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Distributed state estimation is an important tool for coordinated team decision-making and typically involves sharing information
between robots in order to outperform individual state estimation. The shared information typically takes the form of relative
measurements which allow team members to act as virtual sensors for other robots where the virtual sensor uncertainty is corrupted
also by the team member’s state uncertainty. However, incorporating relative measurements commonly depends on a pointwise
product operation in most distributed estimation techniques which is well defined for continuously-valued distributions but ill-
defined for particle-based distributions. We propose a drop-in replacement for the pointwise product based on using the generalized
Hölder’s inequality to upper-bound the product over a series of grid cell sets that discretize the state space. This upper-bound is
well-defined for particle-based distributions and allows for tighter approximations by decreasing the volume of the sets. We leverage
the approach to realize two distributed estimation strategies that use a pointwise product, the Kullback-Leibler Average and Belief
Propagation and use these methods in simulations and experiments with a pair of miniature autonomous blimps.
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1. Introduction

State estimation is a basic necessity to enable higher-level
functionality such as feedback control and navigation. Tra-
ditionally, filtering and smoothing theories have fulfilled
the core needs of effective estimation by providing both
point estimates and their associated uncertainties in the
form of a marginalized probability density function (PDF)
when available information regarding the state(s) of inter-
est are corrupted by noise. For example, the well-known
Kalman Filter and Smoother1,2 provide optimal state esti-
mates when the system offers linear dynamics and measure-
ments and the corrupting noise is drawn from known Gaus-
sian distributions. In nonlinear and non-Gaussian settings,
the particle filter and smoother are used instead and can
handle arbitrary noise distributions, dynamics, and mea-
surements at the expense of greater memory requirements.3

Filtering and smoothing strategies though are ill-defined
for dealing with relative measurements between multiple
state instances of the system. Such measurements arise in
distributed settings, where robots may observe each other,
and in simultaneous localization and mapping (SLAM) set-
tings, where robots may observe and re-observe landmarks
with unknown position, also known as loop closures. An
distributed scenario is shown in Fig. 1 in which a blimp
observes both landmarks and another blimp.

Fig. 1. First person view of a blimp detecting AprilTag land-
marks and relative measurements of another blimp.

Traditionally, incorporating this information necessi-
tates some form of distributed Bayesian fusion and al-
lows for team members to act as specialized sensors for
each other. However, Bayesian fusion strategies depend on
a pointwise product between distributions which are ill-
defined for particle-based distributions. In this work, we in-
stead propose the use of an approximate pointwise product
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for a set of input particle distributions based on Hölder’s
inequality applied over a discretization of the state space.
This upper-bound over each discretization allows us to de-
fine a re-weighting scheme across all particles provided in
the set of input distributions. We demonstrate the effective-
ness of this re-weighting strategy as a drop-in replacement
for the true pointwise product by providing comparisons
of the true pointwise product between two continuous dis-
tributions and the approximate pointwise product between
samples of the aforementioned continuous distributions.

We then leverage this strategy to realize existing meth-
ods for distributed filtering and smoothing which depend
on the pointwise product by substituting our approximate
product in place of the true product when the represent-
ing distribution is based on particles. In the filtering case,
we propose a distributed particle filter based on weighted
Kullback-Leibler Averaging4 (KLA) which computes an av-
erage of two distributions. In the smoothing case, we pro-
pose to improve trajectory estimates using the Belief Prop-
agation algorithm,5 which can be used to find approximate
marginal PDFs for each state instance.6 In both scenar-
ios, these algorithms have been proposed for distributions
that have well-defined pointwise products. In this work, we
demonstrate that these approaches can be used for parti-
cle distributions as well by substituting our approximate
product instead.

Our primary contributions are as follows: i) we pro-
pose a novel pointwise product approximation between par-
ticle distributions, ii) we incorporate this strategy into two
well-known algorithms for filtering and smoothing in or-
der to enable particle-based versions of the weighted KLA
and Belief Propagation, and iii) we validate our proposed
strategy using simulations and experiments with real-world
miniature autonomous blimps. Different than our previous
work,7 the method proposed in the work uses an explicit
upper-bound for the pointwise product in order to com-
pute a re-weighting of particles. The proposed strategy in
this work also leverages smaller discretizations of the state
space in order to balance between more accurate estimates
and faster computation.

This article is organized as follows. In section 2, we
discuss closely related works in the domain of distributed
particle-based filtering and smoothing. In Section 3, we in-
troduce our approximate pointwise product strategy and
provide examples. In Sections 4, we formulate the dis-
tributed filtering and distributed smoothing problems re-
spectively and propose solutions that depend on our pro-
posed product. We then validate our approaches in Section
5 using a pair of miniature autonomous blimps and con-
clude with final thoughts and future works in Section 6.

2. Related Works

Incorporating relative state measurements requires some
fusion operation that can account for the uncertainty asso-
ciated with the observed and observer robot states. In dis-
tributed settings, the literature has proposed various dis-

tributed Bayesian fusion methods. One method proposed
in the SLAM domain proposes transforming relative mea-
surements into single state measurements by treating the
state as a growing-length trajectory consisting of all states
from the initial time to the current time.8,9 However, trans-
forming state instances into growing-length trajectories can
lead to difficulties due to either an increasingly expensive
solution, as in the case of the Kalman Filter, or a loss of
information in the earlier states, as in the Particle Filter.

Other strategies for approximating the pointwise prod-
uct have also been explored in the literature and commonly
fall under two categories, interpolation-based or sampling-
based. In interpolation-based strategies, an intermediary
function is fitted to the sample points in order to produce
a continuous function that can be used for the pointwise
product. Commonly, the choice of intermediary function is
either a Gaussian-Mixture Model (GMM) or a Gaussian-
based kernel strategy. These methods can produce good
results but are limited in both their representation capa-
bilities and their computation requirements. Gaussians and
GMMs are ill-defined for rotations and struggle to repre-
sent arbitrary distributions if the distribution parameters
are not well tuned (for example determining the number of
GMM components). Kernel-based and GMM strategies also
suffer from an increasing component count under pointwise
product operations, as the pointwise product of Nd input
Kernel-based or GMM distributions each with Nc compo-
nents or bases leads to an output distribution with NNd

c
components or bases. To accommodate the growing mem-
ory requirements, pointwise product operations are typi-
cally followed by a downsampling procedure in which a
new distribution of Nc components is found that mini-
mizes some distance to the true NNd

c product distribution
which can be computationally expensive.10 By comparison,
sampling-based strategies are able to employ very efficient
weighted re-sampling techniques to downsample the num-
ber of representative particles, although a direct pointwise
product is impossible.

