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ABSTRACT
We present a runtime assurance (RTA) mechanism for ensuring
safety of a controlled dynamical system and an application to colli-
sion avoidance of two unmanned aerial vehicles (UAVs). We con-
sider a dynamical system controlled by an unverified and potentially
unsafe primary controller that might, e.g., lead to collision. The
proposed RTA mechanism computes at each time the reachable set
of the system under a backup control law. We then develop a novel
optimization problem based on control barrier functions that filters
the primary controller when necessary in order to keep the system’s
reachable set within reach of a known, but conservative, safe region.
The theory of mixed monotone systems is leveraged for efficient
reachable set computation and to achieve a tractable optimization
formulation. We demonstrate the proposed RTA mechanism on a
dual multirotor UAV case study which requires a fast controller
update rate as a result of the small time-scale rotational dynamics.
In implementation, the algorithm computes the reachable set of
an eight dimensional dynamical system in less than five millisec-
onds and solves the optimization problem in under one millisecond,
yielding a controller update rate of 100Hz.
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs) have become an increasingly pop-
ular tool for agriculture, photography, search and rescue, and map-
ping, and are also becoming more accessible to general consumers.
This increased accessibility has led to several notable accidents in-
volving UAVs and civilians [17], emphasizing the need for verifiable
safety guarantees in highly dynamic systems such as UAVs.

One attractive means of ensuring safety for controlled dynami-
cal systems involves filtering a potentially unsafe control input at
runtime; an approach referred to in literature as runtime assurance
(RTA) [14]. Canonical examples of RTA mechanisms include the
Simplex architecture [8, 20], which uses a decision module to switch
to a backup control scheme when necessary, and control barrier
functions (CBFs) [6, 7], which adjust desired control actions in a
minimally invasive way to ensure forward invariance of a prede-
termined safe subset of the state space. A challenge with simplex
architecture design is constructing a decision module that does not
intervene too late [8]. With CBFs the decision for when to alter
the desired control input is done smoothly and can be tuned by
modifying a class-K function.

Of particular relevance, the works [11–13] present a CBF-type
RTA mechanism where a simulation of the system dynamics is
conducted prior to each evaluation of the barrier constraint. This

Figure 1: Simulation of two quadrotors avoiding a collision
trajectory from an unsafe controller. The collision is avoided
via supervision of our proposed algorithm.

approach avoids an explicit description of themaximal controlled in-
variant set of the dynamics, but requires precises knowledge of the
system dynamics for real world implementation and does not allow
for, e.g., system models containing disturbance inputs. The primary
difficulty in extending this approach to systems with disturbances
is that computing reachable sets is generally computationally pro-
hibitive for real-time implementations. A solution is introduced
in [2], which considers systems with disturbances, where hyper-
rectangular over-approximations of reachable sets are efficiently
computed in-the-loop by applying mixed monotone systems theory
[10]; the resulting RTA mechanism is then formulated as a robust
optimization problem, evaluated over the system’s reachable set.

In the present paper we use the framework proposed in [2] with
novel computation saving techniques in order to accommodate
highly dynamic systems that require fast controller update rates.We
are particularly motivated by applications to multirotor UAVs, and
a main contribution of this paper is the application of the proposed
RTA mechanism to an eight-dimensional system modeling two
multirotors in flight.

Our proposed algorithm is as follows. We first suppose existence
of a backup control policy that is verified a priori to render a given
subset of the state space robustly forward invariant. Motivated by
applications where such subsets are generally conservative, our ob-
jective is to allow the system to safely evolve beyond this initial veri-
fied subset. To do so, we propose computing an over-approximation
of the system’s reachable set under the backup control law. By en-
suring that the reachable set becomes fully contained within the
verified safe subset at some point along the prediction horizon,
safety is ensured and the system is allowed to evolve beyond the

https://orcid.org/1234-5678-9012


ICCPS ’22, May 4–6, 2022, Milan, Italy Christian Llanes, Matthew Abate, and Samuel Coogan

Safe and
Invariant

Unsafe

Nominal trajectory

Assured
trajectory

In-the-loop
reachability
analysis

Figure 2: Depiction of run time assurance approach. At each
time, the nominal control input ismodified in order to ensure
that the system’s reachable set is contained within a known
controlled forward invariant set.

verified subset. Moreover, the backup controller need not ever be
actually applied to the system; rather, it acts as a certificate that
continued safety is always within reach. This approach is depicted
graphically in Figure 2.

We demonstrate ourmethodology for collision avoidancewith an
experimental demonstration of two quadrotor UAVs. 1 We restrict
motion of each UAV to a vertical plane, and the result is an eight-
dimensional system where disturbances account for unmodeled
dynamics. The proposed RTA mechanism is implemented in ROS2
and runs on a Jetson TX2 single-board computer onboard each
vehicle. A flight management unit (FMU) runninng PX4 autopilot is
used for state estimation and control of the individual motors. The
FMU also runs a low-level body-rate controller tracking desired
body angular rates sent from the Jetson TX2. As demonstrated, and
unsafe position controller commands the vehicles to a singular local
position that leads to a collision. The proposed RTA mechanism
detects the unsafe trajectory and commands each vehicle to remain
a safe displacement distance.

This paper is organized as follows. We introduce preliminaries
on run time assurance in Section 3.1 and mixed monotone systems
theory in Section 3.2. In Section 4, we present our proposed RTA
algorithm and provide implementation pseudocode. In Section 5
we present a collision avoidance case study for multirotor UAVs
and in Section 6 we demonstrate our results via a flight experiment
of two quadrotors supervised by our proposed algorithm and an
unsafe controller that nominally would lead to a collision.

2 NOTATION
We denote vector entries via subscript, i.e., 𝑥𝑖 for 𝑖 ∈ {1, · · · , 𝑛}
denotes the 𝑖th entry of 𝑥 ∈ R𝑛 . Given 𝑥,𝑦 ∈ R𝑛 with 𝑥𝑖 ≤ 𝑦𝑖 for
all 𝑖 ,

[𝑥, 𝑦] := {𝑧 ∈ R𝑛 | 𝑥𝑖 ≤ 𝑧𝑖 ≤ 𝑦𝑖 for all 𝑖}
denotes the hyperrectangle with endpoints 𝑥 and 𝑦, and

⟨⟨𝑥, 𝑦⟩⟩ := {𝑧 ∈ R𝑛 | 𝑧𝑖 ∈ {𝑥𝑖 , 𝑦𝑖 } for all 𝑖}
denotes the finite set of 2𝑛 vertices of [𝑥, 𝑦]. We also allow 𝑥𝑖 ∈
R ∪ {−∞} and 𝑦𝑖 ∈ R ∪ {∞} so that [𝑥, 𝑦] defines an extended
1The code and video that accompanies this case study is publicly available through
the GaTech FACTS Lab Github: github.com/gtfactslab/Llanes_ICCPS2022.

hyperrectangle, that is, a hyperrectanglewith possibly infinite extent
in some coordinates.

