
Set-Based State Estimation of Mobile Robots from Coarse Range
Measurements

Tony X. Lin1, Samuel Coogan2, Donald A. Sofge3, and Fumin Zhang1

Abstract— This paper proposes a localization algorithm for
an autonomous mobile robot equipped with binary proximity
sensors that only indicate when the robot is within a fixed
distance from beacons installed at known positions. Our algo-
rithm leverages an ellipsoidal Set Membership State Estimator
(SMSE) that maintains an ellipsoidal bound of the position
and velocity states of the robot. The estimate incorporates
knowledge of the robot’s dynamics, bounds on environmental
disturbances, and the binary sensor readings. The localization
algorithm is motivated by an underwater scenario where
accurate range or bearing measurements are often missing. We
demonstrate our approach on an experimental platform using
an autonomous blimp.

Index Terms— Set-Membership Methods, State Estimation

I. INTRODUCTION

Autonomous mobile robots have been employed in various
operations ranging from oil spill surveys in underwater
operations [1] to package deliveries with aerial robots [2].
These operations usually require accurate localization, or
positional information, of the robot in order to map acquired
data spatially and to guide the behavior of the robot during
a mission. However, in certain scenarios, localization may
be significantly more difficult. For example, underwater
localization is challenging due to limited global positioning
system (GPS) services and limited active perception methods
(cameras or LiDAR). Instead, underwater localization meth-
ods have focused on using external acoustic beacons that can
propagate through deep water [3, 4]. In most cases, these
acoustic signals are used for time-of-flight ranging in order
to improve dead reckoning estimates through some stochastic
estimation method such as Kalman Filtering [5], Extended
Kalman Filtering [6], or Particle Filtering [7].

Stochastic state estimators estimate a system’s state by
recursively computing the posterior density when considering
known noise profiles of the system and the observations.
However, such stochastic estimation methods may provide
biased or inaccurate estimates when the underlying distribu-
tion assumptions are incorrect. In cases where statistical sen-
sor descriptions are difficult to acquire, it may be preferable
instead to obtain a bound on the system state. In particular,
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Set-Membership State Estimation (SMSE) methods assume
that an unknown but bounded (UBB) disturbance acts on a
system. An SMSE estimator then yields feasible sets on the
state vector rather than posterior distributions, guaranteeing
the state of the system lies within certain bounds if the UBB
assumptions are continually met.

SMSE methods were originally investigated for the pur-
poses of target tracking [8, 9] but have been extended to a
wide variety of parameter and state estimation problems [10].
Recently, SMSE methods have also been explored for use
in underwater robotics [11, 12]. Notable extensions of [11]
demonstrate bounds on nonlinear system trajectories through
contractor functions that are able to systematically eliminate
non-feasible trajectories by evaluating sensing information
forwards and backwards in time against historical state infor-
mation [13]. Other work in [14, 15] has demonstrated the use
of SMSE methods for range-only Simultaneous Localization
and Mapping (SLAM) as well.

When range information is not available, target tracking
with binary sensors has been explored in the literature in
order to provide coarse estimates of the system state. Many
previous works in the literature utilize the particle filter as
the tracking method of choice [16, 17, 18]. Another work
in [19] demonstrates an alternative method by formulating
the problem as a Hidden Markov Model and computing
solutions using a variant of the Viterbi algorithm. Similar to
the issues in acoustic beacon ranging, each of these binary
estimation methods produces a stochastic estimate of the
system state and is potentially unreliable in the presence of
a disturbance. The particle filter in particular may suffer in
binary estimation problems as it is unclear how to properly
re-sample from the prior distribution if samples violate
binary constraints.

Motivated by the underwater localization scenario, in
which the statistical properties of an acoustic sensor may
vary due to changes in salinity and temperature [20], we
propose using ellipsoidal SMSE methods to perform coarse
localization of a robot when sensing information is only
able to indicate local proximity to a beacon, also known as
binary sensing. This scenario also arises in terrestrial or aerial
localization problems, for example when the only sensing
modality is Wi-Fi signal strength which may have very poor
range estimation accuracy [21]. We propose an algorithm
that leverages efficient LMI semi-definite programs to extract
bounds on the states of the robot when only binary range
measurements are available. To our knowledge, this work
is the first to propose the use of ellipsoidal guaranteed state
estimation methods in solving the binary sensing localization



problem. In addition, we demonstrate that the use of SMSE
methods is also able to extract bounds on the velocity of the
robot despite having only coarse observations of position.