In sampling-based strategies, Gibbs sampling methods
are typically employed to produce accurate estimates of
the pointwise product. These strategies typically produce
very accurate results but suffer from requiring an initial
convergence period before beginning to sample from the
pointwise product distribution. Another particular line of
research11,12 assumes the particle support positions are al-
ways identical. This is achieved via either an identical ran-
dom seed for every distributed node or by maintaining a
fixed set of support points common across all agents. While
this strategy avoids all of the previously described issues,
being unable to modify the particle positions dramatically
reduces the tracking capability of the particle methods.

The proposed strategy of this work is most closely de-
scribed as an interpolation-based strategy via the use of
integrals over sets. However, our strategy doesn’t require
an intermediary representation which allows us to repre-
sent rotation and pose spaces and avoid expensive tuning
difficulties. Our approach also doesn’t require an interme-
diary sampling step which may be time-expensive. Most
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closely related to our work is a strategy13 that proposes a
pointwise product through the use of a k-nearest-neighbors
(knn) kernel interpolation that produces a re-weighting for
each point in the input distributions. However, the knn-
based strategy can produce aberrant results when the input
distributions have a minimally intersecting support while
our approach produces either zero everywhere or a sub-
sampling of the input distributions depending on the de-
sired application. This approach has been faithfully recre-
ated, to the best of our ability, and compared visually in
order to demonstrate the differences during the minimally
intersecting support case.

Particle-based distributed filtering typically focuses on
circumventing the need for a pointwise-product by using
some interpolating function14,15 or by applying a consen-
sus on the likelihood functions provided during sensor mea-
surements.16 Such strategies suffer from the previously de-
scribed difficulties with interpolation methods or are only
well-suited for distributed tracking of a common state vec-
tor, for example when multiple mobile sensors attempt to
collaboratively track a human’s movement through a house.
Other strategies convert the relative measurement into a
single state measurement by concatenating all distributed
states into a single state17,18 which grows as time increases.
These methods can be effective at incorporating relative
measurements but suffer in smoothing problems where ini-
tial distributions typically devolve to single sample PDFs.

Particle-based Belief Propagation for factor graphs
have also been explored in the literature for estimation
problems.10,19 While these strategies are effective at solv-
ing Belief Propagation, these strategies leverage either
interpolation-based or sampling-based methods to realize
the pointwise-product for the Belief Propagation algorithm.
As such, these strategies suffer from similar difficulties such
as either being unable to accommodate rotations or requir-
ing an initial sampling convergence time where the first set
of samples are not useful.

3. A Particle Fusion Algorithm

We first propose a drop-in replacement strategy for point-
wise product operations between particle distributions
which we use to represent the marginal PDFs. Particle dis-
tributions are defined as

p(x) =

Np∑
i=1

wiδ(x− zi) (1)

in which δ is the dirac delta function and the Np particles
are described by a weight and position pair (wi, zi) such
that

∑
i wi = 1 and wi > 0. Throughout this paper, we

will use the notations Wi = {w(i)
j }

Np

j=1 and Zi = {z(i)
j }

Np

j=1

to describe the Np weights and positions of a particle distri-
bution. These distributions can incorporate nonlinear and
non-Gaussian information but yield zero everywhere under
pointwise product due to the dirac delta function. Never-

theless, particle distributions often suggest a non-zero prod-
uct due to intermeshing particles.

An example of this can be observed in Fig. 2 in which
two particle distributions have intermeshing particle posi-
tions but would yield a zero pointwise product everywhere.
Noting that particles that are “close enough” should be
somehow related in a product operation, we instead pro-
pose to discretize the space into sets and compute an ap-
proximation of the product over the sets.

Fig. 2. Example of intermeshing particles in a two particle dis-
tribution setting with equal length grid sets computed over the
combined set of both particle distributions.

3.1. Approximate Particle Re-Weighting

We introduce here a re-weighting strategy for a set of Nd

particle distributions {(Wi, Zi)}Nd
i=1 in which the first dis-

tribution (W1, Z1) is re-weighted to approximate the point-
wise product. As previously mentioned, our approach in-
volves first computing grid cells that completely discretize
the space covered by all particles.

We compute these sets as equal volume grid cells with
outer boundaries defined by the minimum and maximum
of the particle states. We assume a user-provided parame-
ter Nsets ∈ NNz where Nz is the number of dimensions for
each particle. We define

Z ′ = {z′
i}

Nd×Np

i=1 = ∪Nz
i=1{z

(i)
j }

Np

j=1

W ′ = {w′
i}

Nd×Np

i=1 = ∪Nz
i=1{w

(i)
j }

Np

j=1

(2)

as notation for the set of all particle states and weights
from Nd distributions to be multiplied. Then, the maxi-
mum and minimum particles are computed as z̄ = sup{Z ′},

¯
z = inf{Z ′}. For an angular dimension with index i, we
define fixed boundary values as z̄i = π and

¯
zi = −π in

order to accommodate the wrapping behavior of Euler an-
gles. After computing the grid cell outer boundaries (z̄,

¯
z),

we define constant volume grid cells by computing a width
di =

z̄i−
¯
zi

Nsets,i
along each dimension and use the notation Di,

i = 1, 2, . . . , Nsets,1 × . . .×Nsets,Nz
to indicate each of the

grid cells. By defining sets in a grid cell fashion, note that
all particles are also members of exactly one set.

Remark 3.1 (Choice of Set Definition). The choice of
set here consists of axis-aligned grid cells that are divided
evenly to cover the particle locations. While other sets
could be defined, such as subdividing sets in regions of
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higher particle concentrations, or other shape sets as in our
previous work,7 we choose grid cells due to their simplicity
and efficiency in computation. We leave the choice of set
definition as a component of future work.

