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This work describes an open source software package for run time assurance (RTA) of UAVs

to verify safety in the form of collision avoidance. An operator designs a primary controller

with possible learning-enabled components or with human inputs. Learning-based control

design is inherently unverified and the RTA supervises the control behavior during the learning

process. The proposed RTA package guarantees collision avoidance of obstacles while acting as

a supervisor for an operator’s primary controller. The RTA mechanism uses control barrier

functions (CBFs) with reachability analysis of the UAV dynamics to detect unsafe control

actions from the primary controller and solves an optimization problem to minimally adjust

desired control inputs to ensure that collision-bound trajectories are avoided. We use the Robot

Operating System (ROS) middleware as a framework for designing the software package. We

describe the main underlying algorithm and its implementation as a ROS2 package, and we

demonstrate its use in hardware experiments.

I. Introduction

Unmanned aerial vehicles (UAVs) have become increasingly accessible over the past decade as a result of cheap,
small scale, and high computing capabilities of onboard computers. An increase in the number of UAVs in operation
over dense urban environments increases the probability and impact of accidents involving UAVs. As a result, there is a
growing need for safety verification and assurances of UAVs operating in dense urban environments. One method for
guaranteeing safety of a controlled dynamical system is to filter a potentially unsafe primary controller at run time. This
approach is referred to as run time assurance (RTA) [1]. There are several ways to design an RTA mechanism and in
this work we use control barrier functions (CBFs) [2, 3] to minimally adjust a desired control input while ensuring
forward invariance of a predefined safe subregion of the state space.

Classical CBF formulations lead to forward invariance for an a priori defined subregion of the state space. Designing
a subset that is viable can be challenging when considering control constraints and the relative degree of a dynamical
system. The works [4–6] present an RTA mechanism that uses CBFs with a simulation of the system dynamics under
a backup control policy for a user-defined prediction horizon. The simulation, which is done prior to evaluating
the CBF constraint, allows for designing a smaller and usually more conservative forward invariant viability kernel.
Lyapunov functions are one method for designing the viability kernel. This enables easier verification of the viability
kernel and from the simulation of the backup control policy we can verify larger safe forward invariant regions of
the state space if the system returns back to the viability kernel within some prediction horizon. For systems with
disturbances the resulting simulation is a reachable set and computing reachable sets online is generally computationally
intractable. An approach proposed in [7] is to use the theory of mixed monotone systems to compute hyperrectangular
over-approximations of the system’s reachable set. This approach requires computing a single solution of a related
embedding system that relates to the extreme solutions of the original system. Using this approach we considerably
reduce the computational complexity of the RTA algorithm which enables a fast in-the-loop reachability analysis at run
time for highly dynamic systems such as UAVs.

Our approach to designing an RTA for collision avoidance of quadrotor UAVs is as follows. First, we design a
backup control strategy that is continually simulated for a user-defined prediction horizon that slows the vehicle down
and returns the vehicle to the initial position in the prediction horizon. Since we consider unknown disturbances in
the UAV dynamics, the system evolution is a reachable set of possible future states. Secondly, the objective of our
RTA mechanism is to ensure that the system’s reachable set never intersects with obstacles. To do this we use CBFs to
construct inequality constraints for an optimization problem that aims to minimize the 2-norm of the di�erence between
the desired control input and the applied input.

�Graduate Research Assistant, Electrical and Computer Engineering Department, AIAA Student Member
†Associate Professor, Electrical and Computer Engineering Department

1



The main contribution of this paper is a software package that implements an RTA mechanism that supervises a
primary objective controller and filters control input commands that would lead to a collision with obstacles. The
Robot Operating System (ROS) middleware is used as a framework for designing the software package due to its
message-passing services and modular design. The RTA is implemented as a ROS2 software package for collision
avoidance that interfaces with a flight management unit (FMU) running PX4 autopilot. The user provides a primary
controller in the form of a ROS2 node to reach an objective with possible obstacles in the desired trajectory. The
primary controller publishes control input commands to the RTA ROS2 node which filters the control commands to
ensure collision-bound trajectories with obstacles are avoided. Other RTA frameworks [8] have been developed on ROS
systems for safe distributed mobile robots using the Simplex architecture [9, 10].

