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Abstract— In this work we develop a software-in-the-loop

simulator platform for Crazyflie nano quadrotor drone fleets.

One of the challenges in maintaining a large fleet of drones is

ensuring that the fleet performs its task as expected without

collision, and this becomes more challenging as the number

of drones scales, possibly into the hundreds. Software-in-the-

loop simulation is an important component in verifying that

drone fleets operate correctly and can significantly reduce

development time. The simulator interface that we develop

runs an instance of the Crazyflie flight stack firmware for

each individual drone on a commercial, desktop machine along

with a sensors and communication plugin on Gazebo Sim. The

plugin transmits simulated sensor information to the firmware

along with a socket link interface to run external scripts that

would be run on a ground station during hardware deployment.

The plugin simulates a radio communication delay between

the drones and the ground station to test offboard control

algorithms and high-level fleet commands. To validate the

proposed simulator, we provide a case study of decentralized

model predictive control (MPC) that is run on a ground station

to command a fleet of sixteen drones to follow a specified

trajectory. We first run the controller on the simulator interface

to verify performance and robustness of the algorithm before

deployment to a Crazyflie hardware experiment in the Georgia

Tech Robotarium.

SUPPLEMENTARY MATERIAL

The code and video that accompanies this work is publicly
available through the GaTech FACTS Lab Github: https:
//github.com/gtfactslab/Llanes_ICRA2024.

I. INTRODUCTION

Advancements in micro aerial vehicles (MAVs) have en-
abled miniaturization of drone hardware platforms into what
are now called nano quadcopters [1]. This category includes
drones with a weight of approximately 30g and rotor-to-
rotor distance of approximately 100mm. Nano quadcopter
platforms enable rapid deployment of multi-robot aerial
robotics with applications including search and rescue in
dense environments [2] where larger platforms may not be
able to operate, drone light shows with hundreds of drones
[3], and surveying and mapping of large agricultural or
forested areas [4]. Moreover, nano quadcopters are generally
inexpensive to replace and store, making it cost effective to
maintain large fleets of hundreds or more drones.

One of the challenges of controlling a fleet of small drones
is the multi-robot scale complexity of verifying that drones
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Fig. 1: Sixteen Crazyflie nano quadcopters with our proposed
software-in-the-loop simulator interface hovering at a desired
altitude in Gazebo Sim and RViz2.

will not collide and that they will accomplish their intended
objective. Ideally, this verification is performed before hard-
ware deployment and therefore typically takes place in a
simulation environment. While simulations never fully cap-
ture the real-world physics, communication-constraints, and
limits of real hardware, we can approximate the real-world
to varying degrees. Closer approximations are achieved with
higher fidelity simulations, where there is a trade-off with
the complexity of the simulation. The challenge is to design
an appropriately high fidelity simulator with a low enough
computational complexity to enable multi-robot simulation
on consumer computing hardware, with the goal being to
reduce or eliminate the iterations between simulation and
successful hardware deployment.

In this work, we design a software-in-the-loop (SITL)
simulation pipeline that links the vehicle firmware with the
simulation environment. This approach enables users to test
the firmware code with simulated sensors, communication



delay, and external code to command the drones. It also
provides a high fidelity framework for simulating nano
quadcopter fleets. The platform used in this work is the
Bitcraze Crazyflie nano quadcopter. We modify the firmware
code to run on a Linux machine with a socket link for
communication. We also develop a plugin for Gazebo Sim
that provides a link between the simulated sensors, the
firmware, and the Crazyflie Python library (CFLib) [5].
CFLib is a tool used to control the Crazyflie from a ground
station using Python commands. It is also used as a backend
communication library for Crazyswarm2 which provides a
ROS 2 interface for operating Crazyflie drone fleets. Having
the capability of using CFLib in a simulation environment
with the firmware is incredibly useful for verifying that
ground station command and control code designed with
CFLib works as intended before deployment to hardware
with minimal overhead, e.g., changing the universal resource
identifier (URI).

