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This paper proposes a nudged particle filter for estimating the pose of a camera mounted on flying robots collecting a video

sequence. The nudged particle filter leverages two image-to-pose and pose-to-image neural networks trained in an auto-encoder

fashion with a dataset of pose-labelled images. Given an image, the retrieved camera pose using the image-to-pose network serves as

a special particle to nudge the set of particles generated from the particle filter while the pose-to-image network serves to compute

the likelihoods of each particle. We demonstrate that such a nudging scheme e↵ectively mitigates low likelihood samplings during

the particle propagation step. Ellipsoidal confidence tubes are constructed from the set of particles to provide a computationally

e�cient bound on localization error. When an ellipsoidal tube self-intersects, the probability volume of the intersection can be

significantly shrunken using a novel Dempster-Shafer probability mass assignment algorithm. Starting from the intersection, a loop

closure procedure is developed to move backward in time to shrink the volumes of the entire ellipsoidal tube. Experimental results

using the Georgia Tech Miniature Autonomous Blimp platform are provided to demonstrate the feasibility and e↵ectiveness of the

proposed algorithms in providing localization and pose estimation based on monocular vision.
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1. Introduction

The use of monocular cameras as 3-D motion sensors has
received extensive attention as a cheap and ubiquitous op-
tion for information-dense sensing in a variety of appli-
cations.1–3 These sensors provide contextual information
about the nearby environment that can directly relate to
the completion of a given objective. In particular, localiza-
tion objectives in consistent environments can highly ben-
efit from monocular cameras as feature or image matching
can be used to infer information about the global pose of the
robot without externally mounted sensors (such as motion
capture cameras, AprilTags, etc.). In addition, uncertainty
quantification of the localization estimate is useful for as-
sessing the risk associated with taking certain actions when
safety-critical obstacles, like humans or expensive payloads,
also exist in the environment.

In this paper, we also consider the ellipsoidal confi-
dence tube estimation and refinement problem when pro-
vided a dataset of pose-labeled camera images before run-
time and a previously observed landmark (also known as
a loop closure). Ellipsoidal confidence tubes are sequences
of ellipsoids such that the probability of an unknown pa-
rameter being inside the tube is, at minimum, a given pa-

rameter p. Ellipsoidal tubes have a variety of memory and
computational benefits and are well-studied in other con-
trol and estimation tasks.4–6 To help mitigate the descrip-
tive deficiencies of ellipsoidal sets, we propose a compu-
tationally e�cient Dempster-Shafer (D-S) based smooth-
ing strategy using loop closure measurements to refine and
tighten these sets. The refinement of these sets, when com-
bined with a loop closure measurement, can allow for sig-
nificant improvement in the estimation of the trajectory
between sightings of a landmark. While other smoothing
techniques are more accurate,7–9 our approach is compu-
tationally more e�cient as it involves only re-fitting a se-
quence of ellipsoids to sets of existing particles rather than
re-tracing the trajectories of all previous particles.

The D-S theory of evidence is a framework for reason-
ing with probabilities over sets of events instead of individ-
ual events alone.10 As such, the theory has been used for
a wide variety of set-based estimation problems including
human-activity recognition,11 sensor fusion,12,13 and fault
detection.14,15 In this work, we leverage D-S theory to de-
fine an optimization program for fusing multiple ellipsoids
together. Our approach allows for the approximation of el-
lipsoid intersections using the particles and the D-S rule of
combination to find a smoothed ellipsoidal confidence tube.
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Provided a pose-labeled image dataset, other vision-
based methods in the camera re-localization literature have
also demonstrated successful camera pose inference16,17

and have also explored using image-to-pose and pose-to-
image networks for the purpose of localization.18 However,
the methods described in16,17 do not provide robust uncer-
tainty estimates. Alternatively, the strategy proposed by
Rosenbaum18 leverages a trained network to provide a lo-
calization estimate and an uncertainty density. The pro-
posed strategy though requires training a network that
has only been successfully trained in simulation environ-
ments. Other approaches consider finding the index of the
most similar image in an image dataset from which a rel-
ative transformation using extracted features can be com-
puted19–21 or leverage a descriptive set of known features in
the environment which are extracted beforehand.22,23 Both
approaches can be computationally expensive and inaccu-
rate and provide no uncertainty estimates on the quality
of the retrieved estimate. Our approach leverages networks
trained using supervised learning to design a particle fil-
ter which provides uncertainty estimates both through the
estimated distribution and the fitting of confidence tubes.

Particle filters are powerful filtering methods capa-
ble of handling nonlinear system dynamics and nonlinear
observations. As such, these filters have been extensively
used in the literature to solve a wide variety of estimation
problems including SLAM-based state estimation, biolog-
ical hidden state tracking, and global optimization.24–26

These filters estimate a posterior distribution by propa-
gating particles representing a prior distribution forward
with a transition model that represents the possibly non-
linear dynamics of the system. These particles are then
re-sampled using a likelihood function that describes how
probable a given observation was generated by a particle.

