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Abstract— This paper proposes a distributed field mapping
algorithm that drives a team of robots to explore and learn an
unknown scalar field. The algorithm is based on a bio-inspired
approach known as Speeding-Up and Slowing-Down (SUSD) for
distributed source seeking problems. Our algorithm leverages a
Gaussian Process model to predict field values as robots explore.
By comparing Gaussian Process predictions with measurements
of the field, agents search along the gradient of the model error
while simultaneously improving the Gaussian Process model.
We provide a proof of convergence to the gradient direction
and demonstrate our approach in simulation and experiments
using 2D wheeled robots and 2D flying autonomous miniature
blimps.

Index Terms— Scalar Fields, Mapping and Exploration,
Gaussian Process Regression, Multi-agent Control.

I. INTRODUCTION

Scalar field maps are used to describe the spatial behavior
of an environmental characteristic of interest. For example,
scalar maps of oil spill concentrations, chemical leaks, or
occupancy provide useful information for environmental
monitoring and path-planning applications [1, 2, 3] and may
be used to provide intuition about the field’s behavior in
unknown regions. As a result, designing exploration strate-
gies that can efficiently produce such maps is an important
problem. In particular, finding the critical points of an
unknown field is of great interest as samples near critical
points help to define the field’s spatial structure and may
coincide with points of interest, like the source of a chemical
leak.

In the literature, coverage strategies to sample a scalar
field with an appropriate density have been explored. In [4],
robot formation controllers are proposed to achieve a desired
distribution sampling, and in [5], exhaustive search methods
are reviewed that can guarantee visiting every point within
some distance over a bounded domain. However, the first
approach may fail to capture important details as the desired
distribution does not evolve according to the field samples
and exhaustive search methods may be prohibitively time-
consuming depending on the size of the domain. Alterna-
tively, the work [6, 7] demonstrates a search strategy that
considers online field samples in order to balance exploration
of the field with tight sampling near critical points. The
strategy requires some prior knowledge of the environment
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Fig. 1. 3D mesh plot of the Gaussian Process prediction error and three
agents searching the field for large error. Previously explored regions have
low modeling error due to collected samples. Agents start at around the
position (−40,−40).

though and is therefore not applicable in many situations
where the scalar field is completely unknown.

Other search strategies based on Gaussian Process (GP)
learning methods (also known as Kriging [8]) have also
been described in the literature. The paper [9] describes a
frontier-based approach based on the variance of the GP
model and the paper [10] describes an RRT path-planning
approach that incorporates the occupancy uncertainty of the
GP. Both strategies require computing an information metric
over either the frontiers or RRT trajectories which may be
prohibitively expensive. To handle these expensive computa-
tions, [11] proposes a distributed estimation strategy of the
joint entropy which can then be used to drive exploration
objectives.

Source-seeking strategies have also been proposed to find
the extrema of scalar fields. The paper [12] describes a
distributed gradient tracking strategy that uses circular swarm
formations to estimate the field gradient. However, explicit
gradient estimation methods may require many local samples
and might be ill-conditioned. As such, our previous works
in [13, 14, 15, 16] demonstrate a derivative-free distributed
source seeking algorithm that allows agents to follow the
negative gradient. While agents following source-seeking
strategies may efficiently find local extrema, agents may
never leave and may fail to explore the rest of the field.

We, therefore, propose a novel field exploration algorithm
based on our previous bio-inspired algorithm Speeding-
Up and Slowing-Down (SUSD). Our approach does not
require computing a joint information metric or gradient
estimate. Instead, our approach uses a GP model that is
refined online to predict the field at each iteration. By
computing the modeling error between the predicted and
actual values of the field, the SUSD algorithm drives the
robots to search along the modeling error gradient without



explicitly estimating it. Due to the unknown spatial structure
of the scalar field, we treat the higher-order components
of the field as a disturbance and provide an input-to-state
stability proof of the gradient tracking controller. This sets
the SUSD algorithm as an efficient exploration strategy that
prioritizes minimizing the extrema in the field modeling error
which may improve the GP learning process. The proposed
method only requires agents to be able to share samples of
the scalar field, observe the relative positions of other agents,
and compute the posterior of the GP using the previous field
samples. An example of the proposed approach with three
simulated agents is shown in Fig. 1.

