
Experimental Validation on Aerial Vehicles
of Real-Time Motion Planning with

Continuous-Time Q-Learning ⋆

Christian Llanes ∗, Joshua Netter ∗,
Kyriakos G. Vamvoudakis ∗, Samuel Coogan ∗

∗ Georgia Institute of Technology, Atlanta, GA 30332 (e-mails:
christian.llanes@gatech.edu, jnetter6@gatech.edu, kyriakos@gatech.edu,

sam.coogan@gatech.edu)

Abstract: In this paper, we propose an algorithm and implementation for real-time optimized
kinodynamic motion planning for aerial vehicles with unknown dynamics in crowded environ-
ments. A random-sampling space-filling tree is used for both planning and rapidly replanning a
path through the environment. Then, continuous-time Q-learning is used to approximately solve
the resulting finite-horizon optimal control problem online to optimally track the planned path.
To facilitate the Q-learning, we propose an actor-critic structure with integral reinforcement
learning to approximate the Hamilton-Jacobi-Bellman equation. The critic approximates the
Q-function while the actor approximates the control policy. We demonstrate our approach on
custom drone hardware in which all planning, learning, and control computations are conducted
onboard in real-time.

Keywords: Mission planning and decision making, trajectory and path planning, optimal
control, reinforcement learning, UAVs

1. INTRODUCTION

Over the past decade, unmanned aerial vehicles (UAVs)
have become increasingly accessible to a wide variety of
consumers and are available for a wide variety of purposes
such as search and rescue, package delivery, aerial survey-
ing and photography, and other tasks that cannot easily
be accomplished on the ground. This has influenced a
greater demand for autonomous capabilities, and perhaps
the most critical component for these autonomous systems
is planning and navigation for objective completion. This
poses a significant challenge, as UAVs often operate in
dynamic environments that make pre-flight path planning
an impossibility. Instead, these vehicles must be able to
plan and adjust their path while in flight to properly
respond to a changing environment. Autonomous flight
is further complicated by the problem of finding the op-
timal control to traverse these planned paths. UAVs are
complicated systems, and any model constructed of the
system dynamics will inevitably be simplified. Addition-
ally, even if the system dynamics are known, solving the
Hamilton-Jacobi-Bellman equation for the optimal control
is a computationally intensive process as shown in Lewis
et al. (2012), and UAVs may not be equipped to find a
solution. Thus, it is crucial for UAVs to be capable of not
only adjusting their planned path in real-time, but also
be capable of quickly estimating their system dynamics
and optimal control as well. To this end, we propose an
algorithm for kinodynamic motion planning in real-time
through a dynamic environment, as well as a method for
⋆ This work is supported in part by NSF under grant Nos. NRI-
1924978, CAREER CPS-1851588, CPS-2038589, CPS-2227185, and
by NASA ULI under grant number 80NSSC20M0161.

estimating a solution for the finite-horizon optimal control
problem in a system with unknown dynamics.

1.1 Related Work

Motion planning through dynamic environments is a chal-
lenging problem, requiring not only the ability to plan
a path through high-dimensional spaces but also replan
these paths as the obstacle space changes. To address
these challenges, Otte and Frazzoli (2014, 2016) propose
RRTX, an asymptotically optimal random-sampling mo-
tion planning algorithm for dynamic environments. How-
ever, this algorithm may encounter difficulties when con-
sidering motion constraints on real systems such as UAVs.
These constrained motion planning concerns are presented
as the kinodynamic motion planning problem in Donald
et al. (1993). In Kontoudis et al. (2020, 2022), the RRTX

algorithm is adjusted for kinodynamic motion planning by
augmenting the obstacles in real-time in order to ensure
that the agent following the path does not collide with the
true obstacle space.

A UAV navigating a real environment requires not only a
method to plan a safe path, but also a control framework
to move it along this planned path. Unfortunately, there
is no guarantee that the system dynamics of this UAV
are known beforehand. To prepare for unknown dynamics,
the motion planning approach must use adaptive control
techniques from Ioannou and Sun (2012). In Vamvoudakis
and Lewis (2009), the authors use reinforcement learning
from Sutton and Barto (1998) to solve the continuous
time infinite-horizon optimal control problem. This ap-
proach is later adapted to find the optimal control for

the kinodynamic motion planning problem in Kontoudis
and Vamvoudakis (2019). This work is further expanded
in Netter et al. (2021), where the authors use a similar
approach to examine the motions of other agents to predict
their motion planning strategies.