After defining grid cell sets Di and membership func-
tion m, we now discuss the generalized form of Hölder’s
inequality which for one of the grid cell sets Di is defined
as ∫

Di

Nd∏
j=1

pj(x)dx ≤
Nd∏
j=1

(∫
Di

p2j (x)dx
) 1

2

. (3)

Notice in (3) that computing the upper-bound requires
computing the product after the integrand instead of be-
fore, allowing the upper-bound for particle distributions to
evaluate to a non-zero value provided at least one parti-
cle from each distribution is a member of set Di. Hölder’s
inequality for particle distributions and a set Di can be
written as∫

Di

Nd∏
j=1

pj(x)dx ≤
Nd∏
j=1

( ∑
k:z

(j)
k ∈Di

[
w

(j)
k

]2) 1
2

. (4)

Notice that (4) amounts to summing the square of the
weights of particles that are members of Di which we can
perform quickly and efficiently. This upper-bound also ap-
proaches the true integrand as Hölder’s inequality yields
equivalence if all input functions are proportional.20 As de-
creasing the volume of Di approaches the evaluation of a
single point which is proportional to all other points, de-
creasing the volume of Di allows the upper-bound to ap-
proach the true integrand.

Remark 3.2 (Tightness of upper-bound). While in-
creasing the number of discretizations through set subdivi-
sion yields a tighter upper-bound, the approximation even-
tually converges to the true product of 0 everywhere as set
subdivisions eventually do not contain at least one particle
from each input distribution. We are therefore interested in
balancing between increasing the resolution of the sets and
supporting the resolution with a larger amount of particles
in order to ensure we always maintain an upper-bound on
the true product and not the product itself.

We also propose the incorporation of a scalar term
ν > 0 in the computation of upper bounds for a set Di as

Ii =

Nd∏
j=1

( ∑
k:z

(j)
k ∈Di

[
w

(j)
k

]2
+ ν

) 1
2

. (5)

which has practical benefits by allowing us to shape the
output product PDF and to choose the behavior of the
product when the particle densities do not intermesh as
we’ll demonstrate later.

Letting Ii be the result of the upper-bound evaluation
in (5), we then re-weight particles in the first distribution
(W1, Z1) to be equal to the upper-bound and normalize all

particles to have a valid particle distribution. This opera-
tion amounts to setting

w
′(1)
i ∝ I

k:z
(1)
i ∈Dk

(6)

which requires computing the membership of parti-

cle z
(1)
i . After computing the new particle distribution

{(w′(1)
i , z

(1)
i )}Np

i=1, we re-sample the distribution to find
the final result. The full algorithm is described in Algo-
rithm 3.3.

Algorithm 3.3 (Approximate Pointwise Product).

1: procedure PPro({(Wi, Zi)}Nd
i=1, Nsets, ν)

2: D ← ComputeSets({(Wi, Zi)}Nd
i=1, Nsets)

3: I ← Hölder(D, {(Wi, Zi)}Nd
i=1, ν)

4: for Dj ∈ D do
5: m← Membership(Z1)

6: w
′(1)
m ← Re-Weight(Ij ,m)

7: end for
8: W ′ ← Normalize({w′(1)

i }
Np

i=1)
9: Z ′ ← Sample(Np,W

′, Z1)

10: return {( 1
Np

, z′
i)}

Np

i=1

11: end procedure

This approach allows for the first particle distribution
to be updated according to any information provided by
other particle distributions, a common scenario in multi-
robot teams in which a robot i may be observed by another
robot j according to some relative measurement function g.
Even if g provides partial information, robot i may update
its weights by fusing {(Wi, Zi)} with {(Wj , g(Zj))} where
g(Zj) are the transformed positions of robot j’s state.

However, in some scenarios g may provide full informa-
tion instead. In such cases, the transformed particles g(Zj)
may be useful for updating the particle positions of robot
i. We describe this effect as a type of particle nudging in
which particles g(Zj) can be used to “nudge” Zi.

3.2. Weighted Particle Nudging

Particle nudging is a process used in the literature to im-
prove the tracking performance of a particle filter by opti-
mizing the particles to locations of higher likelihood when
given a sensor measurement.21,22 This process has strong
benefits in geophysics problems where the state variable
has high dimension and can require impossibly large num-
bers of particles to achieve good performance. In this work,
we instead propose to use particle positions provided by
other agents to act as nudging particles. In scenarios where
a relative measurement function g provides full state in-
formation, we can modify our particle product strategy
to “nudge” the positions of the product distribution. This
can be achieved by re-weighting all provided particles and
adapting the re-sampling phase to incorporate the positions
of the other distributions {(Wi, Zi)}Nd

i=2.
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As an example, a robot i with position x
(i)
t at time t

could make a relative position measurement w
(i,j)
t +ϵ

(i,j)
t of

another robot j where ϵ
(i,j)
t is some corrupting noise drawn

from pnoise(x). The transformed position x
(i)
t +w

(i,j)
t can

then act as a position measurement of robot j’s posi-
tion corrupted by uncertainty in either robot i’s posi-
tion estimate which is represented as a set of particles

{(w(i)
k , z

(i)
k )}Np

k=1 or in the relative measurement described
by pnoise.

We also introduce a weight factor α1, α2, . . . , αNd

such that
∑Nd

i=1 αi = 1 and αi ≥ 0 as well to help
control how much the nudging particles influence the fi-
nal product distribution. For a distribution pi, we in-
corporate these weights by modifying particle weights as

{
(
(w

(i)
k )αi , z

(i)
k

)
}Np

k=1 which yields the updated product rule

Ii =

Nd∏
j=1

( ∑
k:z

(j)
k ∈Di

[
(w

(j)
k )αj

]2
+ ν

) 1
2

. (7)

Notice here that when ν = 0, this amounts to computing an
upper bound on the weighted product between a set of Nd

distributions which is equivalent to computing the weighted
Kullback-Leibler Average4 (KLA) over a set Di. In its orig-
inal work the weighted KLA is shown to be the geometric
average between a set of input distributions and was used
to facilitate distributed estimation. In particular, the work
discussed using conventional consensus update rules but
using the weighted KLA as a notion for distribution con-
sensus. The authors then used this strategy to construct a
distributed Kalman Filter which could be used to track a
moving target with a sensor network.

