieve fully autonomous navigation. Examples of such
less structured environments include parking lots, offroad
environments, neighborhoods, and traffic circles.

This paper studies the problem of navigating a vehicle
through a traffic circle, which includes the decision making
of entering and exiting the traffic circle correctly, lane
keeping that respects the curvature of the road, and collision
avoidance behaviors. Literature of autonomous traffic circle
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navigation is sparse. Existing research includes [9] and [10],
which implement a path planner to maintain lane keeping
in a traffic circle, and [11], which implements a fuzzy logic
controller to maintain lane keeping and collision avoidance.
However, provable guarantees of behavior and robust colli-
sion avoidance behavior are not addressed in these works.

We propose developing provably correct control strategies
for traffic circles using control barrier functions [12]. Control
barrier functions allow for the generation of provably safe
controllers for control affine systems through a computa-
tionally efficient quadratic program. A main advantage of
the control barrier formulation is the decoupling of safety
and performance conditions. Development of a controller that
addresses many complex performance and safety specifica-
tions simultaneously is inefficient, and verification of these
complex controllers may be computationally infeasible. By
implementing safety conditions as pointwise constraints on
the controller, control barrier functions allow for the separate
handling of performance and safety specifications. Control
barrier functions have been shown to be effective for collision
avoidance and connectivity maintenance in mobile robots
[13]–[15], and for bipedal walking [16], [17].

In addition, [18] presents control barrier functions as
an excellent approach for provable guarantees for lane-
keeping and adaptive cruise control in autonomous vehicles.
However, the tools developed are not applicable to the unique
geometries and collision avoidance behaviors present in traf-
fic circles. Specifically, a nonholonomic system is used in the
present paper to model collision avoidance behaviors in R2

rather than only in-lane collision avoidance. Additionally, the
highly curved geometries of the traffic circle are considered
in the present approach.

While control barrier functions are effective tools for gen-
erating safe controllers, developing control barrier functions
for complex systems may be difficult, especially for systems
with high relative degree or with actuator constraints [13],
[19]. The paper [20] proposed a backstepping approach to
handle construction of control barrier functions for non-
holonomic systems with high relative degree but does not
consider actuator constraints. In this paper, we propose using
nominal evasive maneuvers for the autonomous vehicle to
construct provably correct control barrier functions.

This paper is organized as follows. Section II introduces
control barrier functions and relevant background. Section III
formally introduces the Traffic Circle Problem. Section IV
discusses the safety constraints of lane keeping and collision
avoidance. Section V details experimental results. Section VI
provides concluding remarks.



II. BACKGROUND
A. Control Barrier Functions

In this section, we review how control barrier functions
are employed as a means for control synthesis [12]. We
consider a control affine system, which includes the unicycle
dynamical model of a vehicle introduced subsequently, of the
form

ż = f(z) + g(z)u (1)

where z ∈ D ⊆ Rn, f : Rn → Rn and g : Rn → Rn×m are
locally Lipschitz continuous functions and u ∈ U ⊆ Rm.

Suppose a safe set for the system is denoted by Xs and is
defined as the superlevel set of a continuously differentiable
output function ρ(z) : Rn → R so that

Xs , {z ∈ D : ρ(z) ≥ 0}. (2)

We will also denote the unsafe set as Xu , D \ Xs. For
example, ρ(z) should be negative for a vehicle if its position
is outside of a road lane.

The control affine system (1) is considered safe with
respect to a given set S ⊆ Xs if for a given initial condition
z(0) ∈ S if there exists a control input with u(t) ∈ U such
that for all t ∈ [0,∞), z(t) ∈ Xs. Control barrier functions
provide a tractable way for verifying that a control system
can be rendered safe by a controller, as formalized below.

For a given continuously differentiable output function
h(z) : Rn → R, define the corresponding superlevel set
as Ch = {z ∈ D : h(z) ≥ 0}.