Let (𝑥, 𝑦) denote the vector concatenation of 𝑥, 𝑦 ∈ R𝑛 , i.e.,
(𝑥, 𝑦) := [𝑥𝑇 𝑦𝑇 ]𝑇 ∈ R2𝑛 . Given 𝑎 = (𝑥,𝑦) ∈ R2𝑛 with 𝑥𝑖 ≤ 𝑦𝑖 for all
𝑖 , we denote by J𝑎K the hyperrectangle formed by the first and last
𝑛 components of 𝑥 , i.e., J𝑎K := [𝑥, 𝑦], and similarly ⟨⟨𝑎⟩⟩ := ⟨⟨𝑥, 𝑦⟩⟩.

3 PRELIMINARIES
3.1 Preliminaries on Run Time Assurance
We begin with a short review of run time assurance and the online
enforcement of safety constraints for controlled dynamical systems.
We are interested in systems that are affine-in-control

¤𝑥 = 𝑓 (𝑥 ) + 𝑔(𝑥 )𝑢 (1)
where 𝑥 ∈ X ⊂ R𝑛 is the system state and 𝑢 ∈ U ⊆ R𝑚 is the
control input. Throughout this section we denote by Φ(𝑡 ;𝑥, u) the
state of (1) reached at time 𝑡 when beginning at state 𝑥 ∈ X at
time 0 and evolving subject to the closed-loop feedback control
policy u : X → U, and we assume that the relevant functions 𝑓
and 𝑔 in (1) are continuously differentiable in their inputs so that
in particular Φ(𝑡 ;𝑥, u) is unique when it exists.

Safety of the system (1) is formalised via a set invariance con-
straint. A set 𝑆 ⊂ X is said to be controlled forward invariant for
(1) when there exists a control policy u so that Φ(𝑡 ;𝑥, u) ∈ 𝑆 for all
𝑥 ∈ 𝑆 and all 𝑡 ≥ 0. Throughout this section, we assume always
that subsets as in 𝑆 ⊂ X are defined to be the super-zero level-set
of some continuously differentiable function ℎ(𝑥 ), i.e.,

𝑆 := {𝑥 ∈ X | ℎ(𝑥 ) ≥ 0}, (2)
and the remainder of this section deals with constructing such sets.

Control barrier functions provide a means of designing con-
trollers to render 𝑆 forward invariant. Define by 𝐿𝑓 ℎ(𝑥 ) and 𝐿𝑔ℎ(𝑥 )
the Lie derivatives of ℎ(𝑥) along 𝑓 and 𝑔, respectively, 𝐿𝑓 ℎ(𝑥) =
𝜕ℎ
𝜕𝑥 (𝑥)𝑓 (𝑥), 𝐿𝑔ℎ(𝑥) =

𝜕ℎ
𝜕𝑥 (𝑥)𝑔(𝑥) . In the special instance where ℎ(𝑥)

has relative degree 1 on 𝑆 , i.e., 𝐿𝑔ℎ(𝑥 ) ̸= 0 for all 𝑥 ∈ 𝑆 , and(
sup
𝑢∈U

𝐿𝑓 ℎ(𝑥 ) + 𝐿𝑔ℎ(𝑥 )𝑢
)
≥ −𝛼(ℎ(𝑥 )) (3)

holds for all 𝑥 ∈ 𝑆 for some class-K function 𝛼 , the function ℎ(𝑥 ) is
said to be a control barrier function for (1). In this instance the set 𝑆
is controlled forward invariant for (1) and the argument solution
to the left side of (3) provides a controller which renders 𝑆 forward
invariant. In particular, for all control policies ud : X → U, the
assured controller given by

uRTA(𝑥 ) = argmin
𝑢∈U

|ud(𝑥 ) − 𝑢 |

s.t. 𝐿𝑓 ℎ(𝑥 ) + 𝐿𝑔ℎ(𝑥 )𝑢 ≥ −𝛼(ℎ(𝑥 ))
(4)

renders 𝑆 forward invariant for the closed-loop dynamics

¤𝑥 = 𝑓 (𝑥 ) + 𝑔(𝑥 )uRTA(𝑥 ) (5)
and uRTA(𝑥 ) evaluates to ud(𝑥 ) when 𝑥 is far from the boundary of
𝑆 .

Despite the novelty that control barrier functions provide, it
may be the case that 𝐿𝑔ℎ(𝑥) = 0 for some 𝑥 ∈ 𝑆 and in this in-
stance the controller (4) can generally not be employed to assure
the forward invariance of 𝑆 . To address this issue, techniques have
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been devised for constructing barrier functions using higher-order
time-derivatives of ℎ [19, 24]. For instance, when 𝐿𝑔ℎ(𝑥 ) = 0 for all
𝑥 it is sometimes possible to employ a barrier function

ℎ′(𝑥 ) = ℎ(𝑥 ) + 𝑐𝐿𝑓 ℎ(𝑥 ) (6)

for 𝑐 ≥ 0, i.e., it may be the case that 𝐿𝑔ℎ′(𝑥 ) ̸= 0 for all 𝑥 and in this
instance ℎ′(𝑥 ) can be used with (3) to provide a controller rendering
𝑆 forward invariant. This approach also generalizes to higher-order
time derivatives of the boundary function ℎ.

A problem arises when ℎ(𝑥 ) does not have a well defined relative
degree on 𝑆 , as discussed for the case of multirotor dynamics in the
following example.

Example 1. Consider a multirotor UAV fixed to the 𝑌–𝑍 plane,
i.e., a planar multirotor, with dynamics

¥𝑦 = 𝜏

𝑚
sin(𝜙)

¥𝑧 = 𝑔 − 𝜏

𝑚
cos(𝜙)

¤𝜙 = 𝜔𝑥

(7)

where 𝑦, 𝑧 ∈ R defines the UAV horizontal and vertical position,
𝜙 ∈ R is the roll angle, 𝜏, 𝜔x ∈ R are the applied thrust and angular
velocity, respectively, and 𝑔 is the gravitational constant. Define
the system state by 𝑥 = (𝑦, 𝑧, ¤𝑦, ¤𝑧, 𝜙) ∈ X = R5 and consider any set
𝑆 = {𝑥 ∈ R5 | ℎ(𝑦, 𝑧) ≥ 0}, i.e., the set boundary does not depend on
the UAV roll angle. Choose also any point 𝑥 ∈ X where 𝜕ℎ

𝜕𝑦 (𝑥) ̸= 0
and 𝜕ℎ

𝜕𝑧 (𝑥) = 0; for example ℎ1(𝑦) = −𝑦, i.e., the boundary of the
safe set is the 𝑦 = 0 vertical plane and a state 𝑥 is safe when 𝑦 ≤ 0.
Then ¤ℎ(𝑦, 𝑧) is not dependant on (𝜏, 𝜔x) and