Our contributions in this work are therefore threefold:
i) we propose an algorithm for identifying bounds on the
state of a linear system using binary range measurements
and exploiting efficient LMI semi-definite programs, ii) we
refine the general approach to the problem of localization
of robots using 3D binary range measurements, and iii) we
validate our algorithm on an experimental research platform.
The experimental platform is an autonomous blimp designed
by the Georgia Tech Systems Research (GTSR) group [22].
Due to the lighter-than-air design of the blimp, the platform
is easily subjected to aerodynamic disturbances, and serves as
a good validation of the proposed method’s resiliency under
disturbance.

The outline of this paper is as follows. Section II for-
mulates the SMSE problem for coarse area localization.
Section III introduces the ellipsoidal SMSE algorithm used
to compute the feasible sets on the system state. Section
IV discusses our experimental tests using the proposed set-
membership estimation method. Section V concludes the
paper and describes future works.

II. PROBLEM FORMULATION
Consider a robot with motion described by the continuous-

time linear dynamics
ẋ(t) = Ax(t)+Bu(t)+d(t) (1)

with A ∈ Rn×n, B ∈ Rn×m, state x ∈ Rn, input u ∈ Rm, and
disturbance d ∈ Rn. We assume the disturbance d is an
unknown but bounded (UBB) disturbance and is contained
within the ellipsoid

Ed = {z ∈ Rn | zT Pdz+2zT bd + cd ≤ 0} (2)

where Pd ∈ Rn×n, bd ∈ Rn, and cd ∈ R define the center,
rotation, and semi-axis lengths of the ellipsoid bounding the
disturbance. For this work, we focus specifically on tracking
the 3D position and velocity of the autonomous vehicle so
that

ẋ(t) =
[

000 I3
000 000

]
x(t)+

[
000
I3

]
u(t)+d(t) (3)

where x1, x2, and x3 denote the 3D position, x4, x5, and x6
denote the 3D velocity, 000 is a 3×3 block of zeros and I3 is
the 3×3 identity matrix. We sometimes write r = (x1,x2,x3)
for the robot position. However, the results of this paper can
be easily generalized to the general linear time-invariant case.

Next, we describe the beacon model used to provide sensor
measurements. Given N beacons, for j ∈ {1,2, . . . ,N}, let
r j ∈ R3 be the position of the jth beacon. Let R j be the
range within which the robot can detect the beacon indexed
by j, so that at time t, the beacon detection is given by

Yj(t) =

{
1, if ‖r(t)− r j‖ ≤ R j

0, if ‖r(t)− r j‖> R j.
(4)

Define ellipsoids describing the beacon range as

E j = {z ∈ R6 | zᵀPjz+2zᵀb j + c j ≤ 0} (5)

in which the parameters Pj ∈ R6×6, b j ∈ R6, and c j ∈ R are
described as

Pj =

[
R−2

j I 0
0 0

]
, b j =

[
−(R−2

j r j)

0

]
, c j =

[
r j 0

]
Pj

[
r j
0

]
(6)

where I ∈R3×3 is the identity matrix and r j =
[
x y z

]ᵀ is
the jth beacon’s detection range. Then, equivalently, Yj(t)= 1
if and only if x(t) ∈ E j. We assume here that the ellipsoids
capturing the beacon ranges are sufficiently small to ensure
that the beacons can only be detected from within the
ellipsoid.

Remark II.1. We note the ellipsoids defined in (5) are
degenerate and have infinite bounds along the x4, x5, and x6
directions. This reflects that the binary sensing measurements
in (4) only produce position measurements in R3. We will
see later that by defining the ellipsoid beacons in R6, we
will be able to extract information about the robot’s velocity
as well, i.e., the estimate of the system’s velocity does not
grow unbounded even though direct information of velocity
is never obtained from sensor measurements.