A continuous function κ : (−b, a) → R for b > 0, a > 0
is considered an extended class K function if it is strictly
increasing and κ(0) = 0.

Definition 1 (Zeroing Control Barrier Function (ZCBF),
[12]). A continuously differentiable function h(z) is a zero-
ing control barrier function if there exists a locally Lipschitz
extended class K function α such that

sup
u∈U

[Lfh+ Lghu+ α(h(z))] ≥ 0 ∀z ∈ D (3)

where Lgh and Lfh denote the corresponding Lie deriva-
tives, i.e, Lgh = ∂h(z)

∂z g(z) and Lfh = ∂h(z)
∂z f(z).

Theorem 1 (Corollary 1 in [12]). If a state feedback control
strategy u(z) is employed for the system (1) that satisfies
u(z) ∈ K(z) for all z ∈ D, where

K(z) = {u ∈ U : Lfh+ Lghu+ α(h(z)) ≥ 0}, (4)

then the set Ch is forward invariant, i.e., if z(0) ∈ Ch then
z(t) ∈ Ch for all t ∈ [0,∞).

For control affine systems, notice that for fixed z, the
constraint defining K(z) in (4) is affine in u. Thus, given
some nominal feedback controller unom(z), it is possible to
employ a quadratic program pointwise in the state in order to
obtain a minimally invasive controller that guarantees safety
according to [12]

u∗(z) = arg min
u∈K(z)

∥∥u− unom
∥∥2 (5)

B. Evasive Maneuvers For Actuation Constraints

When constructing a control barrier function for an au-
tonomous system, care must be taken to ensure that K(z)
in (4) is nonempty for all safe states. Infeasibilities can
occur if, for example, actuator constraints limit available
control actions. One approach to prevent infeasibility, re-
cently introduced in [19], is to assume a locally Lipschitz
nominal evasive maneuver γ : D → U is available. Then,
the execution of the controller γ results in the closed loop,
autonomous dynamical system ż = f(z) + g(z)γ(z).

Let Φ(t, z) denote the solution to this system when
initialized at time 0 at state z. A suitable control barrier
certificate can be obtained from this autonomous system in
the following way, as proposed in [19]. Assume the safe set
is characterized with the output function ρ as given in (2).
Then let h(z) for each z ∈ D be the infimum value of ρ
attained along solutions of the closed loop system assuming
the nominal evasive maneuver, that is, let

h(z) = inf
τ∈[0,∞)

ρ(Φ(τ, z)). (6)

It is established in [19] that, under mild conditions on ρ and
on the dynamics of the system, h is indeed a valid ZCBF.

Although this construction provides a great theoretical
tool, applicability is limited to systems that admit a closed
form solution for the infimum. A finite time numerical
approximation of the infimum can be used to calculate
h(z), but this loses the strict guarantees of feasibility of the
barrier function. In this paper, we outline a similar approach
of generating ZCBFs through verification of safety of the
system under the evasive maneuver. However, by restricting
the focus to unicycle models, geometric arguments can be
utilized to generate closed form ZCBFs.

III. TRAFFIC CIRCLE PROBLEM

The geometry of the traffic circle is defined in accordance
to the navigational objectives of the autonomous vehicle, as
formalized in the definition below and shown in Figure 1.

Definition 2. (Traffic Circle) A traffic circle is a triple
(L, I, E) where L , {(x, y) ∈ R2 :

√
x2 + y2 ∈ [rin, rout]}

denotes a ring with inner radius rin and outer radius rout,
I ⊂ R2 is the initial entry region in a traffic circle with
I ∩ L 6= ∅, and E ⊂ R2 denotes the desired exit region for
the traffic circle with E ∩ L 6= ∅.