When applied to high-dimensional state vectors, nudg-
ing strategies are used to improve the filter’s sampling per-
formance by optimizing particles with respect to the like-
lihood before re-sampling. This approach has been widely
used in the geophysics literature, in which particle filters
are used to model weather patterns which depend on high-
dimensional unknown internal states.27,28 However, com-
puting the likelihood gradient may be di�cult when the
unknown state vector also incorporates a rotation. As such,
we propose a new nudging strategy in which a new sam-
ple which represents a maximum likelihood estimate is in-
cluded before re-sampling. The inclusion of the nudging
particle can therefore be considered a form of robust par-
ticle propagation, allowing for the sampling of higher like-
lihood poses even when the particle propagation model is
incorrect. This also allows the particle filter to recover from
scenarios in which the initial distribution is incorrect. In the
literature this problem is solved by inducing a high vari-
ance initial distribution and using a large number of par-
ticles.29 If the initial distribution has low variance though,
then tracking the target may fail. In this work we show
through experiments that the nudging particle allows us to
continue tracking the target even when the initial distribu-
tion is incorrect and with low variance.

Our contributions are as follows: i) we propose a
vision-based likelihood function that allows for the appli-
cation of the particle filter for vision-based localization, ii)
we design a novel Dempster-Shafer based volume approx-
imation for the intersection of ellipsoids, and iii) we uti-
lize the intersection volume approximation to support the
computation of fused ellipsoids that can be used to refine
an existing ellipsoidal confidence tube given a loop closure
measurement.

The structure of this paper is as follows. Section 2 dis-
cusses the posterior approximation and loop closure prob-
lems that are studied in this work. Sections 3 and 4 provide
details on the proposed solutions to these problems using
the particle filter and the D-S based volume approximation
for ellipsoids. We conclude with experimental results val-
idating our proposed solution in Section 5 and some final
comments in Section 6.

2. Problem Formulation

Let the pose of a camera-mounted robot at time ⌧ be de-
scribed by

x⌧ = (t⌧ ,R⌧ ) (1)

in which t⌧ 2 R3 is the real-valued position and R⌧ 2 R3⇥3

is a rotation matrix. Poses are related by relative transfor-
mations (u⌧ ,V⌧ ) such that

t⌧ = t⌧�1 +R⌧�1u⌧

R⌧ = R⌧�1V⌧ .
(2)

From two sequential images I⌧�1, I⌧ , we assume some
image processing pipeline is able to provide an initial esti-
mate of the relative transformation, denoted (û⌧ , V̂⌧ ) that
is perturbed by noise ✏ ⇠ N (0,⌃t) and  ⇠ U [�a, a]3,
a 2 [0,⇡]. Note that N (µ,⌃) denotes the multivariate
gaussian distribution with mean µ and covariance ⌃ and
U [x, y] denotes the Uniform distribution with lower bound
x and upper bound y. The relative transformation is there-
fore given by

û⌧ = u⌧ + ✏

V̂⌧ = fR( )V⌧

(3)

where fR converts the sampled Euler angle to a rotation
matrix. As stated previously, we assume our agent also has
access to prior information about what images in the envi-
ronment will look like. Let D = {(Ii,xi)}Mi=1 be a dataset of
pose-labelled images that are provided beforehand. Using
this dataset, we assume that a view prediction CNN de-
noted fimage can be trained that predicts the camera view
given an input pose. Given a true image I and a pose x,
we choose the likelihood of a pose for the particle filter as

L(x; I) =
h WX

x=1

HX

y=1

kIx,y � fimage(x)x,yk
i��

(4)
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where � � 1 is a fixed scalar and subscript x, y indicates
the 3-channel pixel at location x, y. This likelihood func-
tion captures the similarity between two images by compar-
ing the pixel-wise intensity. While small changes in camera
poses may lead to pixel intensity coordinate changes, im-
ages with areas of consistent intensity are likely to be easily
described as similar by this function. The choice of � here
depends on the pixel intensities inherent in the environ-
ment as brighter pixels will yield larger likelihood di↵er-
ences (which may warrant a lower �) while and dimmer
pixels will yield lower likelihood di↵erences (which may
warrant a higher �). Leveraging (4), we may now define
the particle filtering problem7 for the specific case when
our measurements arrive as images.

Problem 2.1. Assume a sequence of RGB images

I1, I2, . . . , IT and the starting pose of the camera x1 is pro-

vided from which a sequence of transformation estimates

(û⌧ , V̂⌧ ) for ⌧ = 1, 2, . . . , T can be estimated. Approxi-

mate the posterior distribution f(x⌧ | I1, I2, . . . , I⌧ ) for

⌧ = 1, 2, . . . , T given the likelihood function (4).