Given the beacon sensing model and the dynamics of the
system, we are interested in estimating the set of states that
are consistent with the UBB disturbances and the binary
sensing measurements observed during runtime. While our
system operates with the continuous dynamics outlined in
(3), we sample our sensors at discrete intervals ∆t. As such,
the problem is defined as follows.

Problem Definition. Assume given a control input u(t), an
initial ellipsoid E [0] = {z ∈ R6 | zᵀP[0]z + 2zᵀb[0] + c[0]}
such that the initial state vector satisfies x(0) ∈ E [0], a sam-
pling interval ∆t, beacon ellipsoids E j for j ∈ {1,2, . . . ,N},
and measurements Y (k∆t), construct a series of ellipsoids

E [k] = {z ∈ R6 | zᵀP[k]z+2zᵀb[k]+ c[k]≤ 0} (7)

such that the state vector x ∈ R6 satisfies x(k∆t) ∈ E [k] for
all k ∈ {0,1, . . . ,K}.

III. ELLIPSOIDAL SET-MEMBERSHIP STATE
ESTIMATION

In this section we propose a solution to the guaranteed
state estimation problem of constructing a series of ellipsoids
that contain the state vector as described by (7). We leverage
ellipsoidal reachable set approximations with ellipsoidal in-
tersection updates in order to over-approximate the feasible
sets of system (3). Our proposed algorithm computes an
ellipsoidal over-approximation to the ellipsoidal intersection
through LMI semi-definite programs.

A. Preliminaries on Ellipsoidal Reachable Sets

The reachable set of a system is defined as the set of
all states that an input is capable of driving a system to
given an initial set of states and a finite time horizon [23].
Many approaches have been leveraged in the literature to
efficiently over-approximate reachable sets [24, 23], as exact
computation of these sets is prohibitively expensive. In this



work, we use ellipsoidal over-approximations to characterize
the feasible set of states that satisfies the beacon sensing
measurements and the disturbance inputs. To this end, we
now propose a recursive algorithm for computing E [k] from
E [k−1]. Let some set containing the state at sampling time
(k−1)∆t be defined as the ellipsoid

E [k−1] = {z ∈ R6 | zᵀP[k−1]z+2zᵀb[k−1]+ c[k−1]≤ 0}
(8)

and the bound on the total disturbance on the system
be described by the ellipsoid in (2). The reachable set
R(k∆t,(k−1)∆t,E [k−1],Ed ,u(t)) over-approximates bounds
on the state x(k∆t) based only on system dynamics and dis-
turbance, i.e., before incorporating any sensor measurements.
For systems of the form (1), the computation of the reachable
set is

R(k∆t,(k−1)∆t,E [k−1],Ed ,u(t)) =

Φ(k∆t,(k−1)∆t)E [k−1]⊕
∫ k∆t

(k−1)∆t
Φ(k∆t,τ)(Bu(τ)+Ed)dτ

(9)

where Φ(t1, t0) = eA(t1−t0) is the usual state transition matrix,
⊕ is the geometric (Minkowski) sum operator [25]. For this
work, we leverage an open-source Matlab toolbox to perform
the Minkowski sums of ellipsoids computation as in (9) [23].

Using (9), one solution to the guaranteed state estima-
tion problem is choosing E [k] = R(k∆t,(k − 1)∆t,E [k −
1],Ed ,u(t)). However, the ellipsoid produced by this reach-
able set grows with each sampling iteration because it
does not include any sensor measurements. Using the mea-
surement model (4), we next describe how binary sensing
measurements can be incorporated at each sampling time to
constrain the ellipsoid estimates.