In our prior work [11], we demonstrated a similar RTA designed for collision avoidance between two multirotors.
For the case study in that work we construct the backup control policy as nonlinear springs coupled between multirotors
in the Y-Z coordinate axes. We presented a successful hardware demonstration to filter an unsafe primary controller
that would have led to a collision between the multirotors if not for our RTA mechanism. This motivates the present
work for obstacle avoidance where we now consider a single multirotor controlled by a primary controller with some
objective, e.g., flying within an urban environment. The goal of the RTA mechanism is to predict possibly unsafe
control decisions from the primary controller and minimally alter them to ensure the vehicle avoids obstacles while
satisfying the objective. This objective is particularly relevant for the emerging topic of urban air mobility (UAM),
where UAVs carrying cargo or passengers operate in an urban environment. Safety verification for UAM is an important
subsystem that is crucial for meeting flight regulations of autonomously controlled aerial vehicles. This paper provides
a proof of concept for creating an RTA software package that requires minimal configuration for interfacing with a
primary controller.

The rest of this paper is organized as follows: We begin with a theoretical discussion for the algorithm and provide an
implementation for the algorithm in pseudocode. We then discuss UAV dynamics and the backup control strategy used
in the RTA algorithm for reachability analysis. Then, we provide a description for the software package architecture.
This includes a discussion of the file directory and a block diagram for the ROS2 RTA software package. Finally, we
demonstrate our results via a hardware demonstration of the ROS2 software package for a quadcopter UAV with a
position controller and obstacles in the reference trajectory.

II. Notation

We denote vector entries via subscript, i.e., G8 for 8 2 {1, · · · , =} denotes the 8th entry of G 2 R=. Given G, H 2 R=
with G8  H8 for all 8,

[G, H] := {I 2 R= | G8  I8  H8 for all 8}
denotes the hyperrectangle with endpoints G and H, and

hhG, Hii := {I 2 R= | I8 2 {G8 , H8} for all 8}

denotes the finite set of 2= vertices of [G, H]. We also allow G8 2 R [ {�1} and H8 2 R [ {1} so that [G, H] defines an
extended hyperrectangle, that is, a hyperrectangle with possibly infinite extent in some coordinates.

Let (G, H) denote the vector concatenation of G, H 2 R=, i.e., (G, H) := [G) H
) ]) 2 R2=. Given 0 = (G, H) 2 R2= with

G8  H8 for all 8, we denote by J0K the hyperrectangle formed by the first and last = components of G, i.e., J0K := [G, H],
and similarly hh0ii := hhG, Hii.

III. Algorithm Overview

Reachability in RTA involves verifying that the system’s reachable set is fully contained in a viability kernel for
some time in the prediction horizon. In Fig. 1 a rectangular unsafe region is defined in red and an elliptical viability
kernel is defined in green. A mixed monotonicity derived rectangular over-approximation of the system’s reachable set
is depicted in pink. In this section, we begin by defining the theoretical results from our prior work [11] along with the
RTA algorithm as pseudocode used in the software package.

We consider an a�ne-in-control and a�ne-in-disturbance nondeterministic dynamical system model of a UAV of
the form

§G = 5 (G) + 61(G)D + 62(G)F (1)
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Fig. 1 An example of run time assurance with a reachability analysis to ensure the system’s reachable set is

fully contained in the safe and invariant subregion of the state space.

where G 2 X ⇢ R= is the state, D 2 U ✓ R< is the control input and F 2W ⇢ R? is the disturbance, and we assume
throughout this section that the state space X is an extended hyperrectangle and the disturbance space W := [F,F] is a
hyperrectangle.

The proposed approach to run time assurance described below utilizes a backup control strategy u
b : X ! U that

results in closed-loop backup dynamics written as

§G = �
b(G,F) := 5 (G) + 61(G)ub(G) + 62(G)F. (2)

Computing the reachable set for Eq. (2) through Monte Carlo approaches online is computationally intractable.
We apply the theory of mixed monotone systems to decompose the dynamics and evaluate a singular trajectory of the
extreme solutions that approximates the true reachable set as a hyperrectangle. The corners of the hyperrrectangle are
defined by the pair (G, Ĝ). The backup dynamics defined by Eq. (2) are mixed monotone with respect to a decomposition
function 3. For more information on mixed monotone systems we direct the reader to the tutorial paper[12] and our past
work that details the use of mixed monotonicity for RTA [11]. Given a decomposition function 3,"

§G
§bG
#

= 4(G, bG) :=

"
3(G, F, bG, F)

3(bG, F, G, F)

#
(3)

is the embedding system relative to 3 and 4 is the embedding function relative to 3. Note that the embedding system
contains no disturbances as 3 is evaluated only at the extrema of W = [F,F].