For a set of distributions {pi(x)}Ni=1, the weighted
KLA with weights αi is defined as

p̄ = arg inf
p∈P

N∑
i=1

αiDKL(p, pi) (8)

where DKL is the KL divergence between p and pi and P
is the family of all valid distributions. Solving (8) amounts
to computing

p̄(x) ∝
Nd∏
i=1

pαi
i (x) (9)

in which a scaling factor from re-normalizing the distribu-
tions is omitted for brevity.4 To find the weighted KLA
for particle distributions, applying (9) is normally impos-
sible due to the need for a well-defined pointwise-product.
However, the weighted nudging strategy defined in this sub-
section allows us to recover the weighted KLA for particle
distributions as an additional application of our strategy.
We further use this method to design and construct a dis-
tributed particle filter which can incorporate relative mea-
surements between robots which we discuss in greater detail
later in this work. The weighted nudged product algorithm
is shown in Algorithm 3.4.

Algorithm 3.4 (Nudged Pointwise Product).

1: procedure NPPro({αi, (Wi, Zi)}Nd
i=1, Nsets, ν)

2: D ← ComputeSets({(Wi, Zi)}Nd
i=1, Nsets)

3: I ← Hölder(D, {αi, (Wi, Zi)}Nd
i=1, ν)

4: for Dj ∈ D do

5: m← Membership({Zi}Nd
i=1)

6: w′
m ← Re-Weight(Ij ,m)

7: end for
8: W ′ ← Normalize({w′

i}
Np×Nd

i=1 )

9: Z ′ ← Sample(Np,W
′, {Zi}Nd

i=1)

10: return {( 1
Np

, z′
i)}

Np

i=1

11: end procedure

3.3. Approximate Product Examples

To demonstrate our proposed strategy, we first show an ex-
ample in which particles are sampled from two Gaussian
distributions and our product is used to re-sample parti-
cles. Fig. 3 shows the product with a non-zero ν providing
a biased distribution based on blue’s particles on the left
and a re-sampling only from blue on the right since there’s
no interaction between the distributions.

Fig. 3. Gaussian examples of approximate product (high-
lighted as black particles). Grid cell color indicates upper-bound
value. When distributions intermesh (left), product is biased to-
wards the intersecting regions. When distributions are separate
(right), product has no effect and maintains the shape of the
original distribution.

Fig. 4. Examples of the proposed product approximation on
SE(2). Input distributions (left) on SE(2) are chosen as two
vector fields, only xy sets are shown for convenience. 4 sets along
xy dimensions and 5 sets along the heading dimension are used
to generate the product approximation (right).
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3.4. Nudged Product Examples

To demonstrate the benefits of our nudging approach, we
use particles sampled from two Gaussian distributions and
use our nudged product to re-sample the particles. Fig. 5
shows the effect of the nudged product with a non-zero ν
providing a more significant bias between the blue and pink
distributions and even achieving a multi-modal shape when
distributions do not intermesh. This has the useful quality
of retaining non-agreeing information as separate guesses
that “nudge” the distribution to another mode.

Fig. 5. Gaussian examples of nudged product (highlighted as
black particles). Grid cell color indicates upper-bound value.
When distributions intermesh (left), product is sampled from
both and fuses the distributions. When distributions are sep-
arate (right), product subsamples from all distributions and
achieves a multimodal shape.

Notice that the results of the nudged product are sim-
ilar to the regular product when particles perfectly inter-
mesh. The nudged version of our product rule only provides
useful information when particle distributions disagree. As
previously mentioned, this can be useful in multi-agent set-
tings with relative measurements but can also be detrimen-
tal if bad information is provided. For example, in the case
where a sensor has been damaged or becomes erroneous,
the distribution can be nudged towards worse estimates. In
such situations, using the regular proposed product can be
used instead to ignore an erroneous information source.

3.5. Comparison Studies

We also demonstrate our approach in a comparison study
to another product approach based on using local kernels.13

In the kernel-based strategy, a Gaussian kernel is defined
using the k-nearest neighbors of each particle in a single
particle distribution in order to compute new weights for
each particle in the total distribution. The approach fo-
cuses on computing a notion of a product by weighing the
effects of nearby particles according to proximity. With
an appropriate definition of the proximity, encoded as a
kernel, the approach is able to achieve good product re-
sults. However, the approach has odd behaviors when par-
ticles do not intermesh as to be shown. For two input

distributions {(w(1)
i , z

(1)
i )}Np

i=1 and {(w(2)
i , z

(2)
i )}Np

i=1, the re-
weighting strategy is given by

pf (x) = c
( Np∑

i=1

w
(1)
i f̂2(z

(1)
i )δ(x− z

(1)
i )

+

Np∑
k=1

w
(2)
k f̂1(z

(2)
k )δ(x− z

(1)
i )

) (10)

where c is a normalization factor and f̂1 and f̂2 are local
Gaussian kernels re-weighted such that the integrand of the
kernel is equal to the total weight of the k-nearest neighbors
divided by the volume of a hyper-sphere with radius equal
to the distance of the farthest neighbor found in k-nearest
neighbors. Fig. 6 shows a comparison of the local kernel
strategy to our proposed nudged product strategy when
the input distributions (shown as histograms) do not in-
termesh. When the distributions are not intermeshing, the
kernel strategy produces an overly confident distribution
centered between the distributions. Our approach, however,
can treat this scenario as a case to split the distribution into
two separate guesses, and retain information on both un-
til more information is available. Besides the kernel-based
strategy,13 other strategies in the literature use kernel or
GMM fitting to find continuous representations of the par-
ticle distributions from which a pointwise-product is well-
defined.

Fig. 6. Comparison to the knn-based fusion method13 in which
local Gaussian kernels are defined to facilitate the pointwise
product. Histograms are used to show the shape of the PDF.

Fig. 7 shows the speed of this fitting performance for
two particle distributions as the number of particles or
the number of dimensions increases. These tests are per-
formed without parallel computing to show exact scaling ef-
fects. Our particle-fusion approach scales significantly bet-
ter than GMM and KDE approaches as the number of par-
ticles increases to large numbers. This has inherent benefits
in complex multi-modal problems where a large number of
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particles are needed to represent all modes. Notably, our ap-
proach scales poorly as the number of dimensions increases
due to the increase in number of sets (in the figure, the
total number of sets needed is 5n where n is the number of
dimensions). However, we believe parallel approaches can
allow us to scale to larger dimension counts.

Fig. 7. Computational speed of using direct particle fusion
against GMM or KDE fitting. Left) time to compute as the
number of particles in each input distribution increases. Right)
time to compute as the number of dimensions increases.