1.2 Contributions

In this work we build upon the model-free Q-learning for-
mulation from Kontoudis and Vamvoudakis (2019) along
with RRTX for motion planning to develop a novel soft-
ware and hardware stack applying these methods to a
quadrotor UAV. We therefore demonstrate for the first
time the real-time capabilities of the proposed motion
planning and model-free optimal control pipeline.

This paper is organized as follows. We introduce the
model-free Q-learning control problem formulation in Sec-
tion 2. In Section 3 we describe how the Q-learning formu-
lation is applied to a UAV with an inner-loop rotational
dynamics regulation controller. In Section 4.2, we first
present the algorithm used in our implementation for the
real hardware flight experiment. Then, we demonstrate
our results with a real hardware flight experiment on a
quadrotor UAV with a RRTX path planning algorithm and
Q-learning model-free controller.

1.3 Notation

We denote the symmetric Kronecker product for vectors
U and V by U ⊗s V . We also denote the symmetric
half vectorization of a symmetric matrix A ∈ Rn×n by
svec(A) ∈ R 1

2n(n+1) as in Schäcke (2013).

2. PROBLEM FORMULATION

Consider a linear time-invariant (LTI) and continuous-
time system

ẋ = Ax(t) +Bu(t), x(0) = x0, t ≥ 0 (1)

with state x(t) ∈ X ⊆ Rn, control u(t) ∈ U ⊆ Rm, plant
matrix A ∈ Rn×n, and input matrix B ∈ Rn×m. We seek
to drive the state to a desired reference xr, therefore we
define a new state variable x̄(t) = x(t) − xr. The control
strategy is selected to minimize a finite horizon quadratic
cost function that results in the value function

V ⋆(x̄; t0, T) = min
u

(
ϕ(T) +

1

2

∫ T

t0

(x̄⊤Mx̄+ u⊤Ru)dτ

)
(2)

for finite horizon T , terminal penalty function ϕ(T) =
1
2 x̄

⊤(T)P (T)x̄(T), terminal Riccati matrix P (T) ∈ Rn×n ≻
0, state penalty matrix M ∈ Rn×n ⪰ 0, and control
penalty matrix R ∈ Rm×m ≻ 0. The Hamiltonian with
respect to (1) and (2) is defined as

H
(
x̄;u;

∂V ⋆

∂x̄
,
∂V ⋆

∂t

)
=
∂V ⋆

∂t
+
∂V ⋆

∂x̄

⊤
(Ax̄+Bu)

+
1

2
(x̄⊤Mx̄+ u⊤Ru).

(3)

Since (1) is linear and the associated cost function is
quadratic, then the solution to (3) is a quadratic cost-to-go
defined as

V ⋆(x̄; t) =
1

2
x̄⊤P (t)x̄ (4)

for P (t) ∈ Rn×n ≻ 0 as the solution to the differential
Riccati equation

−Ṗ (t) = P (t)A+A⊤P (t) +M − P (t)BR−1B⊤P (t). (5)

The optimal control is therefore defined as

u⋆(x̄; t) = −R−1B⊤P (t)x̄, ∀x̄, t ≥ 0. (6)

We next propose an action-dependent quality function
defined as

Q(x̄;u; t) = V ⋆(x̄; t) +H
(
x̄;u;

∂V ⋆

∂x̄
,
∂V ⋆

∂t

)
= V ⋆(x̄; t) +

1

2
(x̄⊤Mx̄+ u⊤Ru)

+ x̄⊤P (t)(Ax̄+Bu) +
1

2
x̄⊤Ṗ (t)x̄

(7)

where Q(x̄;u; t) ∈ R. We rewrite (7) in a compact matrix
form by first constructing an augmented state U :=
[x̄⊤u⊤]⊤ ∈ Rn+m and therefore have