We denote by �b(C; G,w) the state of Eq. (2) reached at time C � 0 when starting from state G at time 0 and
when evolving subject to the disturbance signal w : [0, C] !W. Furthermore, we denote by �4(C; 0) the state of
Eq. (3) reached at time C � 0 when starting from state 0 2 X ⇥ X at time zero. As a shorthand notation we write
�4

C
(G) := �4(C; (G, G)) for G 2 X.
Additionally, we denote

'
b(C; G) := {�b(C; G, w) 2 X | w : [0, C]!W} (4)

as the time-C backup reachable set of Eq. (2) from initial state G 2 X. We assume given a viability kernel
(

b = {G 2 X | ⌘(G) � 0} ⇢ X \ Xu where ⌘ : R= ! R is assumed to be a continuously di�erentiable and concave
function. The goal of our RTA mechanism is to ensure that the backup reachable set is always fully contained in the
viability kernel 'b(C; G) ✓ (

b for all C  )b where )b is a user defined backup prediction horizon.
Define

W
ideal(C; G) := inf

I2J�4
C (G)K

⌘(I) = min
I2hh�4

C (G)ii
⌘(I), (5)

for a hyperrectangular reachable set at time C in the embedding trajectory J�4

C
(G)K and where the second equality comes

from the concavity on ⌘. Further define

 ideal(G) := sup
0g)b

W
ideal(g; G) (6)

for a prediction horizon )b. CBF algorithms require the utilized functions to be di�erentiable, whereas W
ideal and

 ideal are generally not di�erentiable due to the minimum operator in Eq. (5). Therefore, we use a numerically stable
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Algorithm 1 Runtime Assurance for Nondeterministic Control Systems

input : Current State G 2 X.

: Desired control policy u
d : X ! R<.

: Previous maximizer time C⇤
:�1 2 R.

output : Assured control input u
RTA 2 U.

predefined : Class-K function U : R! R.

1: function u
RTA =RTA(ud, G, C⇤

:�1)
2: if C

⇤
:�1 initialized then

timevec Point_Dist(C⇤
:�1)

3: else timevec linspace(0,)b)
4: for all C 2 timevec compute �4

C
from (3)

5: � ú
6: for all C 2 timevec append W(C; G) from (9) to �
7: [ (G), max_psi_indx] max(�)
8: C

⇤  timevec[max_psi_indx]
9: compute:

m 
mG

(G) as in (11)
10: compute: D

⇤ = arg min
D2[D,D] | |D � Dd | |22

s.t. m 
mG

(G)( 5 (G) + 61(G)D + 62(G)F) � �U( (G))
8F 2 hhF, Fii

11: if Program feasible then return D
⇤

12: else return u
b(G)

13: end function

continuously di�erentiable soft-min function known as the Log-Sum-Exponential (LSE) that approximates minS. For
some fixed parameter ? > 0 that controls the tightness of the approximation, define

LSE(S) = � 1
?

log
X
B2S

exp(�? · B). (7)

We further denote the LSE over a set of evaluations of a barrier function ⌘ on the corners of a hyperrectangle 0 by

LSE⌘(0) := LSE( {⌘(I) | I 2 hh0ii }). (8)

The LSE provides a di�erentiable relaxation for Wideal and  ideal which we denote by W and  given by

W(C; G) := LSE⌘(�4

C
(G)) (9)

 (G) := sup
0g)b

W(g; G). (10)

Next, we di�erentiate  (G) with respect to G to obtain

m 
mG

(G) =
mW

mG

(C⇤, G) =
mLSE⌘

m0

(�4

C
⇤ (G))

m�4

C
⇤

mG

(G). (11)

where C
⇤ is the time that achieves the maximum in Eq. (10) and the first equality holds by [13, Theorem 1]. The

derivative mLSE⌘
m0

(·) is computed from Eq. (7) and Eq. (8) and is evaluated at the embedding state�4

C
⇤ (G) at time C⇤  )b.