¥ℎ(𝑥 ) = 𝜕2ℎ(𝑥 )
𝜕𝑦2

¤𝑦− 𝜕ℎ(𝑥 )
𝜕𝑦

𝜏 sin(𝜙)+ 𝜕
2ℎ(𝑥 )
𝜕𝑧2

¤𝑧+ 𝜕ℎ(𝑥 )
𝜕𝑧

(𝜏 cos(𝜙)−𝑔). (8)

Now, consider any state 𝑥 = (𝑦, 𝑧, ¤𝑦, ¤𝑧, 𝜙) where ¤𝑦 = ¤𝑧 = 0 and 𝜙 = 0,
i.e., the UAV is hovering. Then, ¥ℎ(𝑥) = 0 regardless of the input,
however note that ¥ℎ(𝑥) ̸= 0 when instead 𝜙 ̸= 0. In this way ℎ(𝑥)
does not have a well defined relative degree at 𝑥 . For this reason,
existing methods for forming assured controllers, which deal with
systems with an undefined relative degree at isolated points far
from the boundary of 𝑆 [23] do not apply. ■

A solution is provided in [11, 12] which explores controlled
forward invariance with respect to an implicitly defined safe set.
Given 𝑆 = {𝑥 ∈ X | ℎ(𝑥) ≥ 0}, assume knowledge of a backup
control policy ub : X → U that is known to render 𝑆 forward
invariant. Next, construct the controller

uRTA(𝑥 ) = argmin
𝑢∈U

|ud − 𝑢 |

s.t. ∇ℎ(Φ(𝑇 ;𝑥, ub)) 𝜕Φ(𝑇 ;𝑥, u
b)

𝜕𝑥
(𝑓 (𝑥 ) + 𝑔(𝑥 )𝑢) ≥ 𝛼(ℎ(𝑥 ))

(9)

for fixed 𝑇 ≥ 0 where ∇ℎ(𝑥 ) denotes the gradient of ℎ evaluated at
𝑥 . Now (9) renders the set

𝑆 ′ = {𝑥 ∈ X | Φ(𝑇 ;𝑥, ub) ∈ 𝑆} (10)

forward invariant for (1). The main idea of (9) is to consider, at all
times 𝑡 ≥ 0, a 𝑇 -time-unit simulation of (1) under ub and ensure

that the system state at time 𝑇 is contained within 𝑆 . This ap-
proach avoids the relative degree issue detailed above since safety
guarantees on (1) are determined via a system simulation; under
mild technical conditions, it is guaranteed that the implicit barrier
construction has relative degree 1 [9, Theorem 3]. Moreover, the
optimization problem in (9) is always feasible, provided 𝑥(0) ∈ 𝑆 ,
since ub(𝑥 ) ∈ U for all 𝑥 ∈ 𝑆 ′, i.e., a feasible solution to (9) always
exists.

The main result of this paper is to generalise the implicit control
barrier formation (9) to systems with disturbances, and we are
particularly motivated by applications in UAVs for which (i) real
world system behavior may deviate from the dynamic model, (ii)
the system’s relative degree may not exist at certain points, as
demonstrated in Example 1, and (iii) actuator constraints exist.
As discussed in later sections, we accommodate disturbances in
the implicit control barrier function formulation via the explicit
computation of reachable sets in the control loop.

3.2 Preliminaries on Mixed Monotone Systems
To accommodate uncertainty in the dynamics, and facilitate the
online computation of reachable sets, we propose using mixed
monotone systems theory [10]. A system is mixed monotone when
there exists a related decomposition function that separates the
system dynamics into increasing and decreasing components, and
this decomposition function is useful for, e.g., efficiently computing
reachable sets for the initial mixed monotone system. In this section,
we provide a brief overview of mixed monotone systems theory.

We consider a system with disturbances given by
¤𝑥 = 𝐹 (𝑥,𝑤 ) (11)

where 𝑥 ∈ X ⊆ R𝑛 is the state and𝑤 ∈ W ⊂ R𝑝 is the disturbance
input, and we assume throughout this section that the state space
X is an extended hyperrectangle and the disturbance spaceW :=
[𝑤,𝑤] is a hyperrectangle.

Definition 1. [10] Given a locally Lipschitz continuous function
𝑑 : X ×W × X ×W → R𝑛 , the system (11) is mixed monotone
with respect to 𝑑 if all of the following hold:
• For all 𝑥 ∈ X and all𝑤 ∈ W, 𝑑(𝑥, 𝑤, 𝑥, 𝑤 ) = 𝐹 (𝑥, 𝑤 ).
• For all 𝑖, 𝑗 ∈ {1, · · · , 𝑛} with 𝑖 ̸= 𝑗 , 𝜕𝑑𝑖

𝜕𝑥 𝑗
(𝑥, 𝑤, 𝑥, 𝑤 ) ≥ 0 for

all 𝑥, 𝑥 ∈ X and all 𝑤, 𝑤 ∈ W whenever the derivative
exists.
• For all 𝑖, 𝑗 ∈ {1, · · · , 𝑛}, 𝜕𝑑𝑖

𝜕𝑥 𝑗
(𝑥,𝑤, 𝑥,𝑤 ) ≤ 0 for all 𝑥, 𝑥 ∈ X

and all𝑤, 𝑤 ∈ W whenever the derivative exists.
• For all 𝑖 ∈ {1, · · · , 𝑛} and all𝑘 ∈ {1, · · · , 𝑚}, 𝜕𝑑𝑖

𝜕𝑤𝑘
(𝑥, 𝑤, 𝑥, 𝑤 ) ≥

0 and 𝜕𝑑𝑖
𝜕𝑤𝑘

(𝑥, 𝑤, 𝑥, 𝑤 ) ≤ 0 for all 𝑥, 𝑥 ∈ X and all𝑤, 𝑤 ∈ W
whenever the derivative exists. ■

When (11) is mixed monotone with respect to 𝑑 , then 𝑑 is a
decomposition function for (11), and when 𝑑 is clear from context
we simply say that (11) is mixed monotone. Given 𝑑 ,[ ¤𝑥

¤̂𝑥
]
= 𝑒(𝑥, 𝑥 ) :=

[
𝑑(𝑥, 𝑤, 𝑥, 𝑤 )
𝑑(𝑥, 𝑤, 𝑥, 𝑤 )

]
(12)

is the embedding system relative to 𝑑 and 𝑒 is the embedding function
relative to 𝑑 . Note that the embedding system contains no distur-
bances as 𝑑 is evaluated only at the extrema ofW = [𝑤,𝑤].