Problem 2.1 is a widely studied problem in the robotics
literature for unknown parameter estimation in hidden
Markov models (HMMs) and is particularly useful for de-
scribing localization problems. Often, the solution to Prob-
lem 2.1 has no analytical form or is di�cult to compute,
motivating the use of an approximation strategy.7 The par-
ticle filter serves to solve this problem by approximating
the posterior as a set of samples. For our case of camera
pose localization, we leverage the particle filter to approx-
imate the posterior distribution when the hidden state is
the camera pose associated with a given image.

Let ⌅⌧ = {⇠⌧,i}Ni=1 be the set of particles ⇠⌧,i =
(w⌧,i, x̂⌧,i) each with weight w⌧,i and poses x̂⌧,i =

(t̂⌧,i, R̂⌧,i). At time ⌧ , ⌅⌧ defines the probability density
function approximation

f(z;⌅⌧ ) =
NX

i=1

w⌧,i�(z � t̂⌧,i). (5)

in which
P

N

i=1 w⌧,i = 1 and � is the dirac delta function.
Given a sequence of particles, a secondary problem of in-
terest in the literature is identifying and computing confi-
dence tubes in which membership is ensured with a desired
probability p. These tubes are heavily studied for stochastic
control and estimation problems.4,5

Such tubes can be computed from particle points us-
ing the ellipsoidal peeling algorithm,30 in which a minimum
volume ellipsoid is fitted to a subset of data points. These
tubes can also be refined when provided with a loop closure
measurement or a detection that the camera or robot has
returned to a previously visited location. Loop closures, in
the context of SLAM, are used to correct odometry drift
during the forward dynamics integration and refine trajec-
tory estimates.

For a sequence of particles ⌅⌧ , an ellipsoidal confidence
tube is defined as a sequence of ellipsoids E⌧ = E(A⌧ , b⌧ )

in which (A⌧ , b⌧ ) are the shape parameters of an ellipsoid
such that an ellipsoid defines a set

E⌧ = {z 2 R3 : kA⌧z + b⌧k  1} (6)

with total associated weight greater than a user-given value
p. Letting N⌧ = {i : kA⌧ t̂⌧,i + b⌧k  1} be the set of par-
ticle indices that lie inside E⌧ , this condition expresses

P(t⌧ 2 E⌧ ) =
X

i2N⌧

w⌧,i � p. (7)

A loop closure measurement is defined as

yT = tT � t1 (8)

which may be inferred through a variety of sensing strate-
gies such as vision-based landmarks or RF signals. We may
also detect a loop closure when the ellipsoidal set associated
with the current time-step intersects an ellipsoidal set from
a previous time-step. These loop closures allow for a refine-
ment of the posterior distribution at the current time-step
by treating the loop closure as a relative pose measure-
ment between the current pose and a pose at a previous
time-step. As such, the fusion of two such posterior dis-
tributions linked by a loop closure allows for a refinement
of the information at the current time-step. In addition,
this refinement can be used to refine all previous poste-
rior estimates up to the previously identified pose used in
the loop closure. This problem is known as smoothing and
can greatly improve the trajectory estimation error over
the given time interval. Using (6) and (8), the smoothing
problem is defined as

Problem 2.2. Given a confidence tube described by a se-

quence of ellipsoids E1, E2, . . . , ET , their associated parti-

cles ⌅1,⌅2, . . . ,⌅T , and a loop closure measurement yT ,

find the sequence of smoothed ellipsoids E 0
1, E 0

2, . . . , E 0
T
such

that Vol(E 0
⌧
) = � log(det((A0

⌧
)�1)) is minimized for all

⌧ = 1, 2, . . . , T.

3. View Prediction Particle Filter

In this section we provide details on the vision-based par-
ticle filter to estimate the solution to Problem 2.1.

3.1. Particle Filtering

Given a sequence of images I1, I2, . . . , IT and transforma-
tion estimates (û⌧ , V̂⌧ ), we estimate the posterior distribu-
tion as a set of particles ⌅⌧ . The relative transformation
estimates may be estimated directly from a sensing strat-
egy such as VO31 or from a vehicle motion model such as a
unicycle model or the miniature autonomous blimp used in
this work.32,33 Each propagated particle ⇠+

⌧,j
= (t̂+

⌧,j
, R̂+

⌧,j
)

is propagated using these transformations by

t̂+
⌧,j

= t̂⌧,j + R̂⌧,jû⌧ + ✏j

R̂+
⌧,j

= fR( j)R̂⌧,jV̂⌧

(9)
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where ✏j and  j are sampled from distributions N (0,⌃t)
and U [�a, a]3. Propagated particles are then re-sampled
according to the likelihood via the weight

w⌧,j =
L(x̂+

⌧,j
; I⌧ )