The derivative
m�4

C⇤
mG

(G) is computed e�ciently via a sensitivity matrix ((C) 2 R2=G= as explained in [14].
We provide a pseudocode for the proposed RTA software package in Algorithm 1. A point distribution function,

Point_Dist, is designed by the user. For the proposed software package, we use an e�cient logarithm-based point
distribution algorithm that uses the maximizer C⇤

:�1 in Eq. (10) from the previous iteration. The convex optimization
problem defined in line 10 is solved using an operator splitting quadratic program solver [15]. The algorithm decides
when to intervene via the Class-K function U and in our implementation we use a linear function.

4



IV. UAV Dynamics

In this section, we present the UAV system dynamics and the backup control policy used for the UAV collision
avoidance software package.

The twelve states for modeling multirotor dynamics are position p 2 R3, velocity v 2 R3, orientation using Euler
angles K 2 [�c, c]3, and body angular rates 8 2 R3. In expanded form, the states appear as

x = [ p, v, K,8])

p = [?G , ?H , ?I]

v = [EG , EH , EI]

K = [q, \,k]

8 = [lG ,lH ,lI].

(12)

The control input vector for the multirotor is u = [2,"G ,"H ,"I]) where 2 2 R is the mass-normalized collective motor
thrust and "G ,"H ,"I are the moments on the multirotor in the body-fixed frame. We use the standard North-East-Down
(NED) inertial reference frame { Æ4G , Æ4H , Æ4I} and the standard aerospace forward-right-down (FRD) vehicle body-fixed
frame {Æ1G , Æ1H , Æ1I}. The multirotor dynamics are modeled as a rigid body with dynamics

§p = v

§v = 6 Æ4I � X⇢

⌫

Æ
1I2

§K = �(K)
�18

§8 = P�1(S � 8 ⇥ P8)

(13)

where the matrix P 2 R3⇥3 is the moment of inertia tensor and the matrix X⇢

⌫
and �(K) are defined below. For most

multirotors, we simplify the moment of inertia tensor by observing that multirotors are symmetric about their principal
axes. Therefore, all non diagonal elements of P are zero. The moment of inertia tensor with the symmetry assumption
for the multirotor is given by

P =

2666664

�GG 0 0

0 �HH 0

0 0 �II

3777775
. (14)

The transformation matrix X⇢

⌫
2 R3⇥3 is the inverse or transpose of the aerospace direction cosine matrix (DCM)

yaw-pitch-roll sequence mapping vectors in the body-fixed frame to the earth frame. The matrix �(K) is obtained by
applying intermediate frame rotations to the Euler rates giving the resultant matrix

�(K) =

2666664

1 sin q tan \ cos q tan \

0 cos q � sin q

0 sin q sec \ cos q sec \

3777775
(15)

that transforms Euler rates to vehicle body angular rates.
In this work, we assume that an inner loop controller can track desired body angular rates at much faster timescales

as opposed to the other states. Therefore, we assume we have instantaneous control of the body angular rates which
allows us to turn the body angular rates from states to control inputs. This assumption leads to system dynamics that are
now nine-dimensional given by

§p = v

§v = 6 Æ4I � X⇢

⌫

Æ
1I2

§K = �(K)
�18

(16)

and the resulting control input vector is u = [2,lG ,lH ,lI]) for this nine-dimensional system. This particular control
assumption has proven successful in the works [16–18].
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The backup control policy for the multirotor UAV is designed to slow the vehicle down and return to the current
position which is assumed to be safe. The first step in the backup control policy is to define in Eq. (17) the desired
normalized forces on the vehicle given by

0y = :p(Gdes � G) � 1EG

0y = :p(Hdes � H) � 1EH

0z = :p(Ides � I) � 6 � 1EI .

(17)

Then, we define the desired acceleration direction adir = a/| |a | |2 as a normalization of the desired acceleration vector
on the multirotor. We then apply intermediate rotations using the DCM to obtain pitch and roll commands given by

'1 = X⌫

⇢
(0, 0,k)adir

\des = atan2(�'1x ,�'1z )

'2 = X⌫

⇢
(0, \des, 0)'1

qdes = atan2('2y ,�'2z ).