ICCPS ’22, May 4–6, 2022, Milan, Italy Christian Llanes, Matthew Abate, and Samuel Coogan

We next show how finite-time reachable sets for nondeterminis-
tic systems as in (11) are efficiently over-approximated via a single
simulation of the related embedding system (12). We denote by
Φ(𝑇 ; 𝑥,w) the state of (11) reached at time 𝑇 ≥ 0 when starting
from state 𝑥 at time 0 and when evolving subject to the disturbance
signalw : [0, 𝑇 ]→W. We assume always that disturbance signals
as in w(𝑡 ) are piecewise continuous in 𝑡 and that the vector field 𝐹
is Lipschitz continuous so that, in particular, Φ(𝑇 ; 𝑥,w) is unique
when it exists. Additionally, we denote by

𝑅(𝑇 ; 𝑥 ) := {Φ𝐹 (𝑇 ; 𝑥, w) ∈ X |w : [0, 𝑇 ]→W} (13)

the time-𝑇 reachable set of (11) from initial state 𝑥 ⊆ X.
We denote by Φ𝑒 (𝑇 ;𝑎) the unique state of (12) reached at time

𝑇 ≥ 0 when starting from state 𝑎 ∈ X × X at time 0, and we abuse
notation slightly so that Φ𝑒𝑇 (𝑥 ) := Φ𝑒 (𝑇 ; (𝑥, 𝑥 )) for 𝑥 ∈ X.
Proposition 1. [1] Let (11) be mixed monotone with respect to 𝑑 and
denote by 𝑒 the embedding function relative to 𝑑 . If Φ𝑒𝑡 (𝑥) ∈ X × X
for all 0 ≤ 𝑡 ≤ 𝑇 then 𝑅(𝑇 ;𝑥 ) ⊆ JΦ𝑒𝑇 (𝑥 )K. ■

Proposition 1 now implies that the reachable set of (11) is effi-
ciently over-approximated using a single simulation of the deter-
ministic embedding system (12): a simulation of the embedding
system for time horizon 𝑡 , starting from state (𝑥, 𝑥), identifies a
hyperrectangular over-approximation of 𝑅(𝑡 ;𝑥) where the largest
and smallest points in the rectangular approximation are taken
to be the first 𝑛 and last 𝑛 coordinates of the simulation endpoint
Φ𝐸
𝑡 (𝑥 ), respectively.

4 ALGORITHMIC IMPLEMENTATION
In this section, we present the proposed RTA mechanism that lever-
ages prior work [2], which was demonstrated on an academic exam-
ple of three platooned vehicles. We especially highlight important
novelties to enable implementation on a small low-cost offboard
computer with limited computing power at fast controller update
rates suitable for RTA of UAVs.

4.1 Algorithm Overview
We next turn our attention to affine-in-control and disturbance
nondeterministic dynamical systems

¤𝑥 = 𝑓 (𝑥 ) + 𝑔1(𝑥 )𝑢 + 𝑔2(𝑥 )𝑤 (14)

where 𝑥 ∈ X ⊂ R𝑛 is the state, 𝑢 ∈ U ⊆ R𝑚 is the control input
and 𝑤 ∈ W ⊂ R𝑝 is the disturbance. Additionally, we pair the
system (14) with unsafe set of system states X𝑢 ⊂ X which is to be
avoided.

For the purposes of this exposition, we assume given a backup
feedback controller ub : X → U as defined previously in Section
3.1 and constructed later in Section 5.2. The controller ub renders
robustly forward invariant a backup safe subregion 𝑆b = {𝑥 ∈
X | ℎ(𝑥) ≥ 0} ⊂ X \ Xu where ℎ : R𝑛 → R is assumed to be a con-
tinuously differentiable and concave function. The last assumption
in our approach is that the closed-loop backup dynamics

¤𝑥 = 𝐹b(𝑥,𝑤 ) := 𝑓 (𝑥 ) + 𝑔1(𝑥 )ub(𝑥 ) + 𝑔2(𝑥 )𝑤 (15)

are mixed monotone with respect to some known decomposition
function 𝑑 . Constructing 𝑑 is the subject of Section 5.3.

For a time horizon 𝑇 , define

𝛾 ideal(𝑇 ; 𝑥 ) := inf
𝑧∈JΦ𝑒

𝑇
(𝑥 )K

ℎ(𝑧) = min
𝑧∈⟨⟨Φ𝑒

𝑇
(𝑥 )⟩⟩

ℎ(𝑧), (16)

where the second equality comes from the concavity on ℎ. Given a
fixed backup horizon 𝑇b, further define

Ψideal(𝑥 ) := sup
0≤𝜏≤𝑇b

𝛾 ideal(𝜏 ; 𝑥 ). (17)

We aim to find a control input uRTA(𝑥) that filters a desired con-
troller ud(𝑥 ) by assessing the backup trajectory. Defining by𝑅b(𝑇 ; 𝑥 )
the time-𝑇 reachable set of (15) as in (13), if 𝑅b(𝑇 ; 𝑥 ) ⊆ 𝑆b for some
𝑇 ≤ 𝑇b, then there exists a time in the backup horizon where all
possible disturbances lead to trajectories in the safe subregion. We
then adjust the desired controller ud(𝑥) depending on how close
𝑅b(𝑇 ; 𝑥) is to the boundary of the safe subregion and how sensi-
tive 𝑅b(𝑇 ; 𝑥) to perturbations on the state 𝑥 . CBF algorithms are
well suited for this task, but require the utilized functions to be
differentiable, whereas 𝛾 ideal and Ψideal are generally not differen-
tiable due to the minimum operator in (16). Therefore, we use a
numerically stable continuously differentiable soft-min function
known as the Log-Sum-Exponential (LSE) that approximatesminS.
For some fixed parameter 𝑝 > 0 that controls the tightness of the
approximation, define

LSE(S) = − 1
𝑝
log

∑︁
𝑠∈S

exp(−𝑝 · 𝑠). (18)

We further denote the LSE over a set of evaluations of a barrier
function ℎ on the corners of a hyperrectangle 𝑎 by

LSEℎ(𝑎) := LSE( {ℎ(𝑧) | 𝑧 ∈ ⟨⟨𝑎⟩⟩ }). (19)

The LSE provides a differentiable relaxation for 𝛾 ideal and Ψideal

which we denote by 𝛾 and Ψ given by

𝛾 (𝑡 ; 𝑥 ) := LSEℎ(Φ𝑒𝑡 (𝑥 )) (20)
Ψ(𝑥 ) := sup

0≤𝜏≤𝑇b
𝛾 (𝜏 ; 𝑥 ). (21)

Differentiating Ψ(𝑥 ) with respect to 𝑥 , we have

𝜕Ψ
𝜕𝑥

(𝑥 ) = 𝜕𝛾

𝜕𝑥
(𝑡∗(𝑥 ), 𝑥) = 𝜕LSEℎ

𝜕𝑎
(Φ𝑒𝑡∗ (𝑥 ))