Our main contributions are threefold: i) a scalar function
transformation that enables our previous SUSD exploitation
algorithm to integrate with a GP prediction model to form
an exploration strategy for mapping a smooth scalar field,
ii) derivation of the SUSD dynamics in the existence of the
GP prediction model and an Input-to-State Stability proof
that shows agents track the gradient of the modeling error
when the gradient is sufficiently large, and iii) simulations
and experiments that contains the Georgia Tech Miniature
Autonomous Blimps [17], as well as the Georgia Tech
Robotarium [18].

The outline of the paper is as follows. Section II for-
mulates the field-learning problem for multi-agent systems.
Section III provides some preliminary detail on Gaussian
Process Regression methods which are used in this paper to
achieve field mapping. Section IV proposes the exploration
strategy that extends our previous SUSD method and Section
V provides an analysis of convergence to the error gradient.
Section VI describes validation trials using a swarm of
simulated agents, the Georgia Tech Miniature Autonomous
Blimps, and the Robotarium. We conclude with Section VII
and describe our future works.

II. PROBLEM FORMULATION

Consider a swarm of N agents in 2-D space where rrri ∈R2,
i= 1, . . . ,N denotes the position of the ith agent. In this paper,
we assume the following:

Assumption 2.1: Each agent i is able to observe the rela-
tive position (rrr j− rrri), j = 1, . . . ,N.

Assumption 2.2: Each agent i is able to identify its own
position rrri with respect to a fixed frame.
In practice, Assumption 2.1 and Assumption 2.2 may be
realized with sensors that can measure relative positions
(such as a camera or LiDAR system) and can achieve
localization (such as by GPS).

Assumption 2.3: The field z : R2→ R is bounded over a
search domain D ⊂ R2, i.e. 0≤ zmin ≤ z(rrr)≤ zmax,∀rrr ∈D .
We also assume agents are able to measure the field at their
current positions, i.e. z(rrr). While we assume the field is
bounded, the bounds of z do not need to be known. We
further assume agents have a local communication system
that allows them to share measurements with all other agents.

Assumption 2.4: Each agent retains a history of location
and measurement pairs of all agents in the swarm, i.e.

r̄rr(m) =∪N
i=1{(rrri( j∆t), z(rrri( j∆t)))}m

j=1 where m is the current
sampling iteration such that t−∆t ≤ m∆t < t.
With a fixed sampling interval ∆t, we assume agents improve
the estimate of the field model by aggregating the field
measurements of all agents every ∆t units of time. Let
ẑ(m) : R2 → R be the GP estimate of the field associated
with r̄rr(m) and let the velocity of each agent be described by

ṙrri(t) = uuui(t) (1)

Then, the problem we are interested in solving is designing
a velocity controller uuui(t) so that the model error (z(rrr)−
ẑ(m)(rrr))→ 0 as t→ ∞ for all rrr ∈D .

Remark 1: We note that the problem of designing a
controller such that (z(rrr)− ẑ(m)(rrr))→ 0 as t → ∞ for all
rrr ∈D could be solved using other exhaustive search methods
that can guarantee visiting every point in the space D
within a distance ξ [5]. However, for extremely large spaces,
these approaches may take a prohibitively long period of
time and may not construct useful approximations of the
field until the search is nearly complete. As such, we are
interested in designing a controller that adaptively samples
the field in order to construct a model that captures the major
characteristics efficiently before refining the estimate.