B. Ellipsoidal Bounding Intersections

Define the ellipsoidal approximation of the reachable
set computed by (9) as E [k]− = R(k∆t,(k − 1)∆t,E [k −
1],Ed ,u(t)) in which E [k]− is of the form

E [k]− = {z ∈ R6 | zᵀP[k]−z+2zᵀb[k]−+ c[k]− ≤ 0}. (10)

for appropriate P[k], b[k], and c[k] as computed above. Define
M [k] = { j |Yj(k∆t) = 1}⊆ {1,2, . . . ,N} be the set of indices
at sampling time k∆t such that j ∈M [k] if and only if
Yj(k∆t) = 1. The intersection of all ellipsoids E j where j ∈
M [k] and the reachable set E [k]− provides a bound reduction
on the feasible states of state vector x[k∆t]. However, since
the intersection is not an ellipsoid, we propose choosing the
next ellipsoid E [k] such that

E [k]⊃ E [k]−∩
⋂

j∈M [k]

E j. (11)

Fig. 1 shows a visual representation of the intersection
performed in (11) that updates E [k] according to the in-
tersections of beacon ellipsoids E j and the ellipsoidal ap-
proximation of the reachable set E [k]−. We now propose
a semi-definite program for computing E [k] satisfying (11),
constituting one of the main contributions of this work.

Fig. 1: Visual representation of the operation in (11) pro-
jected into 2D space. The GT-MAB is depicted computing
bounds on its state using ellipsoidal reachable set approxima-
tion (in blue). Upon detecting beacons (with ranges shown
in green) the ellipsoidal approximation of the reachable
set E [k]−, is updated with the intersection of the ellipsoid
regions to produce ellipsoid estimate E [k] (in red).

Proposition III.1. Given M [k] such that j ∈M [k] if and
only if Yj(k∆t) = 1. If P[k], b[k], c[k], τk, and {τ j} j∈M [k]
satisfy the LMIP[k] b[k] 0

b[k]ᵀ −1 b[k]ᵀ

0 b[k] −P[k]

− τk

 P[k]− b[k]− 0
(b[k]−)ᵀ c[k]− 0

0 0 0


− ∑

j∈M [k]
τ j

Pj b j 0
bᵀj c j 0
0 0 0

≤ 0, (12)

then E [k] satisfies (11).

Proof. Let T (z; P,b,c) = zᵀPz+ 2zᵀb+ c describe an ellip-
soid such that E = {z | T (z; P,b,c) ≤ 0}. Condition (11) is
true if and only if T (z; P[k],b[k],c[k])≤ 0 for any z such that
T (z; P[k]−,b[k]−,c[k]−) ≤ 0 and T (z; Pj,b j,c j) ≤ 0 for all
j ∈M [k] where E [k]− = {z∈R6 | T (z; P[k]−,b[k]−,c[k]−)≤
0} and E j = {z ∈ R6 | T (z; Pj,b j,c j) ≤ 0}. By the S-
procedure [26], this holds if there exist positive scalars
τk,τ j, j ∈M [k] such that

T (z; P[k],b[k],c[k])− τkT (z; P[k]−,b[k]−,c[k]−)

− ∑
j∈M [k]

τ jT (z; Pj,b j,c j)≤ 0, ∀z ∈ R6 (13)

which is equivalently written as[
P[k] b[k]
bᵀ[k] b[k]ᵀP[k]−1b[k]−1

]
− τk

[
P[k]− b[k]−

(b[k]−)ᵀ c[k]−

]
− ∑

j∈M [k]
τ j

[
Pj b j
bᵀj c j

]
≤ 0. (14)

By considering the Schur complement of (12), (14) is shown
to be equivalent to (12).

Proposition III.1 allows for constructing an LMI with P[k]
and b[k] as decision variables such that the resulting ellipsoid

E [k] = {z ∈ R6 | zᵀP[k]z+2zᵀb[k]+ c[k]≤ 0}. (15)



where c[k] = b[k]T P[k]−1b[k]− 1 satisfies (11), i.e., solves
the guaranteed state estimation problem. This algorithm is
formalized next.