(18)

The resulting control input commands for the backup control policy for a desired yaw angle of zero are

2 = | |a | |2
lG = �:proll (q � qdes)

lH = �:ppitch (\ � \des)

lI = �:pyawk.

(19)

V. Run Time Assurance ROS2 Software Package for Collision Avoidance

The main contribution of this work is to provide a UAV RTA ROS2 software package namedmav_obstacle_avoidance�.
The choice of ROS2 is due to its popularity in robotics and an existing bridge for PX4 autopilot that allows for directly
publishing to the FMU. The PX4-ROS2 bridge is called px4_ros_com and it allows connectivity between the message-
passing services on ROS2 and the FMU. This bridge allows for ROS2 development and direct access to control and status
messages on the FMU. ROS2 provides a modular framework for separating the primary controller software from the RTA
software. The modular connectivity is done through message-passing services provided by ROS2. A diagram is provided
in Fig. 2 with the relevant ROS2 nodes in this work. An operator provides a primary controller in the form of a ROS2
node (e.g. primary_controller_node) and publishes control commands to mav_obstacle_avoidance_node
through the rta_control message topic. The px4_ros_com node contains additional subscriber and publishers that
are not included in Fig. 2 because they are not used for obstacle avoidance.

The file directory tree for the mav_obstacle_avoidance software package is outlined in Fig. 3. The main folders
are config, include, launch, and src. The config folder contains parameter files for initialization. The include
folder contains header files. The launch folder contains launch files for the ROS2 system necessary for specifying
parameter files and executables. The src folder contains the main source and library files for the software package.
Compilation is handled by CMake and configured through the CMakeLists.txt file.

�The ROS2 software package mav_obstacle_avoidance is publicly available through the GaTech FACTS Lab Github: github.com/
gtfactslab/Llanes_AIAA2023.
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primary_controller_node

Subscribers
/timesync
/rc_channels
/vehicle_odometry

Publishers
/rta_control
/vehicle_command
/offboard_control_mode

mav_obstacle_avoidance_node

Subscribers
/timesync
/rc_channels
/vehicle_odometry
/mav_battery_status
/mav_vehicle_status
/rta_control

Publishers
/vehicle_rates_setpoint

px4_ros_com

Subscribers
/vehicle_rates_setpoint
/offboard_control_mode
/vehicle_command
/mav_battery_status
/mav_vehicle_status

Publishers
/timesync
/rc_channels
/vehicle_odometry

Fig. 2 A diagram illustrating the ROS2 node structure with publishers and subscribers for each node.

mav_obstacle_avoidance

config

params.yaml

include

mav_obstacle_avoidance

mav_asif_util.hpp

mav_avoidance_control_router.hpp

mav_util.h

launch

mav_obstacle_avoidance_launch.py

src

lib

mav_asif_util.cpp

mav_avoidance_control_router.hpp

mav_obstacle_avoidance_control_router.hpp

CMakeLists.txt

package.xml

Fig. 3 Directory tree for the mav_obstacle_avoidance software package.
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Algorithm parameters are defined outside the source code for fast tuning without the need to recompile source code.
The parameters are defined in a YAML file called params.yaml. The parameter file is shown in Fig. 4. For multiagent
capabilities we define a mav_id parameter that is unique for each vehicle. This id is used to uniquely identify each
vehicle in the ROS2 network. The obstacle primitives are defined as spheres and we plan to extend this further for Lidar
measurements. Obstacles are defined through the p_obs and r_obs parameters for position and radius. To add a new
obstacles the user extends the p_obs vector with the G, H, and I coordinates of the new obstacle and the radius in the
r_obs vector. Controller gains can also be adjusted through the backup_controller parameters.

Fig. 4 Parameters for the mav_obstacle_avoidance software package defined in params.yaml.

The software package is run through a ROS2 launch file in the launch folder. After compiling the package the launch
file can be run by the command:

$ r o s2 l aunch mav_ob s t a c l e _ avo i d anc e mav_ob s t a c l e _ avo i d an c e_ l a un ch . py
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VI. Results

To test our RTA mechanism we construct a primary controller similar to the backup controller in Section IV for
a quadrotor. The goal of the primary controller is to track a desired circular trajectory. However, two obstacles on
opposite sides of the circular trajectory would lead to a collision if the primary controller is allowed to control the
quadrotor directly. The goal of our RTA mechanism is to detect the collision and smoothly alter the control input to
avoid the obstacles in the path. We provide simulation results and a hardware demonstration of the proposed ROS2 RTA
software package.