We assume all vehicles in the system obey the unicycle
dynamics given by 

ẋ
ẏ
v̇

θ̇

 =


v cos(θ)
v sin(θ)
ua
uω

 (7)

where x, y are position coordinates of the vehicle, v is the
forward speed of the vehicle, θ ∈ [0, 2π) is the heading of
the vehicle, ua is the input acceleration, and uω is the input
angular velocity. The dynamics are control affine and can
be written in the form (1) with state z = (x, y, v, θ) and



Fig. 1: An example of a traffic circle described in Definition
2, where an autonomous agent approaches from the west and
exits to the north. Additionally, a cover of disks can be used
for lane keeping, which is described in Section IV.

input u = (ua, uω). We sometimes write ż = F (z, u) for
the unicycle dynamics (7).

We further assume input constraints of the form ua ∈
[−amax, amax] and uω ∈ [−ωmax, ωmax] for some max-
imum acceleration/deceleration amax and some maximum
angular velocity ωmax. These input constraints model the
physical stopping and acceleration limits of the engine, as
well as the angular limits on the wheels during turning,
which are crucial in defining collision avoidance behavior
of autonomous vehicles.

We are now in a position to define the main problem
addressed in this paper.

Problem 1. Given a traffic circle (L, I, E) and a primary
vehicle A with position (xA, yA), design a control policy
for vehicle A so that, if initialized in the entry region
with (xA(0), yA(0)) ∈ I , the vehicle moves into the circle
L, proceeds counterclockwise, and exits at region E, i.e.,
[xA(t), yA(t)]T ∈ L∪ I ∪E ∀t ≥ 0 and xA(T ), yA(T ) ∈ E
for some finite time T . Moreover, ensure that the vehicle
avoids collision with any other vehicles in the traffic circle
so that

∥∥[xA(t)− xi(t), yA(t)− yi(t)]T
∥∥ ≥ Ds ∀t ≥ 0 for

any other vehicle i.

In other words, the agent must satisfy lane keeping and
maintain the safety distance Ds from all other agents to be
considered safe.

To solve the problem above, we construct a nominal
controller that handles the performance of navigating a
traffic circle. We then wrap this controller with the control
barrier functions proposed in this paper to satisfy the safety
specifications of lane-keeping and collision avoidance.

IV. SAFETY CONSTRAINTS

Geometry of traffic circles is highly varied with, e.g.,
different numbers of traffic lanes, different curvatures, and
different entry and exit points [21]. It would thus be un-
desirable to generate a handpicked control barrier function
for each possible type of a traffic circle. Therefore in this
paper, a control barrier function is instead generated for a

simple geometric object, namely, disks, and is generalized
to more complex sets through composition. Composition
of barrier functions is a powerful way to handle complex
safety specifications. For example, [15] constructs composed
barrier functions through sums and products of piecewise
differentiable barrier functions, and [22] achieves boolean
composition through construction of nonsmooth barrier func-
tions.

To this end, given a traffic circle (L, I, E) as in Definition
2, we generate an underapproximation of the set L ∪ I ∪ E
as the union of a collection of disks. In particular, let rc be a
fixed radius, and let (xci , y

c
i ) for i = 1, . . . , N be a collection

of points so that

P ,
N⋃
i=1

{
(x, y) :

√
(x− xc

i )
2 + (y − yc

i )
2 ≤ rc

}
⊂ L ∪ I ∪ E

(8)

and such that P provides a reasonable approximation to L∪
I ∪ E; see Figure 1 for a demonstration of the construction
of P .

This approach of describing lane geometry by a cover of
disks was inspired by the results for lane tracking in [23].
Cover of disks are an efficient way to approximate various
shapes, used in the graphics literature [24]. In this paper, we
will not characterize exactly how to generate these covers
given a tolerance. For intelligent constructions of covers of
disks for arbitrary shapes, we refer the reader to [24]–[26].