III. GAUSSIAN PROCESS REGRESSION

In this section, we introduce the Gaussian Process (GP)
learning method which we use to model the unknown field z.
GPs are a non-parametric supervised learning methods that
can be used for the regression of nonlinear maps g : Rd→R.
These methods use labeled sample points to define a posterior
over a space of functions given a prior function µ : Rd →R
and a covariance function, also known as a kernel, k : Rd×
Rd→R that defines the similarity between sample points [8].
Given a dataset D = {(xxxi, ĝ(xxxi))}M

i=1 where ĝ(xxx) = g(xxx)+ω

and ω ∼N (0,σ2), the Gaussian posterior of a set of query
points {xxx∗j}L

j=1 is

g(xxx∗) = µ(xxx)+K(xxx∗,xxx)ᵀ(K(xxx,xxx)+σ
2I)−1ĝ(xxx)

V[g(xxx∗)] = K(xxx∗,xxx∗)−K(xxx∗,xxx)ᵀ(K(xxx,xxx)+σ
2I)−1K(xxx∗,xxx)

(2)
Let yyy = {yyyi}M

i=1 and yyy′ = {yyy′i}N
i=1 be two sample data sets.

The matrix K(yyy,yyy′) is defined as

K(yyy,yyy′) =

k(yyy1,yyy
′
1) . . . k(yyyM,yyy′1)

...
. . .

...
k(yyy1,yyy

′
N) . . . k(yyyM,yyy′N)

 (3)

For this work, we use the squared exponential kernel defined
as

k(xxx,xxx′) = α
2 exp

(‖xxx− xxx′‖
2β 2

)
(4)

and use a prior µ(xxx) = 0. The parameters α and β are
hyperparameters of the GP and are often optimized according
to the given data. In our approach, we assume σ = 0 and
the hyperparameters are fixed and may be chosen if a small
sampling of the field is known before runtime.



IV. THE SUSD FIELD EXPLORATION STRATEGY

In this section, we introduce the SUSD-based field explo-
ration algorithm. The proposed approach allows the SUSD
source seeking algorithm to search for model errors over a
bounded domain.

A. Field Transformation

We propose here a field transformation that incorporates
an online learning model ẑ(m), which models the underlying
field of interest z, realized with a GP with a smooth posterior,
which occurs with an appropriate choice of kernel (for
example, the squared exponential). For a scalar field that
meets Assumption 2.3, we apply the field transformation
f : R2→ R defined by

f (m)(rrr) =
1

(z(rrr)− ẑ(m)(rrr))2 + ε
+η (5)

where ε > 0 and η ≥ 0 are constant positive terms to design
the bounds of f (m)(rrr). The transformation (5) inverts the
squared modeling error of ẑ(m) such that the field is now
a smooth field with local maxima at points of smallest
modeling error. This allows us to transform the field explo-
ration problem into a local minima source seeking problem
where local minima are eliminated as we improve the GP
with sampling. We now describe the design of a distributed
source-seeking controller that leverages (5).

B. Velocity Design

For the swarm of agents as described in Section II and the
transformed field (5), the SUSD-based search strategy is

uuui(t) = k1nnn(t) f (m)(rrri(t)) (6)

where k1 > 0 is a tuning gain and nnn(t) is the eigenvector
corresponding to the smallest eigenvalue λn(t) from the po-
sition covariance matrix of all agent positions. The position
covariance matrix for all agents at time t (as all agents have
the same covariance matrix) is computed as

CCC(t) =
N

∑
j=1

(rrr j(t)− rrrc(t))(rrr j(t)− rrrc(t))ᵀ (7)

where rrrc(t) = 1
N ∑

N
j=1 rrr j(t). Computing the eigenvectors

(qqq(t),nnn(t)), and the corresponding eigenvalues (λq(t),λn(t))
is done through the Principal Component Analysis (PCA)
algorithm [19]. Employing (6), agents move along the nnn(t)
direction, which we call the SUSD direction, and naturally
turn towards the negative gradient of the transformed field.
If we remove the GP sampling, i.e. ẑ(m) = ẑ(0), then our
approach employs the normal distributed source-seeking
strategy as in [15]. Additional details regarding the SUSD
source-seeking strategy are in our previous work [14, 15, 16].
The full field-learning algorithm is provided in Algorithm 1.