Algorithm 1: Proximity Sensing Ellipsoidal SMSE
Input : P0, b0, c0, Eu, K
Output: E = {Ek : k ∈ {0,1, . . . ,K}}

1 k = 1
2 Ek−1 ← T (P0,b0,c0)
3 E [0] = T (P0,b0,c0)
4 while k ≤ K do
5 Mk←{ j ∈ {1, . . . ,N} : Yj(k∆t) = 1}
6 P−k ,b−k ← R(k∆t,(k−1)∆t,Ek−1,Ed ,u(t)) . as in

(9)
7 c−k ← (b−k )

ᵀ(P−k )−1b−k −1

8 β
−
k ←

 P−k b−k 0
(b−k )

ᵀ c−k 0
0 0 0


9 β j←

Pj b j 0
bᵀj c j 0
0 0 0

 , ∀ j ∈Mk

10 Solve(Pk,bk) . as in (12)
11 minimize log (det(P−1

k ))
subject to Pk ≥ 0,

τk ≥ 0,τ j ≥ 0, j ∈Mk,
βk− τkβ

−
k −∑ j∈Mk

τ jβ j ≤ 0

12 k += 1
13 ck← bᵀk P−1

k bk−1
14 E [k] = T (Pk,bk,ck)
15 Ek−1← E [k]
16 end

C. Ellipsoidal SMSE

The Proximity Sensing Ellipsoidal SMSE algorithm com-
bines reachability and ellipsoidal intersection to maintain a
guaranteed bound that contains the state of the system at
all time when considering the measurement model in (4).
This characteristic can be easily seen from the definitions of
reachability and ellipsoidal intersection. The full ellipsoidal
SMSE algorithm is shown in Algorithm 1.

Theorem III.1. The set E [k] computed by the Proximity
Sensing Ellipsoidal SMSE algorithm is guaranteed to contain
the state x(k∆t) if the initial state x(0) is contained within
the initial set E [0] and the disturbances applied to the system
are contained within Ed .

Proof. In view of the reachable set approximation (9) and the
LMI (12) derived in Proposition III.1, R(k∆t,(k−1)∆t,E [k−
1],Ed ,u(t)) bounds the state of the system and E [k] bounds
the intersection of R(k∆t,(k− 1)∆t,E [k− 1],Ed ,u(t)) with
E j, for all detected beacons j ∈M [k]. As such, for the detec-
tion signal Y (k∆t) given x(0) ∈ E [0], R(k∆t,(k−1)∆t,E [k−
1],Ed ,u(t))∩E j, ∀ j ∈M [k] bounds the feasible set of states
such that x(k∆t) ∈ E [k] for all k ≥ 0.

Fig. 2: Flight trajectory of the GT-MAB during the experi-
ment in 3D space. The blimp on the left is the starting point
of the sequence and the blimp on the right is the ending
point of the sequence.

Note that the ellipsoidal bound is obtained for the state
of the robot, which contains both the position and the
velocity. Hence our method is effective even though only
binary measurements for the relative positions between the
robot and the beacons are used. By including the beacon
measurements through the LMI in (12), bounds on the
velocity will not grow to infinity, as is the case if only the
ellipsoidal reachable set approximation computation in (9) is
used.

IV. EXPERIMENTS

We evaluate the proposed estimator on an experimental
testbed of an autonomous system. In this section, we use
our estimator to extract position and velocity bounds on the
Georgia Tech Miniature Autonomous Blimp (GT-MAB) [22]
while it completes a mission. The GT-MAB is a custom
research platform consisting of lighter-than-air micro blimps
that utilize five propellers to move freely in the 3D space.

Fig. 3: Projected x-y trajectory of the GT-MAB in the
designated workspace. Virtual beacon ranges are plotted as
green circles and the GT-MAB trajectory is shown in dotted
blue. Starting and ending positions of the GT-MAB are given
by the blue and red dots.

The blimp dynamics are as in (3) when the heading has
been fixed. When considering the underwater scenario, the
GT-MAB can be used to model an underwater vehicle’s
motion as the aerodynamic effects from an environment (e.g.