Q(x̄;u; t) = 1

2
U⊤Q̄(t)U :=

1

2
U⊤

[
Qxx(t) Qxu(t)
Qux(t) Quu

]
U (8)

where Qxx(t) = Ṗ (t) + P (t) + M + P (t)A + A⊤P (t),
Qxu(t) = Q⊤

ux = P (t)B, and Quu = R. By using the
stationary condition ∂Q(x̄;u; t/∂u) = 0 we find a model-
free expression for the optimal control u⋆ in (6) as

u⋆(x̄; t) = argmin
u

Q(x̄;u; t) = −Q−1
uuQux(t)x̄ (9)

We implement the Q-learning framework as an actor and
critic network structure. The critic approximates the Q-
function and the actor performs a policy improvement.
The critic approximator is defined as

Q⋆(x̄;u⋆; t) =
1

2
U⊤

[
Qxx(t) Qxu(t)
Qux(t) Quu

]
U

Q⋆(x̄;u⋆; t) =
1

2
svec(Q̄(t))⊤(U ⊗s U).

(10)

where svec(Q̄(t)) is the symmetric vectorization of the
symmetric matrix Q̄ to reduce computational complexity
of the algorithm. Then, we let ν(t)⊤Wc := 1

2 svec(Q̄) for

critic weight vector Wc ∈ R
(n+m)(n+m+1)

2 and radial basis

function ν(t) ∈ R
(n+m)(n+m+1)

2 × (n+m)(n+m+1)
2 . With this we

rewrite the Q-function as

Q⋆(x̄;u⋆; t) =W⊤
c ν(t)(U ⊗s U). (11)

We use a similar approach for the actor and assign
µ(t)⊤Wa := −Q−1

uuQux(t) to rewrite (9) as

u⋆(x̄; t) =W⊤
a µ(t)x̄ (12)

for actor weight matrix Wa ∈ Rn×m and radial basis
function µ(t) ∈ Rn×n. Since the system is unknown and
our formulation is model-free, we do not know the ideal
critic weights Wc a priori. Therefore, we use estimated
critic weights, Ŵc, and apply an adaptive parameter
estimation technique from Ioannou and Sun (2012) to
approximate the Q-function as

Q̂(x̄;u; t) = Ŵ⊤
c ν(t)(U ⊗s U). (13)

Using the same parameter estimation technique as in (13)
we rewrite the actor from current estimates of the actor
weights Ŵa as

û(x̄; t) = Ŵ⊤
a µ(t)x̄. (14)

Using an integral reinforcement learning (IRL) approach
from Vrabie et al. (2012) we write the IRL Bellman
equation as

Q⋆(x̄(t);u⋆(t); t) = Q⋆(x̄(t−∆t);u⋆(t−∆t); t−∆t)

− 1

2

∫ t

t−∆t

(x̄⊤Mx̄+ u⊤Ru)dτ

Q⋆(x̄(T);u⋆(T);T) =
1

2
x̄⊤(T)P (T)x̄

(15)

for a small time interval ∆t ∈ R+. We next aim to
satisfy the Bellman equation through an iterative online
formulation by defining the critic errors ec1 , ec2 ∈ R. We
define the first critic error ec1 as

ec1 = Q̂(x̄(t); ū(t); t)− Q̂(x̄(t−∆t); ū(t−∆t); t−∆t)

+
1

2

∫ t

t−∆t

(x̄⊤Mx̄+ u⊤Ru)dτ

= Ŵ⊤
c [ν(t)(U(t)⊗s U(t))

− ν(t−∆t)(U(t−∆t)⊗s U(t−∆t))]

+
1

2

∫ t

t−∆t

(x̄⊤Mx̄+ u⊤Ru)dτ.

(16)

The second critic error is defined as

ec2 =
1

2
x̄⊤(t)P (T)x̄(t)− Ŵ⊤

c ν(t)(U(t)⊗s U(t)). (17)

The actor approximation error ea ∈ Rm is defined as

ea = Ŵ⊤
a µ(t)x̄+ Q̂−1

uu Q̂ux(t)x̄ (18)

for Q̂−1
uu and Q̂ux(t) from the critic approximation ν(t)⊤Ŵc.