3.6. Parallel Execution of Product Strategy

As a final note, we also include details here on the com-
putational performance of the paralellized version of the
product strategy, in which we demonstrate the speed im-
provements associated with using an increasing number of
separate processes on an Intel i9-11900H CPU with 8 cores.
We split the work for evaluating the product of two 1000
particle distributions over 2500 sets and plot the amount
of time it takes to compute the product as we increase the
number of workers. Fig. 8 shows the results of splitting the
work of an increasing number of sets across an increasing
number of processes, with the most significant improvement
achieving a five fold speed-up when we split across 7-8 pro-
cesses (50ms). By increasing the number of cores further,
our approach can achieve even larger improvements in com-
putational performance.

Fig. 8. Effects of splitting the set evaluation work across mul-
tiple processes on an 8-core CPU.

4. Distributed Particle Estimation

We discuss now the distributed estimation problems of in-
terest and construct solutions to these problems in the form
of distributed particle filtering and distributed particle
smoothing. The proposed filtering and smoothing strate-
gies demonstrate the applicability of our proposed product
method by realizing existing strategies in the literature that
depend on the pointwise product.

4.1. Distributed Filtering

We discuss first the distributed filtering problem and de-
scribe how our proposed product can be used to solve this
problem. For a team of N robots, we model each robot i

at time t as a state x
(i)
t ∈ X . Each robot’s state evolves

forward in time with input u
(i)
t ∈ U according to

x
(i)
t = K(x

(i)
t−1,u

(i)
t ) + s

(i)
t (11)

which is corrupted by random noise s
(i)
t sampled from

known distribution s
(i)
t ∼p

(i)
st (s̃t).

We assume each robot may make personal measure-
ments on their state of the form

y
(i)
t = h(x

(i)
t ) + ξ

(i)
t (12)

in which h : X → Y is a measurement function corrupted

by noise ξ
(i)
t ∼p

(i)
yt (ỹt) drawn from another known distri-

bution describing the corrupting noise of our sensing mea-
surements. We also assume robots are able to make relative
measurements with respect to each other and can commu-
nicate to help improve each other’s estimates.
The relative measurements are described as

r
(i,j)
t = g(x

(i)
t ,x

(j)
t ) + σ

(i,j)
t (13)

in which g : X × X → W is a relative measurement func-

tion corrupted by noise σ
(i,j)
t ∼p(i,j)rt (r̃t) drawn from an-

other known distribution describing the corrupting noise

of our relative sensing measurements. We use W
(i)
t =

{r(i,j)t }
j∈N (i)

t
to describe the set of observed relative mea-

surements with N (i)
t containing the indices of observed

neighboring robots.
Our principal objective is to identify each robot’s

marginal PDFs at each time-step using measurements col-
lected by robots individually and relative measurements
collected between pairs of robots.

Problem 4.1 (Distributed Filtering). Assume we have
a team of N robots, with each robot i having an initial

state estimate p
(i)
x0(x̃0) and a sequence of T applied inputs

{u(i)
t }Tt=1 perturbed by noise distribution p

(i)
st (s̃t). We as-

sume each robot has also collected a history of measure-

ments y
(i)
0:t and relative measurements W

(i)
0:t . Compute the

marginalized PDF p(x
(i)
t | y

(i)
0:t,W

(i)
0:t ) for each robot i.
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Our approach to solving Problem 4.1 uses the weighted
KLA for particle distributions as a fusion operator and
modifies the particle filter to compute a weighted KLA be-
tween two robots with relative position observations after
each iteration of the normal particle filter. The resulting
product distribution then acts as the prior distribution for
the next particle filter iteration.

We next discuss the distributed smoothing problem
which has strong similarities to Problem 4.1 but incorpo-
rates information in the future as well.

4.2. Distributed Smoothing

Given initial estimates provided by the proposed dis-
tributed particle filter, the smoothing problem seeks to use
measurements collected in the future to improve earlier es-
timates along the trajectory. We formulate this problem
using dynamics, personal measurements, and relative mea-
surements as in (11), (12), and (13). Our principal objective
is once again to identify each robot’s marginal PDFs at each
time-step but including information provided in the future
as well.

Problem 4.2 (Distributed Smoothing). Assume we
have a team of N robots, with each robot i having an ini-

tial state estimate p
(i)
x0(x̃t) and a sequence of T applied in-

puts {u(i)
t }Tt=1 perturbed by noise distribution p

(i)
st (s̃t). We

assume each robot has also collected a history of measure-

ments y
(i)
0:T and relative measurements W

(i)
0:T . Compute the

marginalized PDFs p(x
(i)
t | y(i)

0:T ,W
(i)
0:T ) for each time in-

stance t and for each robot i.

The main difference between Problem 4.1 and Problem 4.2
is whether we incorporate future measurements into the
marginal inference. We address this problem by formulat-
ing a factor graph using (11), (12), and (13) and approx-
imating the marginal PDFs using an algorithm known as
Belief Propagation.

4.3. Factor Graph Formulation

We formulate Problem 4.2 as an inference problem over
a factor graph and design factors based on the collected

transformations u
(i)
1:T , personal measurements y

(i)
0:T , and rel-

ative measurementsW
(i)
0:T . We choose unary factors ϕ

(i)
x0(x̃0)

for prior information as

ϕ(i)
x0
(x̃0) = p(i)x0

(x̃0) (14)

and unary factors ϕ
(i)
yt (x̃t) for personal sensor measure-

ments as

ϕ(i)
yt
(x̃t) = p(i)yt

(y
(i)
t − h(x̃t)). (15)

We choose binary factors f
(i)
xt (x̃t−1, x̃t) to encode the local

transformations as

f (i)
xt

(x̃t−1, x̃t) = p(i)st
(x̃t −K(x̃t−1,u

(i)
t )). (16)

We choose binary factors f
(i,j)
rt (x̃i, x̃j) to encode the rela-

tive measurements between robots as

f (i,j)
rt

(x̃i, x̃j) = p(i,j)rt
(r

(i,j)
t − g(x̃i, x̃j)). (17)

Fig. 9. Example factor graph representation. Top) Two vehi-
cles, yellow (y) and blue (b) pass each other on a highway and
observe their relative position at the second time-step. Yellow
receives GPS data on the first and third time-steps. Bottom)
The hidden variables (highlighted grey) of each vehicle’s posi-
tion are related by factor nodes encoding the local movements

over time f
(i)
xt

, the relative measurement between vehicles at the

second time-step f
(b,y)
y2

, and the GPS measurements ϕ
(y)
yt

on yel-
low.