Remark 2: Observe that in (5), the transformed field has
multiple local maxima at locations where (z(rrr)− ẑ(rrr)) = 0.
We will show in Section V that the controller (6) drives the
swarm to move against the negative gradient direction of
the transformed field (5). Hence, the SUSD-based controller
in this paper drives the swarm away from local maxima to

Algorithm 1: One Iteration of Field-Learning SUSD

Input : t, m, z, {(rrr j,z j)}N
j=1, r̄rr, z̄

Output: uuui (ith agent input)
K← K(r̄rr, r̄rr) . As in (3)
K∗← K(rrri, r̄rr) . As in (3)
ẑi← (K∗)ᵀK−1z̄ . Predict the field value
zi← z(rrri) . Sample the true field value

if t−m∆t > ∆t then
z̄← extend(z̄,{z j}N

j=1) . Extend the GP dataset
r̄rr← extend(r̄rr,{rrr j}N

j=1) . Extend the GP dataset
end

nnn← PCA({rrri− rrr j}) . Compute the SUSD direction
ui← k1nnn( 1

(zi−ẑi)2+ε
+η) . Compute Input

explore landscapes of large modeling errors. This is different
from our previous works in [14, 15, 16] where the swarm is
designed to converge to one local maximum (or minimum).

V. DYNAMICS AND CONVERGENCE ANALYSIS

In this section, we derive the SUSD exploration dynamics
for the team of agents using (6). We show the derivations
for the SUSD direction and show that the SUSD direction is
attracted to the gradient of the GP prediction error.

A. SUSD Exploration Dynamics
Let f be the scalar field at some learning iteration m, fi

be a shorthand for fi = f (rrri), and fc be the shorthand for the
transformation at the center position fc = f (rrrc). Assuming
f is real analytic and using Taylor expansion, we may write:

fi− fc = 〈rrri− rrrc,∇ f 〉+νi, (8)

where νi =O(||rrri− rrrc||) is the remaining higher-order com-
ponents of the function. Then, using (6), we can show that
the dynamics of direction nnn are described by [15]

ṅnn =−
λq

λq−λn
(III−nnnnnnᵀ)∇ f +ννν , (9)

ṄNN =
fa

||∇ f ||
(III−NNNNNNᵀ)HHHnnn, (10)

where λq and λn are the larger and smaller eigenvalues
of CCC, ννν = −(1/(λq − λn))∑i νi〈rrri − rrrc,qqq〉qqq is due to the
higher-order terms of the function, fa = (1/M)∑i f (rrri) is the
average measurement, HHH = ∇2 f is the hessian matrix, and
NNN = ∇ f

‖∇ f‖ is the normalized gradient direction. From now
and on, for any variable l, we write lc = l(rrrc) to denote the
value of l at position rrrc. We now present the following result
for the field transformation (5).

Lemma 5.1: For the function map defined defined in (5),
the SUSD dynamics is described by

ṅnn =
−2k1λq

λq−λn
|zc− ẑc|( fc−η)2‖∇zc−∇ẑc‖(III−nnnnnnᵀ)NNN + vvv,

(11)

ṄNN =
sign(ẑc− zc) fa

‖∇zc−∇ẑc‖
(III−NNNNNNᵀ)(HHH− ĤHH)nnn, (12)



where ννν and fa are as defined in (9), and HHH and ĤHH are the
hessian matrices ∇2zc and ∇2ẑc, respectively.

Proof: To prove (11), using (5), we first derive

∇ fc =−2( fc−η)2(zc− ẑc)(∇zc−∇ẑc), (13)

‖∇ fc‖= 2( fc−η)2|zc− ẑc|‖∇zc−∇ẑc‖, (14)

NNN =
∇ fc

‖∇ fc‖
= sign(ẑc− zc)

∇zc−∇ẑc

‖∇zc−∇ẑc‖
. (15)

Substituting (13) into (9), and using (14) and (15), yields the
desired result (11). To prove (12), we first obtain

ṄNN = (
III

‖∇ fc‖
− ∇ fc∇ f ᵀc
‖∇ fc‖3 )

d
dt

∇ fc = fa(III−NNNNNNᵀ)
∇2 fc
‖∇ fc‖

nnn (16)

Then we derive

∇
2 fc = a(∇zc−∇ẑc)(∇zc−∇ẑc)