P
N

i=1 L(x̂
+
⌧,i
; I⌧ )

(10)

to estimate the posterior ⌅⌧+1. This sequence of propaga-
tion and re-sampling thereby allows the filter to track cam-
era poses that best matches candidate poses propagated by
the relative transformation estimates up to the quality of
the estimate generated by a learned neural network fimage.
From our experience, we found that the best image predic-
tion performance was achieved when the input image was
first downsampled and then blurred. While maintaining
higher quality images would likely improve performance,
higher quality image prediction appears to require a larger
network than we can currently support. As such, with our
currently designed structure we chose to downsample and
blur the input images.

Samples of the network’s prediction performance are
shown in Fig. 1 in which the top row shows the original
360⇥360⇥3 RGB image, the middle row shows the down-
sampled 32 ⇥ 32 ⇥ 3 blurred RGB image, and the bottom
row shows the predicted results from the trained fimage.
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Fig. 1. Training examples and results generated from the

trained view prediction network. Top: Raw images collected

using the on-board FPV camera, Middle: Down-sampled and

blurred images used for training, and Bottom: Predicted im-

ages from the neural network.

The network is able to predict general shapes of the
environment in the predicted images, for example as in the
large black mat on the bottom of the room and the yellow
doorways. However, fine details such as a pink box in image
3 and a fiduciary tag in image 4 (from the left) is ignored
entirely by the view prediction network. This indicates that
the proposed View Prediction Particle Filter (VPPF) will
likely be constrained to large obvious shapes in the envi-
ronment. The network structure used in fimage is shown in
Table 1. This network structure was experimentally found
over various training iterations. To both speed up run-time
evaluation of (4) and training time of fimage, received im-

ages are downsampled to 32⇥32⇥3. ReLU activation layers
are used between each deconvolutional layer and the final
output is passed through a sigmoid layer to generate a valid
image. Using dataset D, the network is trained in PyTorch
with the Adam optimizer and a step-size of 3e�5.

Table 1. Network structure of fimage

type depth output size

fully connected 1 1⇥256

reshape 2 1⇥1⇥256

deconvolutional 3 6⇥6⇥216

deconvolutional 4 10⇥10⇥192

deconvolutional 5 14⇥14⇥184

deconvolutional 1-5 14⇥14⇥184

deconvolutional 6 17⇥17⇥168

deconvolutional 7 20⇥20⇥154

deconvolutional 5-7 20⇥20⇥154

deconvolutional 8 23⇥23⇥148

deconvolutional 9 25⇥25⇥136

deconvolutional 10 27⇥27⇥128

deconvolutional 7-10 27⇥27⇥128

deconvolutional 11 29⇥29⇥108

deconvolutional 12 30⇥30⇥96

deconvolutional 10-12 30⇥30⇥96

deconvolutional 13 31⇥31⇥84

deconvolutional 14 32⇥32⇥72

deconvolutional 15 32⇥32⇥64

deconvolutional 16 32⇥32⇥54

deconvolutional 12-16 32⇥32⇥54

deconvolutional 17 32⇥32⇥36

deconvolutional 18 32⇥32⇥3

Remark 3.1. The construction and training of fimage us-
ing the dataset D necessitates a specific environment and
camera per D and must be re-trained if images are gen-
erated using a new camera or environment. Compared
to other methods in the camera re-localization literature
though, our direct image inference allows us to avoid per-
forming an image index search or feature point matching
which may be costly or inaccurate. In addition, our ap-
proach can be extended to larger domains by consider-
ing a mixture-of-experts and using a separate dataset for
other areas, e.g., new rooms. Letting f i

image
be the ith view

prediction network trained from the ith dataset Di, with
i = 1, 2, . . . ,K (4) can be extended to

L(x; I) =
h KX

i=1

WX

x=1

HX

y=1

kIx,y � f i

image
(x)x,yk

i��

. (11)

As shown in our previous work and other results in the
literature,16,17 our dataset D also allows for the training of
an image-to-pose CNN we denote fpose that directly infers
camera poses from images. We now describe our proposed
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strategy to integrating fpose into the VPPF as a nudging
particle in order to improve the tracking accuracy.