Defining factors (14), (15), (16), and (17) allows us to
describe the hidden variables and their relationships as a
factor graph. An example factor graph translated from a
distributed autonomous vehicle scenario is shown in Fig. 9
in which two vehicles, yellow and blue, pass each other on
the highway. By formulating the factor graph and solving
for the marginal PDFs, information collected by yellow via
personal GPS measurements can be shared with blue to
improve blue’s own position estimate, albeit corrupted by
yellow’s own position uncertainty.

4.4. Belief Propagation

Given a factor graph, marginal inference is performed using
the Belief Propagation algorithm, a method to efficiently
marginalize out variables over every node in the graph by
passing messages between nodes. Belief Propagation has a
long history in the literature and has been used to efficiently
compute marginal PDFs over various types of probabilistic
graphs. The approach has been used, more recently, to solve
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smoothing problem in SLAM settings by using factors to
describe the relative measurements created by robots and
between robots and other robots or landmarks which are
also unknown states to estimate.

Letting Xj be the set of argument node indices for fac-
tor fj excluding argument i, the Belief Propagation mes-
sages from factors to nodes are defined as

mfj→xi
(xi) =

∫
Xj

fj(Xj)
∏
k∈Xj

mxk→fj (xj)dXj (18)

which may be computed using Monte-Carlo sampling10 af-
ter the pointwise product has been computed. Messages
from variable nodes xi to factors fj are defined as

mxi→fj (xj) =
∏

k∈N (xi)\j

mfk→xi
(xi) (19)

in which N (·) returns the set of indices of all neighboring
factor nodes. Finally, the marginal PDF of a variable node,
also known as the belief, is computed as

b(xi) =
∏

j∈N (xi)

mfj→xi(xi) (20)

which is simply the pointwise product of all incoming factor
messages to the variable node xi. Unary factors are treated
identically to messages (18), i.e., they are incorporated as
part of a pointwise product. However, unary factor mes-
sages are defined by

mϕj→xi
(xi) = ϕj(xi) (21)

in which the message is exactly identical to the unary func-
tion itself. Commonly, the unary function is a continuous
function which does not necessitate the approximate point-
wise product strategy proposed here. Instead, we apply the
true pointwise product to update the particle weights af-
ter applying the approximate pointwise product. On acyclic
graphs, the message-passing method defined in Belief Prop-
agation produces exact marginal PDFs using only a single
pass through the graph. To compute marginal PDFs on
cyclic graphs, Belief Propagation is extended into an iter-
ative form called Loopy Belief Propagation, in which mes-
sages are continuously re-computed until convergence at
which point the stationary beliefs are used as the marginal
PDFs. While loopy Belief Propagation is not guaranteed
to converge to the true marginals, the algorithm has been
empirically demonstrated to produce good approximations
of the marginal PDFs if given good initial belief estimates.6

Under certain families of PDFs, such as Gaussians23,24

or discrete PMFs,5 (18), (19), and (20) allow for analytical
computation. However, in particle settings these messages
cannot be computed analytically, largely in part due to the
need for a well-defined pointwise product in the message
and belief computations. While other approaches in the
literature have circumvented this difficulty either through
sampling approaches or via interpolation, these approaches
can be slow to execute or require significant fine tuning for
good results.10,19,25

Note here that the defined factors (14), (15), (16),
and (17) are actually conditional distributions that arise
from the hidden markov model formulation in Problems
4.1 and 4.2. As a result, message computation (18) can
be computed using the normal particle filter propagation
step.3 To compute the reverse direction message, we use
the backward smoother update to estimate new weights for
the previous particles.3 We next demonstrate a simulation
example to show how this algorithm can be used.

4.5. Simulation Example

We demonstrate the proposed distributed filtering and
smoothing strategies using a four-robot simulation where
one of the robots has access to a range-only measurement
function but all other robots only have access to relative
measurements. In this setting, the personal measurement
function in (12) is given by

h(x
(1)
t ) =

∥∥∥ [x(1)
t y

(1)
t

]⊺
− L

∥∥∥
2

(22)

in which L is the 2D position of a known landmark in the
environment. All robot inputs are perturbed by zero-mean
Gaussian noise with covariance 0.01I3 in which the orien-
tation noise is wrapped to [−π, π). Relative and personal
measurements are perturbed by zero-mean Gaussian noise
with covariance 0.01I3 and variance 0.01, respectively. We
run the simulation for 100 iterations and only provide land-
mark measurements every 3 time-steps. All other robots
only have access to relative pose measurements when their
distances are within 2.5m. A visualization of this simula-
tion is available in Fig. 10 which shows that the four robots
are only able to make relative measurements with robots
following the closest orbits and are able to “share” the un-
certainty between robots using KLA updates. This is re-
flected in both the increasing average error and uncertainty
as robots orbit farther away from the landmark.

Fig. 10. Left) Visualization of the Distributed PF with KLA,
black lines show robots making a relative measurement, blue
line shows inner-most robot making a personal measurement to
the landmark (triangle). Right) Average error and uncertainty
grows as robots are further from the source of information.
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Having collected an initial estimate from the dis-
tributed particle filter, we now focus on the smoothing
problem in which we incorporate future information to
provide estimates over the whole trajectory. We begin by
formulating a particle-based factor graph for the four-
robot simulation example and use the distributed PF’s
marginal distributions as our initial beliefs for Belief Prop-
agation. We incorporate three factors: i) for odometry re-
lated poses, i.e., a robot moving along a trajectory, we use
the nudged product to combine messages from previous and
future time-steps using a wrapped Gaussian factor, i.e.,
a Gaussian in SE(2) which wraps the rotation dimension
to [−π, π), ii) for personal sensing measurements, we use
unary factors to re-weight the particles according to the
likelihood associated with detecting the landmark, and iii)
for relative measurements, we use the nudged product since
the relative measurements provides the full state informa-
tion in the form of a relative pose.