𝜕Φ𝑒𝑡∗
𝜕𝑥

(𝑥 ) (22)

where 𝑡∗(𝑥) is the time achieving the maximum in the right-hand
side of (21) and the first equality holds by [15, Theorem 1]. The
derivative 𝜕LSEℎ

𝜕𝑎 (·) is computed from (18) and (19) and is evaluated
at the embedding state Φ𝑒𝑡∗ (𝑥) at time 𝑡∗(𝑥) ≤ 𝑇b. The derivative
𝜕Φ𝑒

𝑡∗
𝜕𝑥 (𝑥 ) is computed efficiently via a sensitivity matrix 𝑆(𝑡 ) ∈ R2𝑛𝑥𝑛

as explained in, e.g., [21]. In particular, 𝑆(𝑡 ) = 𝜕Φ𝑒
𝑡

𝜕𝑥 (𝑥) where 𝑆(𝑡 ) is
computed from the matrix differential equation

𝑑𝑆

𝑑𝑡
(𝑡 ) = 𝜕𝑒

𝜕(𝑥, 𝑥 )
(Φ𝑒𝑡 (𝑥 ))𝑆(𝑡 ) (23)

with 𝑆(𝑡0) =
[
𝐼 𝐼

]𝑇 where 𝜕𝑒
𝜕(𝑥,𝑥 ) (Φ

𝑒
𝑡 (𝑥)) is the Jacobian matrix of

the embedding system with respect to the embedding state.
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Algorithm 1 Runtime Assurance for Nondeterministic Control
Systems

input : Current State 𝑥 ∈ X.
: Desired control policy ud : X → R𝑚 .
: Previous maximizer time 𝑡∗

𝑘−1 ∈ R.
output : Assured control input uRTA ∈ U.
predefined : Class-K function 𝛼 : R→ R.

1: function uRTA =RTA(ud, 𝑥 , 𝑡∗
𝑘−1)

2: if 𝑡∗
𝑘−1 initialized then

timevec← Point_Dist(𝑡∗
𝑘−1)

3: else timevec← linspace(0,𝑇b)
4: for all 𝑡 ∈ timevec compute Φ𝑒𝑡 from (12)
5: Γ← ∅
6: for all 𝑡 ∈ timevec append 𝛾 (𝑡 ;𝑥 ) from (20) to Γ
7: [Ψ(𝑥 ), max_psi_indx]← max(Γ)
8: 𝑡∗ ← timevec[max_psi_indx]
9: compute: 𝜕Ψ

𝜕𝑥 (𝑥 ) as in (22)–(23)
10: compute: 𝑢∗ = argmin𝑢∈[𝑢,𝑢] | |𝑢 − 𝑢d | |22

s.t. 𝜕Ψ𝜕𝑥 (𝑥 )(𝑓 (𝑥 ) + 𝑔1(𝑥 )𝑢 + 𝑔2(𝑥 )𝑤 ) ≥ −𝛼(Ψ(𝑥 ))
∀𝑤 ∈ ⟨⟨𝑤, 𝑤⟩⟩

11: if Program feasible then return 𝑢∗
12: else return ub(𝑥 )
13: end function

4.2 Pseudocode Implementation
We provide a pseduocode implementation of the proposed RTA
mechanism in Algorithm 1.

In Line 2 of Algorithm 1, we propose a method for significantly
reducing the number of computations required to identify the max-
imizing time 𝑡∗ by leveraging the fact that 𝑡∗ varies continuously
along embedding system trajectories. That is, given 𝑡∗

𝑘
, the max-

imizer of (21) at the 𝑘th iteration of Algorithm 1, then the next
maximizer 𝑡∗

𝑘+1 will be close to 𝑡
∗
𝑘
provided the controller update

rate is small. For this reason, we reduce the search space of Lines
4 and 6 by considering a subset of linspace(0,𝑇b), i.e., replacing
linspace(0,𝑇b) by Point_Dist(𝑡∗

𝑘−1) if 𝑡
∗
𝑘−1 is initialized returns a

set of points clustered about 𝑡∗
𝑘−1. In the experimental demonstra-

tion appearing in the next section, we employ this technique using
a point distribution algorithm that provides a set of logarithmically
distributed samples as outlined in Algorithm 2, centered at 𝑡∗

𝑘−1.
The logarithm-based point distribution algorithm requires defining
the number of points desired 𝑁b on the prediction horizon 𝑇b, the
timestep used for the discrete integration of the embedding system
∆𝑡 , and a power factor 𝜂 and constant multiplier 𝜇 that control the
desired distribution spacing. In the algorithm the variable 𝑛r and
𝑛l store the number of points to the right and left of 𝑡∗

𝑘−1 respec-
tively. The variables 𝜁r and 𝜁l are used in the logarithm increment
calculation for neighboring points.

Algorithm 2 Efficient logarithm-based point distribution algorithm

input : Argument maximizer from (21) 𝑡∗
𝑘−1 ∈ [0,𝑇𝑏].

output: Point distribution array Γ ∈ R𝑁𝑏

≥0
1: function Γ = Point_Dist(𝑡∗

𝑘−1)

2: 𝑛r ← round
( 1
2 (𝑁b − 1)

(
1 −

(
2𝑡−𝑇b
𝑇b

)𝜂 ))
3: 𝑛l ← 𝑁b − 𝑛r
4: 𝜁l = 1

𝑛l−1 (exp(𝜇𝑡
∗
𝑘−1) − 1)

5: for 𝑖 = 0, ..., 𝑛𝑙 − 1 do
6: Γ.insert(round( 𝑙𝑜𝑔(1+𝑖𝜁l)𝜇 )∆𝑡 )

7: if 𝑛r ̸= 0 then
8: 𝜁r = 1

𝑛r
(exp(𝜇(𝑇b − 𝑡∗𝑘−1) − 1)

9: for 𝑗 = 𝑛𝑟 − 1, 𝑛𝑟 − 2, ..., 0 do
10: Γ.insert(𝑇b − round( 𝑙𝑜𝑔(1+𝑗𝜁r)𝜇 )∆𝑡 )

11: end function

5 PROBLEM STATEMENT FOR DUAL
MULTIROTOR CASE STUDY

Controlling multiple UAVs operating in close proximity to each
other with environmental disturbances is challenging. The pro-
posed solution in this work is a RTA mechanism that filters a poten-
tially unsafe control input at runtime in order to guarantee safety.
In this section, we first define the equations of motion for a dual
planar multirotor system that serves as the primary case study of
the paper. Then, we propose a backup control policy for this system
that passively attracts the multirotors to a predefined safe displace-
ment distance based on a saturated dual-mass-spring-dampener
model and we provide a decomposition function for the dual planar
multirotor system under the dual-mass-spring-dampener backup
control policy. Finally, we demonstrate the effectiveness of the pro-
posed Algorithm 1 with a collision avoidance flight demonstration
of two quadrotor UAVs. The main limitation is from scaling the state
space where the largest time complexity is a result of computing
the barrier function over all corners of the hyperrectangle, which is
of order O(2𝑛). The reachability analysis is very efficient and only
requires solving an ordinary differential equation as opposed to
solving for the minimizer of the barrier function over a hyperrect-
angle. Therefore, each additional agent may run a version of the
algorithm as long as the state space is of appropriate size for fast
enough computations.