Using adaptive control techniques from Ioannou and Sun
(2012) we seek to minimize a cost function based on
squared norm errors

K1(Ŵc, Ŵc(T)) =
1

2
||ec1 ||2+

1

2
||ec2 ||2

K2(Ŵa) =
1

2
||ea||2.

(19)

To minimize the cost function (19), we implement a
normalized gradient descent algorithm for the critic and
actor weight update law defined by

˙̂
Wc = −αc

∂K1

∂Ŵc

= −αc

(
σ

(1 + σ⊤σ)2
ec1 +

σf
(1 + σ⊤

f σf)
2
ec2

)
(20)

˙̂
Wa = −αa

∂K2

∂Ŵa

= −αax̄e
⊤
a (21)

for σ := ν(t)(U(t) ⊗s U(t)) − ν(t − ∆t)(U(t − ∆t) ⊗s

U(t−∆t)), σf(t) := ν(t)(U(t)⊗sU(t)), user-specified critic
convergence rate αc ∈ R+, and actor convergence rate
αa ∈ R+.

3. APPLICATION TO UAVS

In this section, we discuss how to apply the Q-learning
framework to a multirotor UAV test platform used for
experimental validation.

A major assumption made for the problem formulation
is that (1) is LTI. Therefore, if we apply the proposed
Q-learning framework to the full nonlinear dynamical

quadrotor model we may not obtain adequate results. One
approach is to obtain a linearization of the quadrotor
model at the hover state. Another approach is to apply
feedback linearization to obtain an equivalent linear sys-
tem of the quadrotor and apply IRL on the equivalent lin-
ear system. This approach is more robust than a lineariza-
tion at the hover state, which would introduce linearization
errors at large orientation offsets from the hover state.
However, we found that applying feedback linearization
for a quadrotor requires adding auxiliary states because of
the relative degree of the quadrotor dynamics and extra
model parameters defined by the user while we are looking
for a model-free approach.

Instead, we construct the model-free Q-learning formu-
lation to output a mass-normalized force vector fdes =
[fx, fy, fz]

⊤ from input position and velocity reference
states. We assume that ∥fdes∥ ≠ 0. We then use the
Mellinger controller developed in Mellinger and Kumar
(2011) to output attitude and thrust commands to the
vehicle with the formulation summarized in the following.
The desired mass normalized thrust for the quadrotor is
defined as

c = f⊤deszB (22)

for vector zB pointing towards the body z axis of the
quadrotor. The desired body z axis for the quadrotor is
defined as

zB,des =
fdes
∥fdes∥

. (23)

From the desired yaw angle ψdes(t) we compute the desired
body axes xB,des and yB,des as

xC,des = [cosψdes, sinψdes, 0]
⊤

yB,des =
zB,des × xC,des

∥zB,des × xC,des∥
xB,des = yB,des × zB,des.

(24)

We then define the desired orientation matrix Rdes =
[xB,des, yB,des, zB,des]. The control commands to the ve-
hicle are expressed as a desired quaternion qdes from Rdes

and collective mass normalized thrust c. For simplicity, in
our experiments we command a constant desired yaw an-
gle. This control strategy enables the Q-learning controller
to learn the finite-horizon optimal control problem for the
UAV with only position and velocity states and allowing
the Mellinger controller to focus on orientation dynamics.
This pipeline enables a UAV to learn the minimum energy
to reach a goal pose through an obstacle environment as
a model-free formulation because the Mellinger controller
does not contain model parameters or vehicle dynamics.

4. EXPERIMENTS

In this section, we demonstrate the proposed model-
free Q-learning control algorithm in a real world flight
experiment with a 700g quadrotor shown in Fig. 1. The
UAV contains a Jetson TX2 on-board computer and a
flight controller (FC) running PX4 autopilot with an
inertial measurement unit (IMU). The on-board computer
runs ROS2 and receives external position measurements
from OptiTrack motion capture cameras. The external
position measurements are sent to the FC and processed
by the PX4 extended Kalman filter estimation module.
The motion planning and Q-learning control algorithm is

Fig. 1. Photograph of a 700g quadrotor used in the flight
experiment. A Jetson TX2 single-board computer
running ROS2 is connected to a flight controller
running PX4 autopilot for state estimation and motor
control.

run on ROS2 to send attitude and thrust commands to the
FC. The FC then uses a low-level body-rate controller to
track the attitude commands. We also incorporate a thrust
model so that we can map normalized thrust commands
to electronic speed controller commands.