The contributions of this paper are as follows. First, we
develop a simulator platform that uses the latest Crazyflie
firmware and Gazebo version for a software-in-the-loop
simulation with the Crazyflie firmware running in the loop
on a desktop machine. The simulator platform supports a
multi-robot simulation with successful tests of up to sixteen
Crazyflies. The simulator platform also supports communi-
cation delay for testing radio communication delay effects
on control of a multi-robot hardware deployment. To the
best of our knowledge, our work is the first to implement a
SITL simulator for the Crazyflie that supports running the
firmware in the loop along with CFLib. Finally, as a test
example that is extensible to many fleet tasks, we provide
a decentralized multi-robot model predictive control (MPC)
framework for tracking desired trajectories. We demonstrate
the efficacy of the simulation platform by providing results
for a simulation of sixteen Crazyflies running MPC on ROS
2 using Crazyswarm2 to track a set of arbitrary trajectories
of varying speeds.

II. RELATED WORK

In this section, we review several existing open source
multirotor simulators while addressing their limitations and
how their features inspired our SITL simulator platform.

Crazyswarm2: Crazyswarm2 [6] is a ROS 2 [7] interface
for operating a team of Crazyflies. It contains configuration
files for setting up the interface and launch files to start the
server that communicates with the Crazyflies through the
Bitcraze Crazyflie Python library or Cpp Link library. The
server also starts the ROS 2 flight command and parameter
services, publishers, subscribers, and a simulation layer if
desired. The drawback of using the simulation layer is
that the dynamics integration technique is the Euler first-
order method, thereby resulting in larger integration errors.
Moreover, the simulator does not contain a rendering en-
gine which makes adding vision-based sensors require a
significant effort. However, this interface contains useful
ROS 2 services for multi-robot control which we use in our

simulation and hardware section for MPC control of multiple
robots.

Webots: Webots [8] is an open source robot simulator
with multiple built-in robot models and controllers and, in
particular, includes an example application for the Crazyflie
with a simple PID controller. This simulator supports vision-
based sensors, but the example controller is significantly
different from the built-in Crazyflie control pipeline. Notably,
there is a Webots controller provided by Bitcraze that uses
the Firmware Python bindings. Python bindings are a way
to call C and C++ functions through Python; however,
Bitcraze only provides the Firmware Python bindings for
the controller and high-level command modules. This is a
better approach than building a custom external controller
to simulate the Crazyflies, but a limitation of this approach
is the absence of the estimator modules from the Crazyflie
and the real time operating system for the firmware that is
deeply embedded in the estimation and control modules.

CrazyS: CrazyS [9] is a ROS 1 [10] simulator platform
that uses Gazebo for the Crazyflie nano quadcopter. This
software package is an extension to the well known RotorS
[11] micro aerial vehicle (MAV) ROS 1 and Gazebo simula-
tor. This simulator uses sensor information from Gazebo in
a complementary filter to perform state estimation. However,
the controller is similar to Webots as a standalone controller
without dependency on the Crazyflie firmware. The interface
also uses Gazebo Classic and ROS 1 middleware which are
nearing end-of-development support as they are superseded
by Gazebo Sim and ROS 2.

sim cf: This repository [12] is an implementation of a
software-in-the-loop and hardware-in-the-loop (HITL) sim-
ulator platform. The main feature of this interface is that it
runs the Crazyflie firmware on Linux with a socket interface
for communication with a custom Gazebo-classic plugin.
The plugin also enables ROS 1 services for multi-robot
control. This interface enables users to develop their own
custom modules on the Crazyflie firmware and test them on
a simulator platform before hardware deployment. The use
of Gazebo also enables vision-based sensors such as optical
flow and distance sensors for testing obstacle avoidance
algorithms. This makes this simulator platform versatile for
various simulation testing purposes. In addition, its high
fidelity allows users to test algorithms on the same real
time operating system that runs on the microcontroller. The
HITL feature is also advantageous for testing algorithms on
the microcontroller before a flight. The limitation of this
interface is that it uses ROS 1 with Gazebo Classic and the
Crazyflie firmware provided is approximately five years old.
It also does not support interfacing with CFLib provided by
Bitcraze.