Fig. 11. Average error and uncertainty after smoothing with
Belief Propagation. Both error and uncertainty grow the further
each robot is from the source of information but improve upon
the distributed PF estimates by a maximum of ∼143% in track-
ing error and ∼152% in uncertainty.

The results of these simulations are shown in Fig. 11
in which the smoothing results for the pair of robots are
shown after smoothing with Belief Propagation. We can
see that compared to the original average error and un-
certainty, the smoothed result achieves both tracking error
and uncertainty improvements across all robots with a max-
imum improvement of ∼143% in tracking error and ∼152%
in uncertainty.

5. Experimental Results

Having proposed a distributed filtering and distributed
smoothing strategy, we now demonstrate both strategies
in an experimental setting using a pair of miniature au-
tonomous blimps. We test the proposed Weighted KLA
and Belief Propagation strategies using a pair of experimen-
tal miniature autonomous blimps called the Open-Blimp.26

The Open-Blimp is a lighter-than-air vehicle capable of
fully autonomous flight by using 6 rotors arranged in an
orthogonal fashion and a helium-filled envelope which has
been balanced to equally counter the effects of gravity. We
manually pilot two of these platforms in a large open space
at the Naval Research Laboratory and allow the platforms
to capture the onboard video stream and the applied input
data, in the form of recorded accelerations measured by the
onboard IMU. We use these images to collect personal and
relative position measurements which are available when-
ever landmarks with known position are observed (realized
with Apriltags27) and when other blimps are observed (re-
alized using an ellipse tracker of the helium envelope). The
onboard IMU is integrated to find relative pose measure-
ments between time-steps.

We adopt state x
(i)
t = (p

(i)
t , θ

(i)
t ) which encompasses

the 2D position and heading angle of each robot and model
the robots using the dynamics (11). We also assume a map
of landmarks is available, which in this work is realized as 6
Apriltags with known position. Blimps in these experiments
observe these landmarks and other blimps via the forward
facing RGB camera using either the Apriltag detector27 or
the previously described ellipse detector. We assume the
detection follows the measurement models

hj(x
(i)
t ) = Lj − p

(i)
t

g(x
(i)
t ,x

(j)
t ) = p

(i)
t − p

(j)
t

(23)

in which only the position information is used to make
measurements. Since the measurements provide only par-
tial information, we use the non-nudged product to update
only the weights of the belief distributions. We assume the
blimps are perturbed by noise as in 4.1 and 4.2 as well.

The input noise function p
(i)
st is split into component noise

functions p
(i)
vt and p

(i)
θt

which perturb the position and head-

ing of the blimp. p
(i)
vt , p

(i)
θt
, p

(i)
yt , and p

(i)
rt are assumed to

be zero-mean Gaussian with variances 1.2I2, 0.005, 0.5I2,
and 0.5I2, respectively with heading noises wrapped onto
[−π, π).

5.1. Experiments with Weighted KLA

We first apply our distributed particle filter via weighted
KLA strategy to our real-life robot experiments. In this
set of experiments, we use the collected measurements to
compute the regular version of our product in the weighted
KLA. This is due to the fact that we are estimating 2D
poses but relative information provides only information on
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relative positions in the local frame of the observing robot.
We demonstrate the performance of the proposed method
by collecting the 2-norm error between the estimated posi-
tion of the blimp and the true position of the blimp. Fig. 12
indicates that the average tracking error saw a significant
reduction and both robots were able to dramatically im-
prove their performance by using the approximate product
to realize the proposed weighted KLA distributed PF.

Fig. 13 shows the first person view of blimp 2 before
and after blimp 1 is observed. Blimp 1’s PF state is also
visualized as a black arrow indicating the mean pose and
the black ellipse indicating the covariance of the particle
positions. From these snapshots, we can see that blimp 1’s
initial estimate improves after blimp 2 shares a pose es-
timate. While the shared information between platforms
reduces the tracking error of the blimps, we can reduce the
error further by smoothing the trajectory.

Fig. 12. Average performance of the distributed PF over the
course of the experiment for both robots.

5.2. Experiments with Belief Propagation

We further improve the estimation quality produced by
leveraging Belief Propagation on particle factor graphs to
improve the results produced by the proposed distributed
PF. We incorporate three factors: i) for odometry related
poses, i.e., a robot moving along a trajectory, we use the
nudged product to combine messages from previous and
future time-steps using a wrapped Gaussian factor, i.e.,
Gaussian noise in SE(2), in which noise on the rotation is
wrapped to [−π, π), ii) for personal sensing measurements,
we use unary factors to re-weight the particles according to
the likelihood of matching the known landmark positions
when AprilTags are detected, and iii) for relative measure-
ments, we use the regular proposed product to re-weight
particles in the relative measurement space, which for this
problem is only on position. The factor functions are the

input noise functions p
(i)
vt and p

(i)
θt

for temporally related

poses, the measurement uncertainty p
(i)
yt , and the relative

measurement uncertainty p
(i)
rt as stated previously.

In order to refine the initial estimates provided by the
distributed PF, we use the marginal PDFs estimated by
the distributed PF as our initial belief estimates in Belief
Propagation. We see in Fig. 14 that after smoothing, Blimp
1 achieves an average improvement of ∼25.1% and Blimp
2 achieves an average improvement of ∼35.2% over the ex-
periment.

Fig. 13. Pose estimation improvement before and after a rela-
tive observation is made available.

Fig. 14. Average performance of Belief Propagation over the
course of the experiment for both robots.

This demonstrates that our proposed product strategy
is able to facilitate existing estimation algorithms that re-
quire a pointwise product and can be used to produce high
accuracy distributed filtering and smoothing.

6. Conclusion

In this work, we proposed a novel product approximation
strategy for particle distributions and discussed how this
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strategy can be used to facilitate distributed filtering, us-
ing the weighted Kullback-Leibler Average, and distributed
smoothing, using Belief Propagation over Particle Factor
Graphs. Our approach is able to achieve accurate results
but is limited in the number of dimensions it can handle
due to increasing number of sets that must be evaluated.
However, through parallel computing, we can achieve sig-
nificant speed-ups that can help handle higher dimensions.
We note that our approach does scale well with number of
particles, which may be more useful when trying to model
complex multi-modal PDFs.