4.1 Algorithm Overview

In this section, we discuss the algorithmic implementation
of the Q-learning framework for UAVs. The code that
accompanies this work is designed as a complete flight
stack running on the Jetson TX2 on-board computer. 1

In Fig. 2 we illustrate the code architecture as a block
diagram. The navigator, planner, and controller are de-
signed as servers with individual implementations running
as plugins. For example, static predefined obstacles and
motion capture tracked obstacles are custom plugins in the
mapping server, RRTX is a plugin in the planner server,
Q-learning is a plugin in the control server, and navigate-
to-pose is a plugin in the navigator server amongst others
such as takeoff, land, and loiter. We interface with the
vehicle through the vehicle interface node. The vehicle
interface node is also designed to be the bridge between
the flight stack and other autopilot software such as PX4
or directly simulated data. This isolates the flight stack
plugins and servers from direct dependency on specific
autopilot software. One can design a new plugin within
the vehicle interface to interface with other autopilots, e.g.,
Betaflight, ArduPilot, or a custom-built autopilot.

The procedure for testing a UAV with our flight stack
is as follows. First, place the UAV on the desired takeoff
location. Next, turn on the flight controller and autopi-
lot software. Then, we startup our custom flight stack
through a ROS2 launch file in the vehicle interface pack-
age. Through the RViz2 application there will be a custom
graphical user interface (GUI) panel plugin for interfacing
with the vehicle. Once the vehicle is safely positioned at
the takeoff location, then the kill-switch can be turned off,

1 The code and video that accompanies this work is publicly
available through the GaTech FACTS Lab Github: github.com/
gtfactslab/Llanes_MECC2023.

Navigator Q-Learning
Controller

RRTX

Vehicle Interface

PX4/HardwareMapping

Fig. 2. Block diagram illustrating experiment code archi-
tecture.

and the vehicle armed. Select the takeoff command from
the GUI panel. The UAV should now request to navigator
to takeoff and switch to loiter at the user-defined takeoff
altitude in the YAML parameters file. If the navigator is
in loiter mode, then a goal command can be requested
from the RViz2 2D Goal Pose tool. This will create an
action request from the navigator action server to plan
with RRTX around obstacles defined in the mapping node.
The navigator or planner can deny a request if the goal
intersects obstacles, the plan is infeasible, or the navigator
is in the incorrect transition mode.

Algorithm 1 Navigate-to-Pose with RRT-QX

Input: T - finite horizon; ti - timestamp at iteration i;M
- state cost penalty matrix; R - control cost penalty
matrix; P (T) - terminal cost matrix; xstart - start state;
xgoal - goal state; Xobs - obstacle map; X - state space;
q - orientation quaternion

Output: qdes - desired orientation quaternion; cdes - de-
sired mass-normalized thrust

1: π ← RRTX(X ,Xobs, xstart, xgoal)
2: if π is valid then
3: NavigatorMode ← NavigateToPose
4: xr ← π[0]
5: i← 0
6: k ← 0
7: while NavigatorMode is NavigateToPose do
8: i← i+ 1
9: ∆t← ti − ti−1

10: x̄← x− xr
11: Ŵc ← Critic(M,R,∆t, tk, αc, x̄, û) (20)

12: Q̄← EstimateQ(Ŵc, tk)

13: Ŵa ← Actor(Q̄,∆t, tk, αa, x̄) (21)

14: û← Control(Ŵa, tk, x̄) (14)
15: fdes ← û
16: (qdes, cdes)← Mellinger(fdes, ψdes, q) (22)-(24)
17: return (qdes, cdes)
18: if xr reached and xr ̸= xgoal then
19: k ← k + 1
20: xr ← π[k]
21: else if xr reached and xr = xgoal then
22: NavigatorMode ← Loiter