Thus, we will now instead require that vehicle A remains
within P while traversing the traffic circle, which implies the
safety requirement that (xA, yA) ∈ L∪ I ∪E of Problem 1.
The requirement that (xA, yA) ∈ P is then recast as follows.
Let the safety output function be given by

ρi(x, y, v, θ) = (rc)2 − (x− xci )2 − (y − yci )2. (9)

Then the position of vehicle A is within the i-th disk
with radius rc and centerpoint (xci , y

c
i ) if and only if

ρi(xA, yA, vA, θA) ≥ 0 where (xA, yA, vA, θA) is the state
of vehicle A. Moreover, (xA, yA) ∈ P if and only if
maxi=1,...,N ρi(xA, yA, vA, θA) ≥ 0.

Next, we study the problem of ensuring safety of each disk
i using ZCBFs, and we will then compose these ZCBFs to
ensure safety of the set P .

A. Turning Evasive Maneuver

For a particular ρi for some disk i ∈ {1, . . . , N}, we first
consider a turning evasive maneuver given by the feedback
control strategy (ua, uω) = γt(x, y, v, θ) = (0,−ωmax) for
all states (x, y, v, θ). An execution of this maneuver results in
a circular trajectory of the vehicle, since the angular velocity
is kept constant. Using a geometric argument, we define a
candidate control barrier function, shown in Figure 2, as

hti(x, y, v, θ) =

(
rc − v

ωmax

)2

−
(
y − yci −

v cos(θ)

ωmax

)2

−
(
x− xci +

v sin(θ)

ωmax

)2

. (10)



Lemma 1. hti(x, y, v, θ) in (10) for the ith disk comprising
P in (8) is a valid ZCBF with respect to the safety function
in (9).

Proof. Let z = (x, y, v, θ) be the state of the vehicle. The
dynamical system arising from the execution of (ua, uω) =
γt(z) is ż = (v cos(θ), v sin(θ), 0,−ωmax). Note that
Lfh

t
i + Lgh

t
iγ
t = 0. Let the domain be D = Ch. Therefore

for any extended class K function α, Lfhti + Lgh
t
iγ
t +

α(hti) ≥ 0 on h ≥ 0, so hti is a ZCBF. It must also be shown
that Cht

i
is indeed safe, i.e. that hti ≤ 0 whenever ρ(z) ≤ 0.

This can be shown by evaluating a constraint optimization
program with the constraint ρ(z) ≤ 0 and seeing that the
maximum hti(z

∗) = 0. Therefore hti is a valid ZCBF. �

We can also use a similar ZCBF for encoding collision
avoidance behaviors. First we construct a conjugated system
between the autonomous agent A and another agent with
index j. The resulting system for each pair is[

żA
żj

]
=

[
F (zA, uA)
F (zj , uj)

]
(11)

where F is the unicycle dynamics as defined in Equa-
tion (7), zA = (xA, yA, vA, θA) is the state of agent
A, zj = (xj , yj , vj , θj) is the state of agent j, uA =
(ua,A, uω,A) is the control input for agent A, and uj =
(ua,j , uω,j) is the control input for agent j. Then we encode a
shared nominal evasive maneuver (uA, uj) = ΓT (zA, zj) =
(γt(zA), γt(zj)). This introduces the assumption that the
other agent will execute the same evasive maneuver. How-
ever, this construction works well in experimental simula-
tions provided that the other agents behave reasonably.

The collision avoidance safety function of the conjugated
system is given by

ρcoll(zA, zj) = (xA − xj)2 + (yA − yj)2 − (2Ds)
2 (12)

where Ds describes a minimum safety distance between
vehicles. Using a geometric argument, similar to (10), we
construct the ZCBF

hT (zA,zj) =((
yA −

vA cos(θA)

ωmax

)
−
(
yj −

vj cos(θj)

ωmax

))2

+

((
xA +

vA sin(θA)

ωmax

)
−
(
xj +

vj sin(θj)

ωmax

))2

−
(

2Ds +
vA
ωmax

+
vj

ωmax

)2

. (13)

where ωAmax and ωjmax denote the angular velocity limits for
vehicles A and j, respectively.