In future work, we will consider the use of ma-
chine learning models to incorporate high-dimensional data
into the filtering and smoothing problems. Notably, many
robots have access to images or image sequences from which
conventional measurement models can not be built. By con-
sidering deep neural networks, we can model relationships
between images and low-dimensional states for filtering and
smoothing frameworks.
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M. Rupp, Likelihood consensus and its application to
distributed particle filtering, IEEE Transactions on
Signal Processing 60(8) (2012) 4334–4349.

[17] M. Rosencrantz, G. Gordon and S. Thrun, Locating
moving entities in indoor environments with teams of
mobile robots, Proceedings of the second international
joint conference on Autonomous agents and multia-
gent systems, (2003), pp. 233–240.

[18] M. Rosencrantz, G. Gordon and S. Thrun, Decen-
tralized sensor fusion with distributed particle filters,
arXiv preprint arXiv:1212.2493 (2012).

[19] A. Ihler and D. McAllester, Particle belief propa-
gation, Artificial intelligence and statistics, PMLR
(2009), pp. 256–263.

[20] Z. Cvetkovski, Inequalities: theorems, techniques and
selected problems (Springer Science & Business Media,
2012).

[21] Ö. D. Akyildiz and J. Mı́guez, Nudging the particle
filter, Statistics and Computing 30(2) (2020) 305–330.

[22] H. C. Yeong, R. T. Beeson, N. Namachchivaya and
N. Perkowski, Particle filters with nudging in multi-
scale chaotic systems: with application to the lorenz’96
atmospheric model, Journal of Nonlinear Science
30(4) (2020) 1519–1552.

[23] D. Bickson, Gaussian belief propagation: Theory and
aplication, arXiv preprint arXiv:0811.2518 (2008).



November 28, 2023 13:56 output

A Particle Fusion Approach for Distributed Filtering and Smoothing 13

[24] J. Ortiz, T. Evans and A. J. Davison, A visual intro-
duction to gaussian belief propagation, arXiv preprint
arXiv:2107.02308 (2021).

[25] L. Song, A. Gretton, D. Bickson, Y. Low and
C. Guestrin, Kernel belief propagation, Proceedings of
the Fourteenth International Conference on Artificial
Intelligence and Statistics, JMLR Workshop and Con-
ference Proceedings (2011), pp. 707–715.

[26] T. X. Lin, T. K. Schuler, D. M. Lofaro, D. Sofge
and F. Zhang, The open-blimp: An open-source
blimp platform for lighter-than-air research, AIAA
SCITECH 2023 Forum, (2023), p. 0695.

[27] J. Wang and E. Olson, Apriltag 2: Efficient and ro-
bust fiducial detection, 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
IEEE (2016), pp. 4193–4198.

Tony X. Lin received a B.S. and M.S.
from the University of Virginia, Charlottesville VA, USA,
in 2012 and 2016. He is a Ph.D. student in Robotics at
the Georgia Institute of Technology in Atlanta GA, USA.
Tony’s primary research interests involve distributed sens-
ing and estimation for solving localization problems and
involve developing coordination strategies for swarms of
lighter-than-air vehicles.

Sam Coogan is an associate professor
at Georgia Tech in the School of Electrical and Computer
Engineering and the School of Civil and Environmental
Engineering. Prior to joining Georgia Tech in 2017, he
was an assistant professor in the Electrical Engineering
Department at UCLA. He received the B.S. degree in Elec-
trical Engineering from Georgia Tech and the M.S. and
Ph.D. degrees in Electrical Engineering from the Univer-
sity of California, Berkeley. His research is in the area of
dynamical systems and autonomy and focuses on develop-
ing scalable tools for verification and control of networked,
cyber-physical systems with an emphasis on transportation
systems. He received the Donald P Eckman Award from
the American Automatic Control Council in 2020, a Young
Investigator Award from the Air Force Office of Scientific

Research in 2019, a CAREER award from NSF in 2018,
and the Outstanding Paper Award for the IEEE Transac-
tions on Control of Network Systems in 2017.

Donald Sofge is a Computer Scientist
and Roboticist at the Naval Research Laboratory (NRL)
with 35 years of experience (22 at NRL) in Artificial Intel-
ligence, Machine Learning, and Control Systems R&D. He
leads the Distributed Autonomous Systems Section in the
Navy Center for Applied Research in Artificial Intelligence
(NCARAI), where he develops nature-inspired computing
paradigms to challenging problems in sensing, artificial
intelligence, and control of autonomous robotic systems.
He has served as PI/Co-PI on dozens of federally-funded
R&D efforts, and has more than 200 refereed publications
(including 11 books) in robotics, artificial intelligence, ma-
chine learning, planning, sensing, control, and related dis-
ciplines, and one patent on virtual state estimation for
semiconductor fabrication. His current research focuses
on control of autonomous teams or swarms of heteroge-
neous robotic systems. He has served as an advisor on
autonomous systems to DARPA, ONR, OSD, ARL, NSF,
and NASA, as well as US representative on international
TTCP and NATO technical panels on autonomous sys-
tems, and has participated as a member of the following
Interagency Working Groups under the National Science
and Technology Council (NSTC) Networking and Infor-
mation Technology Research and Development (NITRD)
Program: Intelligent Robotics and Autonomous Systems
(IRAS) (formerly Robotics and Intelligent Systems), Ma-
chine Learning and Artificial Intelligence (MLAI), and AI
R&D Ad Hoc Group. Mr. Sofge is a member of the Mary-
land Robotics Center Education Advisory Board and also
occasionally serves as an Adjunct Faculty Member at the
University of Maryland where he has taught graduate-level
courses in Robotics. Google Scholar h-index: 24, citations:
3107.

Fumin Zhang is the director of the
Hong Kong University of Science and Technology (HKUST)
Cheng Kar-Shun Robotics Institute. Prior to joining
HKUST, he was a Professor in the School of Electrical and
Computer Engineering at the Georgia Institute of Technol-
ogy. He received the B.S. and M.S. degrees from Tsinghua
University, Beijing, China, in 1995 and 1998, respectively,



November 28, 2023 13:56 output

14 Tony X. Lin

and the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Maryland, Col-
lege Park, in 2004. His research interests include marine
autonomy, mobile sensor networks, and theoretical foun-

dations for battery supported cyber-physical systems. He
received the NSF CAREER Award in 2009, and the ONR
YIP Award in 2010