3.2. Nudged Particle Filtering

While existing nudging strategies depend on optimizing the
particle points ⌅⌧ , we propose to infer the maximum like-
lihood pose using a CNN trained network denoted fpose
to act as our nudging strategy. While we may treat the
pose estimate x̃⌧ provided by fpose as another sensor and
re-sample according to some distance between poses, the
trained fpose can yield erroneous measurements that might
worsen the filter performance. This e↵ect is evidenced in
Fig. 2 in which the worst tracking performance is seen in
spikes of position tracking error as high as ⇠1.38m. In ad-
dition, the quaternion tracking error is also prone to in-
accuracies. The structure and training of this network is
borrowed from our previous work in.17

Fig. 2. Trained fpose estimation error over a testing dataset

sample. Over 200 timesteps, fpose achieved an average position

tracking error of ⇠0.48m (red) and an average quaternion track-

ing error of ⇠16.04� (blue).

Instead, we leverage x̃⌧ as an additional propagated
particle by adding the pose to the particle set after ap-
plying our relative transformation estimates and before re-
sampling. If the estimate provided by fpose yields a low
likelihood as from (4), then the estimate is naturally ig-
nored. However, if the estimate provides a high likelihood,
then the particle filter is “nudged” closer to high likelihood
regions during the re-sampling step. This quality allows for
the nudged VPPF to be robust to possible errors in the
relative transformation estimation, as poor estimates may
lead to insu�cient samples near the true pose, and to possi-
ble errors in fpose. The full nudged particle filter is detailed
in Algorithm 3.2.

Algorithm 3.2 (View Prediction Particle Filter).

1: I⌧  grab new image()
2: û⌧ , V̂⌧  get relative transform(I⌧ )
3: for ⇠⌧,j 2 ⌅⌧ do

4: t̂+
⌧,j

, R̂+
⌧,j
 propagate(û⌧ , V̂⌧ , ✏j , j) . As in (9)

5: end for

6: x̃⌧  fpose(I⌧ ) . Get max. likelihood estimate
7: ⌅+

⌧
 add particle(⌅⌧ , x̃⌧ ) . Add nudging particle

8: for ⇠⌧,j 2 ⌅+
⌧
do

9: Lj  L(x̂+
⌧,j

; I⌧ ) . Compute likelihoods using (4)
10: end for

11: ⌅⌧+1  resample(⌅+
⌧
, {Lj}Nj=1) . Return new particles

4. Loop Closure Smoothing

In this section, we describe our proposed approach to solv-
ing Problem 2.2. We first describe a novel approach to com-
puting the volume of intersection using the D-S Theory of
evidence and the particle filter, then describe an algorithm
for finding a minimum volume fused ellipsoid that covers
the volume of intersection.

4.1. Dempster-Shafer Ellipsoidal
Intersections

Using (8), E1 can be translated to ĒT = E(A1, b1 +A1yT )
with associated particles ⇠̄⌧,i = (w1,i, (t̂1,i + yT , R̂1,i)). To
fuse ellipsoids ET and ĒT and the associated particle sets ⌅T

and ⌅̄T , we leverage the D-S rule of combination to com-
pute the volume of ellipsoidal intersection and use the vol-
ume computations to define a new mass assignment func-
tion m0

T
.

D-S theory allows for the combination of probability
masses that have been allocated to sets of events instead of
individual events, as usually seen in Bayesian formulations
of probability. We define two mass assignment functionsmT

and m̄T for the four sets of being inside or outside ET and
being inside or outside ĒT using the particle memberships
for each ellipsoid,

mT (A) =

⇢P
i2NT

wT,i, if A = ET
1�

P
i2NT

wT,i, if A = EC

T

m̄T (A) =

⇢P
i2N̄T

w1,i, if A = ĒT
1�

P
i2N̄T

w1,i, if A = ĒC

T

(12)

in which EC

T
and ĒC

T
refer to the set complements of ET and

ĒT . The combination of mT and m̄T is then achieved using
the D-S rule of combination.10,34 For two given mass as-
signments m1 and m2, the combined mass assignment m1,2

is

m1,2(A) =
1

1�K

X

B\C=A 6=;

m1(B)m2(C)

K =
X

B\C=;

m1(B)m2(C).
(13)

where K is a normalization factor based on any mass allo-
cated to any events that do not intersect between m1 and
m2.

Applying (13) to the ellipsoidal intersections, we find
the new mass assignment m̃T for four possible events de-
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pending on the intersections of the two ellipsoids

m̃T (A) =

8
>><

>>:

mT (ET )m̄T (ĒC

T
), if A = ET \ ĒC

T

mT (EC

T
)m̄T (ĒT ), if A = EC

T
\ ĒT

mT (EC

T
)m̄T (ĒC

T
), if A = EC

T
\ ĒC

T

mT (ET )m̄T (ĒT ), if A = ET \ ĒT

(14)

which allocates the mass associated with each event as the
product between the two events. We now define a new mass
assignment m0

T
composed from m̃T and a given ellipsoid

E 0
T
= E(A0

T
, b0

T
) using the intersecting particles of ⌅T and

⌅̄T .
The assignment m0

T
is given by

m0
T
(E 0

T
) =

X

A✓E0
T

m̃T (A)
vol(E 0

T
\A)

vol(A)