Lemma 2. hT (zA, zj) in (13) for vehicle A and vehicle j
in (11) is a valid ZCBF with respect to the safety function
ρcoll(zA, zj) in (12).

The proof is essentially identical to Lemma 1 and is
omitted.

B. Braking Evasive Maneuver

In some situations in the roundabout, it is not possible to
assume that the turning maneuver γt(z) is available to the
vehicle to execute in the lane. Therefore we also consider
the evasive maneuver γb(z) = (−sign(v)amax, 0), assuming
vehicle A has nonnegative velocity and γb(z) is applied until
v = 0. A similar approach for double integrator models was
presented in [13]. A candidate control barrier function for
each disk i can be constructed by examining distance of
the midpoint of the trajectory to the edge of the disk, as
illustrated in Figure 2, is

hbi (x, y, v, θ) =

(
rc − v2

4amax

)2

−
(
y − yci +

v2 sin(θ)

4amax

)2

−
(
x− xci +

v2 cos(θ)

4amax

)2

. (14)

Lemma 3. hbi (x, y, v, θ) in (14) for the ith disk comprising
P in (8) is a valid control barrier function with respect to
the safety function in (9).

Proof. Under the braking maneuver γb(z), the solution
Φ(t, z) is always within a ball with radius v2

4amax
and center

(x + v2 cos(θ)
4amax

, y + v2 sin(θ)
4amax

) for ∀t ≥ 0. If hbi (x, y, v, θ) is
positive, then this ball is contained in {z : ρi(z) ≥ 0} for the
safety function ρi(z). Therefore if the system is initialized
in Chb

i
, the system is safe for all time under the evasive

maneuver and hbi is a valid control barrier function. �

Note that unlike hti generated from the turning evasive
maneuver, hbi is not shown to be a ZCBF. However the
control barrier function hbi can still be used in a QP Program.
If the QP ever becomes infeasible, the vehicle can always
switch to its evasive maneuver to maintain safety, similar to
(17) in [13].

Braking behavior can also be used for collision avoidance.
For the pair of vehicles A and j, an evasive maneuver
ΓB(uA, uj) = (γb(zA), γb(zj)) is used. Similar to (14), the
following control barrier function can be constructed:

hB(zA,zj) =((
yA +

v2A sin(θA)

4amax

)
−

(
yj +

v2j sin(θj)

4amax

))2

+

((
xA +

v2A cos(θA)

4amax

)
−

(
xj +

v2j cos(θj)

4amax

))2

−

(
2Ds +

v2A
4amax

+
v2j

4amax

)2

(15)

Lemma 4. hB(zA, zj) in (15) for vehicle A and vehicle j in
(11) is a valid control barrier function with respect to safety
function ρcoll(zA, zj) in (12).

The proof is essentially identical to Lemma 3 and is
omitted.
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Fig. 2: (a) An autonomous vehicle executing an evasive
maneuver of [0,−ωmax]. In this figure, hti(x, y, v, θ) = 0.
(b) An autonomous vehicle executing an evasive maneuver
of [−amax, 0]. In this figure, hbi (x, y, v, θ) = 0 as well.

C. Composition

Encoding both evasive maneuvers γt and γb for collision
avoidance into one control barrier function is done through
composition. Furthermore a total control barrier function for
the lane of the traffic circle is defined by composing the
control barrier functions for the disks comprising P .