Fig. 5 Simulation results for a quadrotor using our RTA mechanism to supervise a primary controller while

avoiding two obstacles intersecting a desired circular trajectory.

In Fig. 5 we provide simulation results of our RTA mechanism avoiding two spherical obstacles in a desired circular
trajectory. The primary controller is nominally tracking the circular trajectory while our RTA mechanism filters the
control inputs from the primary controller to ensure collisions are avoided with the obstacles. Our RTA mechanism only
steps in when the quadrotor approaches an obstacle and detects a collision-bound trajectory.

After successfully demonstrating collision avoidance in a simulation environment we next turn our attention to a
hardware demonstration. For the hardware demonstration, we use the same primary controller as in the simulation
results, a 0.5m radius circular trajectory, and one spherical obstacle.

Fig. 6 A photograph of the quadrotor used in the hardware demonstration.

In Fig. 6 is a photograph of a 700g quadrotor used for the hardware demonstration. This quadrotor contains a Jetson
TX2 onboard computer for running ROS2 and a flight controller running PX4 autopilot for controlling the motors
and state estimation. The ROS2-PX4 bridge is handled by px4_ros_com as discussed in Section V. A ROS2 node
receives external position measurements from OptiTrack motion capture cameras and passes the data to PX4 through
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px4_ros_com for fusion with the PX4 extended Kalman filter (EKF). State estimation from the EKF is passed back to
ROS2 for use in the primary controller and our RTA ROS2 node. Control input commands in the form of collective thrust
and body angular rates from our RTA ROS2 node is commanded through the vehicle_rates_setpoint message.
This message is received by PX4 and a low-level body angular rate controller in PX4 tracks the desired body angular
rates.

(a) Top View (b) Side View (c) Isometric View

Fig. 7 Flight trajectory plots of a quadcopter demonstrating collision avoidance with a spherical obstacle using

our ROS2 RTA software package.

(a) Roll Angular Rate Plot

(b) Collective Normalized Thrust Plot

Fig. 8 Roll rate and normalized thrust plots of a quadcopter demonstrating collision avoidance with a spherical

obstacle using our ROS2 RTA software package.

The flight demonstration is performed by initially taking o� and stabilizing at the static position setpoint (G =
0.5m, H = 0, I = �0.5m). Then, our RTA software package is activated to supervise and filter input commands from the
primary controller. Finally, the primary controller is commanded to track a circular trajectory parameterized by time.
The trajectory plots from the first flight are plotted in Fig. 7. The midflight trajectory depicts a succesful avoidance
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maneuver performed by the ROS2 RTA software package after detecting a collision-bound trajectory from the primary
controller tracking the circular trajectory. Normalized collective thrust and roll rate flight data is plotted for the primary
controller and proposed RTA software package in Fig. 8. The RTA algorithm passes through the primary controller
input commands to the quadcopter within the first 10 seconds of the flight until the quadcopter is predicted to collide
into an obstacle. After the collision-bound trajectory is detected we see a disparity between the primary controller and
RTA mechanism until about 20 seconds of flight after the obstacle is cleared. We then see another disparity at the 30
second flight time as the second obstacle is approached. Any primary controller designed by the user can be replaced in
this flight experiment and the RTA mechanism will step in when needed to avoid obstacles. This enables supervision of
learning-based controllers to guarantee safety while in their initial learning phase.

VII. Conclusion

In this work we provide a plug-and-play ROS2 software package for run time assurance of UAVs to verify safety
in the form of collision avoidance. The proposed run time assurance algorithm computes reachable sets for a backup
control policy and ensures the system’s reachable set is never intersecting with obstacles. This guarantees that for
all possible disturbances there is never a case where the vehicle collides with obstacles. We implement the proposed
algorithm in a ROS2 software package for an operator to use for supervising their primary controllers and guaranteeing
that collision-bound trajectories with obstacles are avoided. We demonstrate our run time assurance software package in
hardware for collision avoidance of a quadrotor UAV commanded to track a circular trajectory with obstacles in the path.
The vehicle successfully avoids obstacles using our RTA software package while meeting the objective of tracking the
circular trajectory.
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