= m̃T (ET \ ĒC

T
)
vol(E 0

T
\ ET \ ĒC

T
)

vol(ET \ ĒC

T
)

+ m̃T (EC

T
\ ĒT )

vol(E 0
T
\ EC

T
\ ĒT )

vol(EC

T
\ ĒT )

+ m̃T (EC

T
\ ĒC

T
)
vol(E 0

T
\ EC

T
\ ĒC

T
)

vol(EC

T
\ ĒC

T
)

+ m̃T (ET \ ĒT )
vol(E 0

T
\ ET \ ĒT )

vol(ET \ ĒT )

(15)

where the intersecting volume is given by

vol(A \B) =
X

i2A\B

wi (16)

or the set of particle weights such that the particle is a
member of both events. Our final fused ellipsoid E 0

T
is then

the solution to an optimization problem

min
A0

T ,b0
T

� log(det(A0�1
T

))

s.t. m0
T
(E(A0

T
, b0

T
)) � p

A0
T
� 0.

(17)

To solve (17), we use a modified form of the ellipsoidal
peeling algorithm originally developed in.30

4.2. Ellipsoidal Peeling

The ellipsoidal peeling algorithm is used to solve a k-
covering minimum volume ellipsoid (MVE) problem in
which given a set of N points, the volume of an ellipsoid
that covers k < N points is minimized. While the method
has no guarantee of finding the minimum volume ellipsoid,
the algorithm generally yields good solutions in practice.35

Problems of this form naturally appear in robust machine
learning (cluster analysis) and robust optimization prob-
lems, in which an outlier-free dataset is sought.35,36 For a
set of points xi 2 Rn, i = 1, 2, . . . , N , the k-covering MVE

problem is

min
A,b,↵

� log(det(A�1))

s.t. ↵ikAxi + b⌧k  1, 8i 2 {1, 2, . . . , N}
↵i 2 {0, 1}, 8i 2 {1, 2, . . . , N}
k↵k1 = k

A � 0

(18)

in which A 2 Rn⇥n

++ and b 2 Rn define the parameters for
an ellipsoidal set of dimension n and ↵ = [↵1,↵2, . . . ,↵N ]

|

is an integer-valued vector in which each ↵i denotes the
inclusion of the point xi.

While solving (18) is an open problem, finding a min-
imum volume ellipsoid that covers all points can be formu-
lated as a convex program37

min
A,b

� log(det(A�1))

s.t. kAxi + bk  1, 8i 2 {1, 2, . . . , N}
A � 0.

(19)

and a solution using (19) known as the ellipsoidal peeling
algorithm. Leveraging the Gaussian likelihood

L(x;µ,⌃) =
exp(� 1

2 ((x� µ)|⌃�1(x� µ))

(2⇡)n/2 det(⌃)1/2
(20)

the approach finds the minimum volume ellipsoid by iter-
atively fitting normal distribution parameters (µ,⌃) and
removing minimum likelihood points. Then (19) is solved
using the remaining points.

meters (m)

m
et

er
s (

m
)

Fig. 3. Visualization of four iterations of the modified ellip-

soidal peeling algorithm. Particle weights are higher for parti-

cles closer to the origin. Particle super-imposed colors indicate

which colored sets each particle is a member of.

In this work we use a modified form of the ellip-
soidal peeling algorithm shown in Algorithm 4.1 in which
a weighted mean and covariance are used to find the mini-
mum likelihood points.

Algorithm 4.1 (Modified Ellipsoidal Peeling).

1: X  {xi, i = 1, 2, . . . , N} . Set of particle locations
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2: W  {wi, i = 1, 2, . . . , N} . Set of particle weights
3: p get weight criteria()
4: found False
5: while ¬found do

6: µ,⌃ get weighted params(X,W )
7: L gaussian likelihood(X,µ,⌃)
8: imin = argmin

i
Li . Find lowest likelihood

9: X 0,W 0  delete(X,W , imin)
10: p0  

P
w2W 0 w

11: if p0  p then . End search if total p is satisfied
12: found True
13: else

14: X,W  X 0,W 0 . Update interior points
15: end if

16: end while

17: (A, b) solve(X) . Solve (19) with remaining X

A visual example of the algorithm is also presented
in Fig. 3 in which points closer to the origin have higher
weights. As shown in the example, minimum volume ellip-
soids are found such that points further from the origin are
excluded.