5.1 Dynamics of Dual Planar Multirotor System
We consider two multirotors of mass𝑚1 and𝑚2 each fixed to the
𝑌 -𝑍 plane, which we denote as the dual planar multirotor system
and consists of two copies of the planar multirotor UAV model
from Example 1 in Section 3.1. The state, control, and constant
variables are indexed by 1 and 2 for each respective multirotor,
and we replace the four positional states 𝑦1, 𝑦2, 𝑧1, and 𝑧2 with
two relative displacement states 𝛿𝑦 = 𝑦2 − 𝑦1 and 𝛿𝑧 = 𝑧2 − 𝑧1.
We denote the velocity in 𝑦 and 𝑧 by 𝑣y and 𝑣z. We also denote
the roll angle of each multirotor by 𝜙1, 𝜙2 and the standard local
gravity 𝑔. The right-handed axes conventions used in this paper
are North-East-Down (NED) for the inertial reference frame and
Forward-Right-Down (FRD) for the vehicle body-fixed frame. We
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make an observation that a low-level body-rate controller tracks
the body-rates and collective thrust at timescales much faster than
the rest of the states and we therefore make the assumption that we
have instant control of the body-rates and thrust of each multirotor.
This leads to the chosen control inputs of collective thrust 𝜏 ∈ R
and a desired roll rate 𝜔x ∈ R.

Further, we introduce a six-dimensional disturbance input to the
linear acceleration and roll rate components to capture unmodeled
dynamics and deviations between the dual planar multirotor model
and a full six degree of freedom model. We assume the disturbance
is bounded so that the disturbance space isW := [𝑤, 𝑤] for𝑤, 𝑤 ∈
R6 and 𝑤𝑖 ≤ 𝑤𝑖 for all 𝑖 . The resulting eight-dimensional dual
planar multirotor dynamics are given by



¤𝑣y1
¤𝑣y2
¤𝑣z1
¤𝑣z2¤𝜙1¤𝜙2¤𝛿y¤𝛿z


=



𝑚−11 (𝜏1 sin(𝜙1)) +𝑤1
𝑚−12 (𝜏2 sin(𝜙2)) +𝑤2

𝑚−11 (𝑚1𝑔 − 𝜏1 cos(𝜙1)) +𝑤3
𝑚−12 (𝑚2𝑔 − 𝜏2 cos(𝜙2)) +𝑤4

𝜔x1 +𝑤5
𝜔x2 +𝑤6
𝑣y2 − 𝑣y1
𝑣z2 − 𝑣z1


. (24)

Note that the dual planar multirotor dynamics (24) suffer from the
same relative degree issue explored in Example 1 for the case of
a single multirotor, and for this reason standard CBF-based con-
trollers can generally not be employed with (24) to assure system
safety. The RTA approach taken in this work employs instead online
reachability analysis under a verified safe backup controller—see,
e.g., (9)—in order to avoid the relative degree issue detailed above.

5.2 Backup Controller for Dual Planar
Multirotors

In the context of the dual planar multirotor system (24), our objec-
tive is to ensure a safe displacement between the multirotors at all
times. Safety of the system (24) is defined in terms of a constraint
on the relative displacements 𝛿𝑦, 𝛿𝑧 : we consider the system safe
if (𝛿𝑦, 𝛿𝑧 ) remains within a ball of a nominal safe displacement
that does not contain (𝛿𝑦, 𝛿𝑧 ) = (0, 0). Note that a safe set defined
with respect only to displacement, as above, cannot generally be
used directly to obtain a standard CBF-based safe controller due
to the system having a nonexistent relative degree at particular
points as demonstrated in Example 1 of Section 3.1. As discussed
in the Introduction and detailed in Section 4, the RTA mechanism
proposed in this paper requires a nominal backup control strategy
that guarantees safety in a (generally conservative) subset of the
state space. For the backup controller, we propose desired forces
in the inertial 𝑦 and 𝑧 directions for each multirotor that imitate a
nonlinear dual mass spring and friction system with spring con-
stant 𝐾s for controlling the maximum force acted on by the springs
and saturation 𝜎 for controlling the distance at which the springs
saturate. The formulation for the desired forces on each multirotor

to imitate the spring and friction dynamics are
𝑓y1 = 𝐾s tanh[𝜎(𝛿𝑦 − 𝐷y)] − 𝑏𝑣y1
𝑓y2 = −𝐾s tanh[𝜎(𝛿𝑦 − 𝐷y)] − 𝑏𝑣y2
𝑓z1 = 𝐾s tanh[𝜎(𝛿𝑧 − 𝐷z)] −𝑚1𝑔 − 𝑏𝑣z1
𝑓z2 = −𝐾s tanh[𝜎(𝛿𝑧 − 𝐷z)] −𝑚2𝑔 − 𝑏𝑣z2

(25)

with 𝐷y and 𝐷z as the nominal safe backup distance in 𝑦 and 𝑧 re-
spectively. The total thrust desired for each multirotor is computed
by constructing a desired force vector and projecting it onto the
multirotor body-fixed 𝑧-axis as formulated by

𝜏1 = 𝑓y1 sin(𝜙1) − 𝑓z1 cos(𝜙1)
𝜏2 = 𝑓y2 sin(𝜙2) − 𝑓z2 cos(𝜙2). (26)

The desired roll rate is formulated so that the thrust vector of
the vehicle tracks the desired force vector,

𝑤x1 = 𝐾𝑟
©«

𝑓z1√︃
𝑓 2z1 + 𝑓

2
y1

sin(𝜙1) +
𝑓y1√︃

𝑓 2z1 + 𝑓
2
y1

cos(𝜙1)
ª®®¬

𝑤x2 = 𝐾𝑟
©«

𝑓z2√︃
𝑓 2z2 + 𝑓

2
y2

sin(𝜙2) +
𝑓y2√︃

𝑓 2z2 + 𝑓
2
y2

cos(𝜙2)
ª®®¬ .