The implementation of the navigate-to-pose navigator
mode is presented as pseudocode in Algorithm 1. The
navigator node has three default navigator modes: takeoff,
land, and loiter. Loitering is a position hold mode where
the UAV hovers at the coordinates where the loiter request
is made. The navigate-to-pose navigator mode can be
activated in a loiter mode or from cancelling another
active navigation mission such as an active navigate-to-
pose. When the navigate-to-pose mode is requested then
the code follows a similar routine as in Algorithm 1. In
Line 1 of Algorithm 1, we request a path from RRTX. In

github.com/gtfactslab/Llanes_MECC2023
github.com/gtfactslab/Llanes_MECC2023

Fig. 3. Screenshot from a simulation of a quadrotor
UAV traversing obstacles to reach a goal state from
collision-free waypoints generated from RRTX. The
waypoints are inputs to the model-free Q-learning
controller. The visualization software in this image
is RViz2 from ROS2.

Line 2, we check whether a path was returned from the
planner and if true then we switch the navigator mode to
navigate-to-pose. Then, in Line 7 while the navigator mode
is in navigate-to-pose we publish the current navigator
setpoint as intermediate waypoints in the path computed
by RRTX to the Q-learning control node. The Q-learning
controller is updated when a new current position message
is received. For an iteration we compute the time since last
update in Line 9 and the Q-learning update procedure
in Lines 11-14. The computed control represents mass-
normalized force commands to the UAV which are turned
into desired orientation and collective mass-normalized
thrust from the Mellinger controller in Line 16. We then
check whether we have reached the reference setpoint xr.
If the setpoint is the goal, then the navigator switches to
loiter mode. Otherwise, the next waypoint in the path is
used as the new setpoint.

4.2 Experiment Results

In this section, we discuss the results of the simulation
and real-hardware flight experiments. We first tested the
implementation in a Gazebo simulation environment using
the PX4 software-in-the-loop (SITL) tools with ROS2. We
generate an obstacle environment for the RRTX algorithm
to compute a collision-free path. The visualization of this
environment is shown in Fig. 4.

The simulation obstacle environment is reconstructed in
our indoor flight lab as shown in Fig. 4. Updates for the
Q-learning estimated parameters are done upon receiving
new odometry data from the UAV which is approximately
updated at 125Hz. The parameters used in the simula-
tion and hardware demonstration are critic convergence
rate αc = 10, actor convergence rate αc = 0.5, finite
horizon T = 3 seconds, ∆t ≈ 0.008 seconds, P (T) =
diag(100, 100, 100, 10, 10, 10), R = diag(20, 20, 20), and
M = diag(10, 10, 10, 30, 30, 30).

In Fig. 5, we provide plots for the tracking performance of
the learning controller on the hardware flight experiment

Fig. 4. Screenshot from the real hardware flight experi-
ment in the indoor flight lab. A quadrotor UAV is
commanded to reach a goal state from a collision-free
path generated from RRTX. The waypoints are inputs
to the model-free Q-learning controller. This demon-
stration is a recreation of the simulated environment
with cardboard boxes as obstacles.

as position time histories of the quadcopter tracking a
collision-free path. The learning controller shows satis-
factory steady-state error for the setpoints in x and y
coordinates. There is a small error in the altitude towards
the end of the hardware flight experiment when the battery
voltage decrement causes a mismatch in the thrust model.
We plan to address this in the future by incorporating
a more sophisticated hybrid learning with first-principles
thrust model as shown in Bauersfeld et al. (2021).

We also provide plots of the time history of Q̂ in Fig. 6.
The value of Q̂ spikes when a new waypoint reference is
commanded from the collision-free path and converges to
zero as the state tracking error converges to zero.

5. CONCLUSION

This work presents an algorithm for real-time kinodynamic
motion planning in dynamic environments for systems
with unknown dynamics. We use a random-sampling and
space-filling tree for both planning and rapid replanning in
the dynamic environment. We demonstrate our results in
a custom-built quadrotor UAV simulation and hardware
flight experiment to verify the real-time capabilities of
the algorithm. We demonstrated collision-free tracking
performance on a UAV hardware flight experiment with
a learning-based controller.