To apply Algorithm 4.1 to the loop closure problem,
we use both ⌅T and ⌅̄T with weights that have been re-
computed using (15). Going backwards in time from ⌧ = T ,
we use the transformed ellipsoid Ē⌧ = E(A0

⌧+1, b
0
⌧+1 �

A0
⌧+1r⌧ ) as our measurement to solve for the ellipsoid E 0

⌧
,

for time-steps ⌧ = 1, 2, . . . , T � 1 in which r⌧ = E[f(x |
I1, I2, . . . , I⌧+1)]�E[f(x | I1, I2, . . . , I⌧ )]. Particles at each
time-step are also re-sampled using the newly fitted ellip-
soids. Letting N 0

⌧
be the set of particle indices from ⌅⌧

and ⌅̄⌧ that lie inside of E 0
⌧
and p0 be the total weight of

particles inside E 0
⌧
, re-sampling is performed such that the

proportion of points inside and outside E 0
⌧
matches p0, i.e.,

after re-sampling from ⌅⌧ and ⌅̄⌧ , |N 0
⌧
|/(|N 0

⌧
|+|N 0C

⌧
|) = p0.

An example using Algorithm 4.1 to solve Problem
2.2 is shown in Fig. 4 for three levels of confidence p =
0.5, 0.7, 0.9 on a simulated 2D particle filter with initial
ellipses that have been found with p = 0.7. For low confi-
dence p = 0.5, the refined tube is significantly tighter but
frequently does not contain the true trajectory. For medium
confidence p = 0.7, the refined tube bounds the true tra-
jectory less tightly but with greater frequency. In the final
case when p = 0.9, the estimated ellipses are extremely
conservative but entirely contain the trajectory.

5. Experimental Results

In this section we validate the proposed monocular
vision-based localization strategy using images collected
from a lighter-than-air blimp, shown in Fig. 5. This

platform, called the GT-MAB, was autonomously flown to
collect ⇠144.5k training images and ⇠36k testing images.
All experiments presented in this section are based on
using a subset of data from the testing dataset. The

pose-labeled dataset was also used in our previous work.17

Fig. 5. The GT-MAB research blimp used to collect the pose-

labeled image dataset.

For our experiments, E
⇥
f(x | I1, I2, . . . , I⌧

⇤
is used as

the point estimate and we assume relative transformation
noise parameters are ⌃t = 0.02I3 where I3 is the identity
matrix of size 3 ⇥ 3 and a = ⇡

2 . The likelihood parame-
ter � is chosen as 4 and the loop-closure measurement is
made using a motion-capture system for these experiments.
Initial ellipsoids are found using p = 0.98 while smoothed
ellipsoids are found using p = 0.7. Fig. 6 shows the position
and quaternion error using the non-nudged and nudged ver-
sions of the particle filter both before and after smoothing.

The inclusion of the nudging particle and smoothing
operation provides significant position tracking improve-
ment with the nudged filter yielding an improvement of
⇠25% and the smoothing operation yielding an improve-
ment of ⇠33%. However, the smoothing operation appears
to worsen the quaternion tracking performance. This is
likely due to a few samples that are heavily weighed in
the loop closure process belonging far from the mean of
the particle filter. As a result, the smoothing operation po-
tentially gives more weight to outlier particles which may
have better position estimates but worse rotation estimates.
While some rotation accuracy is lost, the filter is still ex-
tremely accurate after smoothing with a small increase of
⇠5� inaccuracy.

Fig. 6. Experimental tracking results, solid red indicates posi-
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tion error (in meters), solid green indicates smoothed position

error (in meters), solid blue indicates quaternion error (in ra-

dians), solid cyan indicates smoothed quaternion error (in radi-

ans). Dashed lines correspond to the average error of each color.

Top: VPPF with an average position and quaternion error of

⇠0.97m and ⇠5.21�. After smoothing achieves an average po-

sition and quaternion error of ⇠0.71m and ⇠11.28�. Bottom:

Nudged VPPF with an average position and quaternion error of

⇠0.78m and ⇠5.05�. After smoothing achieves an average posi-

tion and quaternion error of ⇠0.46m and ⇠9.92�.

We consider another set of experiments here to demon-
strate the benefit of a nudging particle when the initial
estimated distribution is incorrect. Such a case might oc-
cur if a user gives the agent a confident but incorrect esti-
mate of its initial pose. Normally, particle filters can han-
dle these scenarios by starting with a highly varying initial
distribution.29 In the case where the initial distribution has
low-variance though, it is di�cult for the particle filter to
re-converge on the correct pose. By leveraging the nudg-
ing particle though, we can correct the tracking error by
pushing our particle distribution closer to the true pose.

5.1. Wrong Initial Distribution

Our proposed approach also allows for resiliency in the
event the initial particle distribution in accurate. In nor-
mal cases, the view prediction particle filter will be unable
to track the pose of the camera. However, using the nudged
particle filter, we can re-identify the pose of the camera with
ease despite having the wrong initialization. Fig. 7 shows
the results of running the VPPF and the nudged VPPF
when under incorrect initialization. In these experiments,
the initial distribution is centered around the origin with
a set of particles with positions normally distributed with
covariance matrix ⌃0 = 0.02I3 and with quaternions dis-
tributed using a = 0.04.