Fig. 4: Ellipsoidal set-membership computed bounds on x(t) using the GT-MAB. True state is shown in blue, ellipsoid center
is shown in red, and error bounds are shaded in green. The experiment was run for 6 minutes.

indoor air conditioning, aerodynamic drag) constitute dis-
turbances that are similar to the hydrodynamic disturbances
experienced underwater. Fig. 2 depicts a GT-MAB platform
flying a 3D trajectory during the experiment, illustrating the
motion of the blimp as it moves back towards the whiteboard
from left to right. In these experiments, the disturbance
ellipsoid Ed is a ball with radius r = 0.01 which was
experimentally found by applying a sequence of inputs to
the blimp and comparing the measured trajectories with their
expected trajectories according to (3). We found that a ball
with radius r = 0.01m was sufficient to capture the natural
aerodynamic disturbances arising from the air conditioning
in the room. We use a sampling rate of ∆t = 0.1s for our
experiments. Leveraging Algorithm 1, we demonstrate that
we are able to compute bounds on the state of the GT-MAB
throughout the duration of the experiment.

Remark IV.1. We note that while the beacon ellipsoids E j
are degenerate as noted in Remark II.1 and only contain
position information, the constraint in (12) allows for a semi-
definite program to obtain velocity bounds that are implied
by the position measurements, i.e. measurements of only
position nonetheless provide information about velocity.

In this experiment, the GT-MAB visits the waypoints
(1,1,1), (−1,1,1.5), (1,−1,1) and (−1,−1,1.5) defined
with respect to the center of the room. The GT-MAB holds
a constant heading and tracks the waypoints sequentially,
switching to the next waypoint once the blimp is within
0.25m. Waypoint and heading tracking is performed using
the Autopilot software as detailed in [27]. The beacon net-
work is simulated using an Optitrack motion capture system
according to the measurement model in (4). In total, six
beacons are used to facilitate the set-membership estimation
with ranges and positions listed in Table I. The beacons
are placed in an irregular configuration with non-uniform
ranges in order to test the versatility of the estimator given
an arbitrary beacon network. Fig. 3 depicts the six beacon
network’s configuration and the blimp’s hourglass-like path
denoted by the dotted blue curve starting at the blue dot and

Beacon ID 1 2 3 4 5 6
X 0m -0.5m -1.5m 0.75m 0.5m -0.25m
Y 0.5m -1m 1m 1m -0.5m 1.5m
Z 1.5m 1m 1.5m 1m 1.5m 1m

Range 0.8m 0.9m 0.5m 0.7m 0.7m 0.8m

TABLE I: Beacon positions and ranges for the live GT-MAB
experiment.

ending at the red dot. As shown in Fig. 4, the estimator is able
to extract accurate bounds on the true position and velocity
of the blimp in 3D space and the center of the estimate tracks
the true state closely. We note that the position bounds grow
very large at time t ≈ 140s and t ≈ 220s. This is due to the
blimp briefly leaving all beacon detection regions. However
as the blimp returns to a beacon region, we can see the
estimated bound once again tightly encloses the state.

Our Matlab implementation computes each iteration
(reachable set estimation and intersection approximation) in
≈ 1s. We note that, in this experimental setup, the control
input u(t) is not computed using the bounds produced by
the proposed SMSE algorithm, i.e., the state-estimate is not
used in feedback.

V. CONCLUSIONS

In this paper, we presented a solution to the proximity
sensing localization problem capable of extracting guaran-
teed bounds on the position and velocity of a robot. This
problem is commonly solved using stochastic estimation
methods such as the Particle Filter or Kalman Filter, however
these methods may yield biased estimates when disturbances
are present. We demonstrated instead that the computation
of reachable sets and ellipsoidal intersections are able to
track the true position and velocity and guarantee error
bounds on the tracking estimate even when subjected to
unknown but bounded disturbances. In addition, we showed
that the estimator is able to extract velocity bounds from the
coarse position observations by using degenerate ellipsoids
to induce bound restrictions based on the dynamics of the
system. In future works, we are interested in studying the
tracking performance of a controller that relies on the state
estimate computed by the Proximity Sensing Ellipsoidal



SMSE algorithm, i.e., uses the ellipsoidal bounds as feedback
to compute u(t). By considering bounds on the state estimate,
we aim to derive tight bounds on the tracking error.
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