ᵀ+b(∇2zc−∇
2ẑc), (17)

where a = 2( fc − η)2[4( fc − η)(zc − ẑc)
2 − 1] and b =

2( fc − η)2(zc − ẑc). Substituting (17) in (16), and using
‖∇ fc‖ = 2( fc−η)2|zc− ẑc|‖∇zc−∇ẑc‖ along with the fact
that (III−NNNNNNᵀ)(∇zc−∇ẑc)(∇zc−∇ẑc)

ᵀnnn = ‖∇zc−∇ẑc‖2(III−
NNNNNNᵀ)NNNNNNᵀnnn = 0, complete the proof.

Observe that the first term of (11) represents a consensus-
on-a sphere control law [20] between nnn and −NNN. This
suggests that the SUSD direction tends to align with the
negative gradient direction of the function (5). Since (5) has
a maximum when the error (z− ẑ) = 0, moving along the
opposite gradient direction of f implies that SUSD is moving
the swarm towards areas of high modeling error in the GP.

B. Convergence Analysis

In this section, we will prove that the SUSD direction
nnn converges to −NNN, i.e. the negative model error gradient
∇zc−∇ẑc. For this, we define θ = 1+ 〈NNN,nnn〉 so that θ = 0
if and only if 〈NNN,nnn〉=−1, i.e. the desired equilibrium. Then,
using (11), we obtain

θ̇ = h(t,θ ,δ )

=−2k1
λq

λq−λn
|zc− ẑc|( fc−η)2‖∇zc−∇ẑc‖θ(2−θ)+δ ,

(18)

where δ = 〈NNN,ννν〉+ 〈ṄNN,nnn〉 is viewed as an input disturbance
due to the nonlinear terms of the function. Since at each time,
δ depends on where the swarm is in the search space and we
cannot control it, we use an input-to-state stability analysis
approach to obtain a convergence result. Note that θ̇ = 0
when θ ∈ {0,2}. Furthermore, when θ ∈ {0,2}, then nnn =
±NNN, and hence from (12) and definition of ννν , the disturbance
δ vanishes at the two equilibria.

Theorem 5.1: Consider the system (18). Consider the set
B = {rrrc|‖∇zc−∇ẑc‖ > µ} where µ > 0 is a constant that
we derive later in Remark 3. Then the equilibrium θ =
0 of the unforced system θ̇ = h(t,θ ,0) is asymptotically
stable. Furthermore, for an input disturbance satisfying |δ |<
2k1ε1|zc − ẑc|( fc − η)2µ for some ε1 ∈ (0,1), the forced
system h(t,θ ,δ ) is locally input-to-state stable.

Proof: Define V = θ/(2− θ) to be Lyapunov can-
didate function. Note that V = 0 if and only if θ = 0,

and V → ∞ as θ → 2. Consider the domain D = {θ |θ ∈
[0,2)}. Then, when δ = 0, we find V̇ ≤ −s‖∇zc−∇ẑc‖V ,
where s = 4k1

λq
λq−λn

|zc − ẑc|( fc − η)2 is a positive definite
function. Since V̇ = 0 if and only if θ = 0, then the origin
of the unforced system h(t,θ ,0) is asymptotically stable.
Additionally, since V̇ → −∞ as θ → 2, and the fact that
V → ∞ whenever θ → 2 and ||∇zc−∇ẑc||> µ > 0, implies
that D is a forward invariant set, and thus θ ∈ [0,2) for all
t. For the forced system h(t,θ ,δ ), we obtain

V̇1 ≤−s(1− ε1)||∇zc−∇ẑc||V, ∀|θ | ≥ ρ(|δ |), (19)

where ρ(|δ |) = 1−
√

1−|δ |/(2k1ε1|zc− ẑc|( fc−η)2µ) is a
class K function. Since it is assumed that |δ |< 2k1ε1|zc−
ẑc|( fc−η)2µ , then the set θ ∈ [0,ρ(|δ |)) is not empty. Let
α1(|θ |) = α2(|θ |) = |θ |