0 10 20 30 40 50
0

1

2

3

4

time [s]

x
[m

]

actual
setpoint

(a) Quadrotor actual and setpoint x position vs. time

0 10 20 30 40 50
0

1

2

3

4

time [s]

y
[m

]

actual
setpoint

(b) Quadrotor actual and setpoint y position vs. time

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time [s]

z
[m

]

actual
setpoint

(c) Quadrotor actual and setpoint z position vs. time

Fig. 5. Position flight data from real flight experiment for
local indoor flight lab reference frame. Each coordi-
nate axis actual position is plotted separate along
with setpoints requested from navigator and stored
from RRTX path.

REFERENCES

Bauersfeld, L., Kaufmann, E., Foehn, P., Sun, S., and
Scaramuzza, D. (2021). NeuroBEM: Hybrid aerody-
namic quadrotor model. Robotics: Science and Systems
2021. doi:10.15607/RSS.2021.XVII.042.

Donald, B., Xavier, P., Canny, J., and Reif, J. (1993).
Kinodynamic motion planning. Journal of the ACM,
40(5), 1048–1066.

Ioannou, P.A. and Sun, J. (2012). Robust Adaptive Con-
trol. Courier Corporation.

Kontoudis, G.P. and Vamvoudakis, K.G. (2019). Kin-
odynamic motion planning with continuous-time Q-
learning: An online, model-free, and safe navigation
framework. IEEE Transactions on Neural Networks and

0 5 10 15 20
0

50

100

150

time [s]

Q̂

Fig. 6. Plot of Q̂ versus time from real flight experiment
flight data. The data is cut off at the end when the
navigator switches to loiter mode after successfully
reaching the goal.

Learning Systems, 30(12), 3803–3817.
Kontoudis, G.P., Vamvoudakis, K.G., and Xu, Z. (2022).

RRT-QX real-time kinodynamic motion planning in dy-
namic environments with continuous-time reinforcement
learning. In Brain and Cognitive Intelligence Control in
Robotics, 1–19. CRC Press.

Kontoudis, G.P., Xu, Z., and Vamvoudakis, K.G. (2020).
Online, model-free motion planning in dynamic envi-
ronments: An intermittent, finite horizon approach with
continuous-time Q-learning. In 2020 American Control
Conference (ACC).

Lewis, F.L., Vrabie, D., and Syrmos, V.L. (2012). Optimal
Control. John Wiley & Sons,, 3 edition.

Mellinger, D. and Kumar, V. (2011). Minimum snap tra-
jectory generation and control for quadrotors. In 2011
IEEE International Conference on Robotics and Au-
tomation, 2520–2525. doi:10.1109/ICRA.2011.5980409.

Netter, J., Kontoudis, G.P., and Vamvoudakis, K.G.
(2021). Bounded rational RRT-QX: Multi-agent motion
planning in dynamic human-like environments using
cognitive hierarchy and Q-learning. In 2021 60th IEEE
Conference on Decision and Control (CDC), 3597–3602.
doi:10.1109/CDC45484.2021.9683761.

Otte, M. and Frazzoli, E. (2014). RRTX: Real-time mo-
tion planning/replanning for environments with unpre-
dictable obstacles. In WAFR.

Otte, M. and Frazzoli, E. (2016). RRTX: Asymptotically
optimal single-query sampling-based motion planning
with quick replanning. The Int. J. of Rob. Res., 35(7),
797–822.

Schäcke, K. (2013). On the kronecker product.
Sutton, R.S. and Barto, A.G. (1998). Reinforcement learn-

ing: An introduction, volume 1. MIT press Cambridge.
Vamvoudakis, K.G. and Lewis, F.L. (2009). Online actor

critic algorithm to solve the continuous-time infinite
horizon optimal control problem. In 2009 International
Joint Conference on Neural Networks, 3180–3187. doi:
10.1109/IJCNN.2009.5178586.

Vrabie, D., Vamvoudakis, K.G., and Lewis, F. (2012).
Optimal Adaptive Control and Differential Games by
Reinforcement Learning Principles.

	Introduction
	Related Work
	Contributions
	Notation

	Problem Formulation
	Application to UAVs
	Experiments
	Algorithm Overview
	Experiment Results

	Conclusion