Fig. 7. Experimental tracking results, solid red indicates posi-

tion error (in meters), solid green indicates smoothed position

error (in meters), solid blue indicates quaternion error (in ra-

dians), solid cyan indicates smoothed quaternion error (in ra-

dians). Dashed lines correspond to the average error of each

color. Top: Wrongly initialized VPPF with an average position

and quaternion error of ⇠1.18m and ⇠14.9�. After smoothing

achieves an average position and quaternion error of ⇠0.99m
and ⇠21.77�. Bottom: Wrongly initialized nudged VPPF with

an average position and quaternion error of ⇠0.92m and ⇠8.02�.
After smoothing achieves an average position and quaternion er-

ror of ⇠0.68m and ⇠14.33�.

We see that the nudged VPPF recovers from the incor-
rect initial distribution and is able to recover the position
with reasonable accuracy (⇠0.68m) while the VPPF strug-
gles to recover the correct position (⇠0.99m).

5.2. Comparison to Backwards Simulation

We provide details here on the performance of our smooth-
ing strategy when compared to that of the Backwards Sim-

meters (m) meters (m)meters (m)

m
et

er
s (

m
)

Fig. 4. The green trajectory indicates the true position of a simulated camera being tracked by the particle filter with initial ellipses

shown in black. Newly found ellipses are shown in cyan with the final particle set shown with red points lying on the exterior and

blue points lying on the interior of the final ellipse. Initial ellipsoids are found using p = 0.7.
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ulation smoothing strategy as detailed in.7 The Backwards
Simulation strategy leverages a history of particle distri-
butions and iterates backwards in time starting from the
final state to find a set of smoothed particle distributions.
Leveraging the motion model p(xt+1,x), particle weights
are re-weighed as the trajectory is simulated backwards un-
til the initial time-step. The algorithm is then repeated for
as many samples as desired. The full approach is briefly
detailed in Algorithm 5.1. For this comparison study, N
backward simulation samples are collected and the mean
of the smoothed particles are used to compare the smooth-
ing strategies.

Algorithm 5.1 (Backwards Simulation).

1: Initial particles: {w(i)
t
,x(i)

t
: i = 1, . . . , N, t = 1, . . . , T}

2: for i = 1, 2, . . . , N do

3: x̃(i)
T
 sample particle({(w(i)

t
,x(i)

t
)}N

i=1)
4: for k = T � 1, T � 2, . . . , 0 do

5: w(i)
k|k+1  w(i)

k
p(x̃k+1 | x(i)

k
)

6: x̃(i)
k
 sample particle({(w(i)

k|k+1,x
(i)
k
)}N

i=1)
7: end for

8: end for

9: Result: {w(i)
t|t+1, x̃

(i)
t

: i = 1, . . . , N, t = 1, . . . , T}

Using the VPPF to generate the initial particles, the
Backwards Simulation strategy is compared with two cases.
In the first case, the Backwards Simulation strategy is im-
plemented as in Algorithm 5.1 and directly compared with
the Dempster-Shafer smoothing strategy. In the second
case, the Backwards Simulation strategy is implemented
after applying the loop closure method detailed in Section
4 and compared with Dempster-Shafer smoothing strategy
with loop closure. As shown in Fig. 8, both strategies ap-
pear to generate very similar smoothed trajectory errors.
However, the Dempster-Shafer smoothing strategy only re-
quires a single pass backwards over the particle sets while
the Backwards Simulation strategy requires N passes back-
wards.

Fig. 8. Comparisons between the Dempster-Shafer based

smoothing strategy and the Backwards Simulation smoothing

strategy. Red indicates the initial particle trajectory error, blue

indicates the smoothed trajectory error using the Dempster-

Shafer strategy and red indicates the smoothed trajectory error

using the Backwards Simulation strategy. Top shows the com-

parison without a Dempster-Shafer loop closure, bottom shows

the comparison with a Dempster-Shafer loop closure.

6. Conclusions

In this work we proposed a vision-based localization ap-
proach based on using particle filters and deep-learning
based image-to-pose and pose-to-image predictions. The
strategy also allows for the construction and smoothing
of ellipsoidal confidence tubes that contain the position of
the camera with a given probability p. We note that com-
pared to the Backwards Simulation strategy, our approach
achieves comparable results but for less computational ef-
fort.

In our future work we plan to extend our proposed
method to support loop closures on the rotation space of
the trajectory as well. We will also consider an extension
of our work to a multi-agent swarming scenario in which
multiple agents using the VPPF can provide loop closure
measurements to each other and can collaboratively im-
prove their localization performance.
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