2−|θ | which are class K functions that
satisfy α1(|θ |) ≤ V (θ) ≤ α2(|θ |). Therefore, using a local
definition of input-to-state stability [21, 22], and according
to Theorem 4.19 in [23], the origin of the forced system
h(t,θ ,δ ) is locally input-to-state stable.
Theorem 5.1 reveals that the SUSD direction nnn aligns with
the negative gradient direction −NNN of (5) whenever ‖∇zc−
∇ẑc‖ is large enough compared to the higher-order terms of
the model error (zc− ẑc). In other words, SUSD drives the
swarm to the areas of high model error the fastest possible (as
moving against the gradient of (5)) until the error becomes
small. In this time, nnn might not align with −NNN until the
swarm enters another neighborhood where ‖∇zc−∇ẑc‖> µ .

Remark 3: To derive the lower bound µ , we need to
have ||∇zc−∇ẑc|| > µ ≥ |δ |

2k1ε1|zc−ẑc|( fc−η)2 . But, using (12),

|δ | ≤ k1
λq−λn

|υ |+ k1 fa
||∇zc−∇ẑc|| ||H− Ĥ||, where υ = ∑k νk〈rrrk−

rrrc,qqq〉. Therefore we need ||∇zc − ∇ẑc|| > k1
λq−λn

|υ | +
k1 fa

||∇zc−∇ẑc|| ||HHH − ĤHH||. Solving this inequality yields that

µ =
|υ |+
√
|υ |2+8ε1 fa|zc−ẑc|( fc−η)2λq(λq−λn)||HHH−ĤHH||

4ε1|zc−ẑc|( fc−η)2λq
. Clearly this

bound depends on the higher-order terms υ and HHH− ĤHH, and
the inter-agent distances captured by λq−λn. In general, we
can say µ is small when the gradient is large, or when the
GP error is large. As such, the swarm ignores well-modeled
regions and searches towards areas with large error.

VI. SIMULATIONS AND EXPERIMENTS

In this section, we demonstrate simulations and exper-
iments to validate our proposed strategy. We show sim-
ulations to demonstrate the approach over large spaces,
and experiments with robot blimps and the Robotarium to
demonstrate the approach’s applicability with a variety of
real robots. Videos of the experiments are also provided.
For each experiment, the scalar field is generated according
to a sum of Gaussian functions z(rrr) = ∑l=1 γl exp(−‖rrr−
rrrs,l‖/δl). In addition, in order to ensure agents stay close
together and within the bounded domain, we modify (6) with
a formation controller uuui, f = ∑ j 6=i(d0− di j)(rrri− rrr j)) where
d0 is a desired separation distance and di j = ‖rrri− rrr j‖, and a
boundary breaching function zD : R2→ R which is positive
and increasing when outside of the domain. By ensuring



the speed of agents increases when outside of the domain,
SUSD naturally re-directs agents back into the domain. The
modified algorithm for our simulations and experiments is

uuui(t) = nnn(t)
[
k1 f (m)(rrri(t))+ zD (rrri(t))

]
+uuui, f (t). (20)

A. Simulations

For a team of 3 agents, we test a simulation where
the parameters of the field, parameters of the GP kernel,
breaching function, and domain are given by

γ =
[
−30 −30 −30 −30 −30

]ᵀ
δ =

[
16 22 50 18 22

]ᵀ
rrrs =

[
−32 25 −5 30 40
40 −35 −10 35 40

]
α = 7, β = 5.5

zD (rrr) =

{
0.002‖rrrD − rrr‖, if rrr 6∈D

0, otherwise

D = {rrr :−50≤ r1 ≤ 50,−50≤ r2 ≤ 50}

(21)

where rrrD is the closest point to rrr on the boundary of the set
D . Fig. 2 shows the trajectory of the team overlaid on the

Fig. 2. Heat-map of (z− ẑ)2 with 3 agents over the course of the simulation.
Position of agents are shown as red dots, black dots indicate rrrs locations,
and the black border shows the domain of interest. Agents start in the bottom
left corner.

squared error of the GP model throughout the simulation.
Note that over the course of the simulation, agents seek out
regions of highest model error as evidenced by the reduction
of the major hot-spots first in the error field. By employing
the SUSD strategy, agents align their search with the gradient
of the error field.