(27)

Hereafter, we denote the closed-loop dual planar multirotor dy-
namics (24) under the backup control policy (25)–(27) as in (15),
where we now use the shorthand notation

𝑥 = (𝑣y1, 𝑣y2, 𝑣z1, 𝑣z2, 𝜙1, 𝜙2, 𝛿𝑦, 𝛿𝑧 ) (28)
𝑢 = (𝜏1, 𝜏2, 𝜔x1, 𝜔x2) (29)

to describe the system state and control input respectively.
We construct a verified-but-small backup subregion by consider-

ing a local linearization of (15). The linearized system is asymptoti-
cally stable to 𝑥∗ = (0, 0, 0, 0, 0, 0, 𝐷y, 𝐷z), and we obtain a quadratic
Lyapunov function 𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥 for the linearized system where
𝑥 = 𝑥 − 𝑥∗ for 𝑃 obtained from the linearization. Therefore,

𝑆b = {𝑥 ∈ R8 |𝑉 (𝑥 ) ≤ 𝜖} (30)
is a robustly forward invariant safe set (defined formally below)
for the nonlinear backup dynamics (15) for some 𝜖 > 0 determined
numerically.

Proposition 2. Algorithm 1 solves the problem statement for the
dual multirotor case study. ■

Proof sketch of Proposition 2. The RTA receives as inputs
the current system state 𝑥 and the desired control input𝑢d. A linear
spacing of points in [0,𝑇b] is obtained in Line 2, and stored in the
point distribution array timevec. For each time 𝑡 in timevec, the
time-𝑡 reachable set of the backup dynamics (15) is computed in
Line 3 using the mixed monotonicity property. For each hyper-
rectangular reachable set approximation, the LSE of ℎ evaluated
over the corners of the hyperrectangle is computed in Line 5 and
stored in Γ. In Line 6, Ψ(𝑥 ) from (21) is computed as the maximum
element of Γ, and the maximizing time 𝑡∗ is assigned in Line 7. Line
8 computes the derivative of Ψ(𝑥 ) with respect to 𝑥 using sensitiv-
ity analysis. Finally, an assured control input is computed in Line
9 using a control barrier function type formulation, as discussed
above. If ever the optimization problem in Line 9 is infeasible, which



Safety from Fast, In-the-Loop Reachability with Application to UAVs ICCPS ’22, May 4–6, 2022, Milan, Italy

can only happen in the rare case that the state is such there is a
significant difference between the LSE approximation of the bar-
rier minimum and the true minimum, the backup control input is
applied, guaranteeing the system returns to the safe region 𝑆b and
avoids the unsafe region Xu along the way. □

5.3 Decomposing The Closed-Loop Multirotor
Dynamics

A key assumption in our proposed RTA mechanism is that the
backup dynamics (15) are mixed monotone with respect to a known
decomposition function 𝑑(𝑥,𝑤, 𝑥,𝑤 ). Several general methods ex-
ist for constructing decomposition functions for continuous-time
dynamical systems: see [18] for decomposition functions derived
from bounds on the system Jacobian matrix; see [1] for decompo-
sition functions for systems defined by polynomial vector fields;
and see [5] for a decomposition function construction defined as a
pointwise-in-time optimization problem. All of these methods over-
approximate the reachable set with various levels of conservatism.
The pointwise-in-time optimization provides the tightest approxi-
mation of the reachable set with a hyperrrectangle and therefore is
the least conservative. The conservatism of the overapproximation
can be further reduced via a transformation [4] from a hyperrectan-
gle to a parallelotope. In this work, we decompose the closed-loop
dual planar multirotor dynamics (15) using the procedure detailed
in [3] whereby the system model is first represented as an inter-
connection amongst several subsystems and then a decomposition
function for (15) is formed from individual decomposition functions
for the subsystems in the interconnection.

Lemma 1. The closed-loop dual planar multirotor dynamics (15)
are mixed monotone. ■

We sketch the proof of Lemma 1 by constructing the first entry of
decomposition function 𝑑 for the closed-loop dual planar multirotor
dynamics (15). The remaining entries either following similarly or
from existing standard techniques.

Decomposition functions are generally constructed elementwise,
as the conditions on 𝑑𝑖 for some 𝑖 ∈ {1, · · · , 𝑛} specified in Defi-
nition 1 are dependent only on the 𝑖th entry of 𝐹b. As such, the
first entry of the decomposition function 𝑑 is derived from the first
entry of the backup dynamics ¤𝑥 = 𝐹 b(𝑥,𝑤 ), given by

𝐹1(𝑥,𝑤 ) =𝑚−11 (𝜏1(𝑥 ) sin(𝜙1)) +𝑤1 (31)
where 𝜏(𝑥 ) is given by (26). The result [3, Theorem 1] now implies
that the first entry of 𝑑 is given by

𝑑1(𝑥,𝑤, 𝑥,𝑤 ) =

𝑚−11 𝑑𝑢1𝑢2 (T1(𝑥, 𝑥 ), 𝑑sin(𝜙1, 𝜙1),T1(𝑥, 𝑥 ), 𝑑sin(𝜙1, 𝜙1)) +𝑤1 (32)
where 𝑑𝑢1𝑢2 is a decomposition function for

¤𝑥 = 𝑢1𝑢2 (33)
and is given by

𝑑𝑢1𝑢2 (𝑢,𝑢) =
{
min{𝑢1𝑢2, 𝑢1𝑢2, 𝑢1𝑢2, 𝑢1𝑢2} if 𝑢 ⪯ 𝑢
max{𝑢1𝑢2, 𝑢1𝑢2, 𝑢1𝑢2, 𝑢1𝑢2} if 𝑢 ⪯ 𝑢, (34)

where 𝑑sin is a decomposition function for
¤𝑥 = sin(𝑢) (35)

Figure 3: Photograph of a 700g quadrotor used in the flight
experiment. A Jetson TX2 single-board computer running
ROS2 is fixed on top of the vehicle and is connected to a
flight controller under the vehicle running PX4 autopilot for
estimation and motor control.

and is given by

𝑑sin(𝑢,𝑢) = sin(𝑢) + 𝑢 − 𝑢 (36)

and where T1(𝑥, 𝑥) is an inclusion function for 𝜏1(𝑥), as defined in
[16].

6 HARDWARE DEMONSTRATION
In this section, we demonstrate the proposed algorithm in a real
world flight experiment with two 250 scale 700g quadrotors shown
in Figure 3, each with a Jetson TX2 on-board computer and a flight
controller (FC) running PX4 autopilot with an inertial measure-
ment unit (IMU). The on-board computer runs ROS2 and receives
external position measurements from OptiTrack motion capture
cameras. The external position measurements are sent to the FC
and processed by the PX4 extended Kalman filter estimation mod-
ule. The primary controller and our proposed RTA algorithm is
run on ROS2 and sends body-rate and thrust commands to the FC.
The flight controller then uses a low-level body-rate controller to
output pulse-width modulation (PWM) commands to the electronic
speed controller and finally to the individual motors.