A total control barrier function for avoiding collision
between vehicle A and vehicle j is defined as

h(zA, zj) = max{hB(zA, zj), h
T (zA, zj)}. (16)

For lane keeping, hti and hbi for the corresponding i-th disk
are composed to give a total control barrier function hlane as

hlane(x, y, v, θ) = max{ht(x, y, v, θ), hb(x, y, v, θ)}. (17)

where ht(x, y, v, θ) = maxi=1,...,N h
t
i(x, y, v, θ), and

hb(x, y, v, θ) = maxi=1,...,N h
b
i (x, y, v, θ). The max operator

max{h1, h2} of 2 ZCBFS gives a corresponding superlevel
set Cmax{h1,h2} = Ch1∪Ch2. If Ch1 and Ch2 are shown to be
control invariant by their respective ZCBFs, then Ch1 ∪Ch2
is necessarily control invariant. Composition with the max
operator introduces points of nondifferentiability into the bar-
rier function, which has been studied in [22]. Alternatively,
to avoid using nonsmooth analysis, the ZCBF hlane in (17)
and h(zA, zj) in (16) can be smoothly underapproximated.
In particular, consider the α-softmax function [27] applied
to hlane resulting in

ĥ(x, y, v, θ) =

∑n
i hi(x, y, v, θ)e

ahi(x,y,v,θ)∑n
i e

ahi(x,y,v,θ)
. (18)

This construction smoothly under-approximates the max-
imum so that ĥ(x, y, v, θ) ≤ maxi=1,...,N hi(x, y, v, θ) for
all x, y, v, θ and therefore Cĥlane

⊆ Chlane . Here, a ≥ 0

is a design parameter determining closeness of fit. For
large enough a, it is possible to get arbitrary close under
approximations of hlane while retaining differentiability of
the control barrier function. Therefore we can use ĥlane as a
substitute to evaluate for a controller in a quadratic program.
The QP Program for ĥlane may not be strictly feasible,
but because ĥlane ≤ hlane and Cĥlane

⊆ Chlane , an evasive
maneuver is always available to keep the autonomous agent
safe in Chlane .

V. RESULTS AND SIMULATIONS

Experimental results were collected on the Robotarium, a
remote-access and multi-agent testbed [28]. In this demon-
stration, as shown in Figure 31, an autonomous vehicle
navigates a traffic circle in the presence of two other vehicles.
Safety constraints are encoded through the control barrier
functions outlined in this paper. To handle performance
constraints, a simple proportional controller is used:[

ua,nom
uω,nom

]
=

[
K1(vdesired − vA)

K2(sin(θdesired − θA))

]
(19)

where vdesired is a constant desired velocity, and K1 and K2

are gains of the controller. θdesired = angle( k1
|φ−φin|vec(φ +

π) + k2
|φ−φout|vec(φ) + k3vec(φ+ r

plane
π
2 ), where k1, k2, k3

are relative gains for each term, (r, φ) is the position of
the vehicle in polar coordinates, vec(φ) = [cos(φ), sin(φ)],
angle([x, y]) = arctan(y/x), and φin and φout are the
directions of the entry and exit regions with respect to the
origin. This defines a desired vector field that points into
the traffic circle in the initial region, points out of the traffic
circle in the exit region, and converges to the middle of the
lane (plane) while in the traffic circle. Values of K1 = 0.1,
K2 = 5, vdesired = 0.1 m/s, k1 = k2 = 0.2, k3 = 2,
φin = −π, φout = π

2 , and plane = 0.7 m were used. In
the experimental scenario shown in Figure 3, two vehicles,
representing human drivers who have the right of way, are
already present in the traffic circle. They are also modeled
with the proportional controller in (19), but are not equipped
with any safety modules. However, the autonomous vehicle
A is still able to safely navigate the traffic circle.

VI. CONCLUSIONS

In this work we examine how to navigate an autonomous
vehicle safely through a traffic circle. As autonomous vehi-
cles are safety-critical systems, safety specifications are an
integral part of the design of the controller. We introduce
control barrier formulations as a way to handle safety con-
straints, specifically collision avoidance and lane keeping in a
roundabout. We construct control barrier functions for simple
safety specifications through geometric arguments. Compo-
sition is then used to extend the control barrier functions
to handle the traffic circle problem. Experimental results are
shown to validate the approach using the Robotarium testbed.
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