B. Experiments using the GT-MAB

We employ two Georgia Tech Miniature Autonomous
Blimp (GT-MAB) [17, 24] to validate our approach. Due
to the holonomic configuration of the platform (shown in
Fig. 3), the proposed velocity controller may be used without
any mapping of the single integrator dynamics. We employ
our technique by constraining the autonomous blimps to
fly in a 2D plane. While our approach is applicable in 3D
settings provided at minimum 3 agents (needed for PCA),
due to space limitations and we constrain our blimps to fly
in a 2D plane. The parameters of the field, parameters of the
GP kernel, the breaching function, and the domain are given
by

γ =−55,δ =
1
3
,rrrs =

[
0 0

]ᵀ
,α = 20,β = 0.4

zD (rrr) =

{
0.01‖rrrD − rrr‖, if rrr 6∈D

0, otherwise

D = {rrr :−0.7≤ r1 ≤ 0.7,−1.1≤ r2 ≤ 1.1}

(22)

Fig. 3. The GT-MAB and GT-MAB gondola that houses the electrical
payload of the autonomous blimp. Motors are arranged in a perpendicular
fashion in order to achieve holonomic flight.

Fig. 4 shows the trajectory of the team overlaid on the
squared error field of the GP model as the autonomous
blimps explore the field. Note that the agents are able to

Fig. 4. Trajectory snapshots of the GT-MAB experiment overlaid on the
squared-error field (z− ẑ)2. As agents learn the field, the squared-error field
reduces to 0.

successfully return to the center of the Gaussian function as
the location of largest GP modeling error.

C. Experiments with the Robotarium

We also demonstrate our approach using the Georgia Tech
Robotarium with more agents and a more complex field. The
parameters of the field, parameters of the GP kernel, the
breaching function, and the domain are given by

γ =
[
−25 −24 −30

]ᵀ
,δ =

[
0.45 0.35 0.4

]ᵀ
rrrs =

[
−0.1 0.8 −0.8
0.3 −0.4 −0.4

]
,α = 7.5,β = 0.1

zD (rrr) =
1

‖rrrD − rrr‖2

D = {rrr :−1.6≤ r1 ≤ 1.6,−1≤ r2 ≤ 1}
(23)

Fig. 5 shows the final learned GP model compared to the
true field. Observe that the four agents successfully find all
three sources and generate a good approximation of the field.

Fig. 5. Left: contour plot of final field estimate ẑ(m) from the Robotarium
experiment. Right: contour plot of the true field.

VII. CONCLUSION

In this paper, we introduced a novel exploration method
for scalar field mapping that leverages our previous work in
distributed source seeking. Our approach does not require



computing a joint information gain and instead leverages
the SUSD algorithm to perform a derivative-free search.
We prove that by using the SUSD algorithm our approach
is attracted to the gradient of the modeling error which is
then eliminated through the GP learning. We also provide
experiments to demonstrate our approach’s applicability with
real robots. In future work, we will investigate how the
learning behavior of the field estimator affects the search
dynamics and a communication-free variant of our proposed
algorithm.
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most Global Consensus on the n-Sphere”. In: IEEE
Transactions on Automatic Control 63.6 (June 2018),
pp. 1664–1675.

[21] E. D. Sontag and Yuan Wang. “New characterizations
of input-to-state stability”. In: IEEE Transactions on
Automatic Control 41.9 (Sept. 1996), pp. 1283–1294.

[22] Andrii Mironchenko. “Local input-to-state stability:
Characterizations and counterexamples”. In: Systems
& Control Letters 87 (2016), pp. 23–28.

[23] H. K. Khalil. Nonlinear Systems, Third Edition. Pren-
tice Hall, 2002.

[24] Sungjin Cho et al. “Autopilot design for a class of
miniature autonomous blimps”. In: 2017 IEEE Confer-
ence on Control Technology and Applications (CCTA).
IEEE. 2017, pp. 841–846.