For this demonstration we constrain the two quadrotors shown
in Figure 4 to remain within the 𝑌–𝑍 plane and maintain a yaw
angle of zero. This results in inter-vehicle safety for the hardware
demonstration a 2𝐷 problem as in the dual planar multirotor system
introduced in Section 5. We then use the backup controller defined
in Section 5.2 with parameters 𝐾s = 60, 𝜎 = 0.06, 𝑏 = 7, 𝐾r = 6, 𝐷y =
1m, 𝐷z = 1m. For the logarithm-based point distribution algorithm
we use 𝜂 = 3, 𝜇 = 0.01, ∆𝑡 = 10ms, and 𝑁b = 9. The bounded
disturbance in the linear acceleration isW1,2 = [−5 × 10−7, 5 ×
10−7]m s−2 for the Y-axis andW3,4 = [−1×10−4, 1×10−4]m s−2 for
the Z-axis. The disturbance in the roll rate isW5,6 = [−1× 10−5, 1×
10−5]s−1 which mainly is associated with the center of gravity
not coinciding with the center of thrust. For demonstration, the
unsafe primary controller is constructed in a similar approach to the
backup controller with the relative position terms 𝛿y and 𝛿z being
replaced with absolute position, although any primary controller
would be valid. The verified backup subregion is constructed from
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Figure 4: Photograph of the two quadrotors during the flight
experiment. The vehicles are both commanded by an unsafe
controller with a desired position that nominally results
in a collision. The proposed RTA algorithm supervises the
vehicles and filters the unsafe controller resulting in a safe
displacement while the vehicles are centrally positioned at
the desired unsafe position.

a robustly forward invariant safe set 𝑆b as previously mentioned in
Section 5.2.

The flight demonstration is performed by initially taking off and
settling to the defined safe displacement distance 𝐷y and 𝐷z. Then,
our proposed algorithm is enabled to supervise the unsafe primary
position controller. Finally, an unsafe position command is sent
to the primary controller that would nominally lead to a collision
at (𝑦, 𝑧) = (0,−2)m. Choosing when to intervene is dependent on
the Class-K function 𝛼 in Algorithm 1 and for this experiment
we use 𝛼(Ψ(𝑥)) = 100Ψ(𝑥)3. To solve the optimization problem in
Algorithm 1 we use an operator splitting quadratic program solver
[22] that achieves convergence in approximately 500µs. We also use
a logarithm-based point distribution algorithm to unevenly space
nine points along a backup horizon of 𝑇b = 1s within 7µs so that
the majority of points are near 𝑡∗k−1 as stated in Section 4.2 for the
purposes of reducing computation time. The execution time for
Algorithm 1 for the hardware demonstration is plotted as a his-
togram in Figure 8. The execution time with the greatest frequency
of occurence is between 2.5ms–3.0ms for the dual planar multirotor
dynamics with the chosen barrier function and distribution algo-
rithm parameters described above. This enables achieving control
update rates with the RTA mechanism of up to 250Hz, although
we run the control loop at 100Hz for the flight demonstration and
observe satisfactory results.

As previously mentioned, the proposed RTA algorithm filters
the desired control inputs when necessary to avoid collision, as
shown in Figure 5. In particular, upon activating the unsafe position
control commands at time 𝑡 = 6.1s, the proposed RTA algorithm
allows the desired control inputs to be applied for the safe position
control commands and shortly after activating the unsafe position
commands until the ¤Ψ lower bound from the CBF constraint in
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(a) Quadrotor 1 roll rate command vs. experiment time.
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(b) Quadrotor 1 thrust command vs. experiment time.
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(c) Quadrotor 2 roll rate command vs. experiment time.

0 5 10 15 20

6

7

8

9

Time [s]

𝜏
2
[N

]

(d) Quadrotor 2 thrust command vs. experiment time.

Figure 5: Case Study: applied and desired roll rate and thrust
command plots for the dual quadrotor experiment. The de-
sired input from the primary controller is plotted in blue
and applied input of the RTA algorithm is in red. The black
dashed line represents the activation of the unsafe controller.
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(a) Barrier evaluation Ψ(𝑥 ) vs. experiment time.
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(b) Argument solution 𝑡∗ for (21) vs. experiment time. At time
𝑡∗ the systems reachable set under the backup control policy in
contained within 𝑆b

Figure 6: Case Study: barrier evaluation Ψ(𝑥 ) and correspond-
ing maximizing time 𝑡∗ for the dual quadrotor experiment.
The maximum barrier evaluation is Ψ = 0.03 and the quadro-
tors are considered safe if Ψ ≥ 0. For this particular example,
the value of Ψ will continue converging to zero if the exper-
iment time is extended. The backup prediction horizon is
𝑇b = 1s. The black dashed line represents the activation of
the unsafe position control commands.

Algorithm 1 is not satisfied by the desired control inputs. The math-
ematical description of the lower bound is defined in the function
𝛼(Ψ(𝑥 )) = 100Ψ(𝑥 )3 which is dependent on Ψ(𝑥 ). Notice in Figure 6a,
the value of Ψ(𝑥 ) decreases after activating the unsafe position con-
trol commands. As Ψ(𝑥 ) decreases this further constrains the lower
bound on ¤Ψ and we see that ¤Ψ is initially decreasing quickly upon
activating the unsafe position control commands at time 𝑡 = 6.1s,
but the convergence decreases throughout the experiment as a re-
sult of the lower bound constraint. Ideally, the value of Ψ(𝑥) will
converge to zero if the experiment is continued.

7 CONCLUSION
This work presents an efficient algorithm for runtime assurance of
control systems with disturbance and demonstrates the approach
with a hardware flight demonstration of two quadrotors avoiding
collision. The proposed runtime assurance controller computes
reachable sets under a backup control law to ensure the system

remains within proximity of a safe backup subregion and does
not enter an unsafe region. The experiment is implemented on
embedded hardware and is demonstrated by a dual planar mul-
tirotor system case study with a controller update rate of 100Hz.
We demonstrate that the multirotors remain a safe displacement
distance apart with our RTA algorithm while commanded by a
nominally unsafe controller.
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(a) Trajectories of quadrotors in flight ex-
periment in (𝛿y, 𝛿z) coordinates.
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(b) Figure 7a, magnified, as to show the
reachable set approximation derived from
the online application of Proposition 1.
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(c) Absolute position trajectories of quadro-
tor 1 in red and quadrotor 2 in blue. Both
vehicles are commanded to (𝑦, 𝑧) = (0,−2)m.

Figure 7: Case Study: projection of the relative displacement state trajectories. Both vehicles are commanded to (𝑦, 𝑧) = (0,−2m)
which would nominally lead to a collision, i.e., the displacement states converge to (𝛿y, 𝛿z) = (0, 0). The RTA mechanism applies
the performance control input to the system until the reachable set over-approximation, shown in red, approaches the boundary
of the backup sub-region 𝑆b. At this point, the RTA mechanism filters the performance control input to ensure safety. The
trajectory of the embedding system is shown in blue and a (𝛿y, 𝛿z) projection of the backup sub-region 𝑆b at time 𝑡∗ is shown in
green. The true state trajectory of the dual quadrotor system is illustrated in black.
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Figure 8: Case Study: Histogram of execution time for Algo-
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