PX4: The PX4 project [13] is a well known open source
autopilot project for drones. It is actively supported by a large
community of developers and used in hobby, academic, and
industry applications. Users have extended PX4’s capabilities
by porting it onto Crazyflies. Additionally, PX4 has a SITL
feature for running its firmware within multiple simulator
platforms, namely, Gazebo Classic, Gazebo Sim, FlighGear,



Fig. 2: Block diagram for our proposed Crazyflie testing pipeline. Our CrazySim simulator interface connects to external
software such as Crazyswarm2 or the Crazyflie ground station client through the Crazyflie Python library (CFLib). Users
test their control algorithms in the external software using the simulator interface before deploying to real flight hardware.

jMAVSim, and JSBSim. The SITL feature also provides
support for spawning multiple robots and a bridge interface
for ROS 2 support. However, the simulator uses a custom
firmware rather than the official Bitcraze Crazyflie firmware
and there is no support for CFLib or the Cpp link version
provided by Bitcraze.

Our simulator combines the best features from each of the
simulators discussed above. It is most closely an extension
of sim cf where we modify the latest Crazyflie firmware to
remove microcontroller hardware dependencies to enable it
to execute on a 64-bit Linux computer. The novelty of our
work is a Gazebo Sim plugin without ROS 2 dependencies
that also allows users to command the simulated drones
using CFLib which is officially supported by Bitcraze. No
other simulator supports connecting a SITL instance of the
firmware to CFLib. This enables users to design scripts for
hardware deployment and test them in simulation directly
with minimal overhead requirements. Furthermore, we added
a communication delay feature to simulate radio delay in
hardware deployment allowing users to assess the robustness
of their control scripts due to variable communication delay
settings which was inspired by [14]. With our CFLib support
feature, users also have the option to use Crazyswarm2 to
provide a ROS 2 interface for multi-robot control.

III. INTERFACE DESCRIPTION

In this section we discuss the simulator architecture used
for our CrazySim simulator interface and implementation

details on the multi-robot MPC case study.

A. Architecture

1) Crazyflie Firmware: Flight software development is
typically designed around simulator wrappers that work
directly with the flight software that would otherwise run
onboard flight hardware. This requires software components
to deal with different platforms (e.g. 32-bit microcontrollers
or 64-bit computer processors), computing architectures (e.g.
x64 or ARM), and sensor packages (hardware or software).
The Crazyflie firmware was designed to be built for an ARM
microcontroller such as the STM32F405 on the Crazyflie 2.1.
There is trade-off in designing cross-platform flight software
between software complexity, development time, and testing
capabilities. Designing a single flight stack to run on multiple
platforms may have higher software complexity, but it gen-
erally has lower development time if multiple single-target
software packages are developed simultaneously for multiple
platforms. Flight software with multi-platform support that
is capable of running in SITL and HITL enables testing
and debugging new development features before hardware
deployment.

We begin with the latest Crazyflie firmware and extend
the approach of sim cf for a new build system for SITL. We
use preprocessor macros to define when certain code in a
source file should be built for SITL or hardware deployment.
We initially attempted to use the Crazyflie platform build
feature with Makefiles, however, the Crazyflie Makefiles are



intended for ARM microcontroller platforms. Therefore, we
use a CMake file strictly for SITL building on a desktop
machine with Ubuntu 22.04.

2) Gazebo Plugin: Gazebo Sim is chosen as the simulator
engine with sensor simulation. Gazebo is a well known
open-source robotics simulator with multiple sensor types
such as inertial, Lidar, and camera, and it has capabili-
ties for further user-developed sensor packages. The main
requirements we need for a simulator are that it contains
an inertial measurement unit (IMU), laser distance sensor,
optical flow sensor, and a physics engine with efficient multi-
robot support. We do not currently support optical flow or
laser distance capabilities at this time, but the simulator does
support these sensor types and we plan to implement these
features for simulations that require them.

We implement a Gazebo system plugin to bridge the simu-
lator and firmware together through a socket link connection.
When the Gazebo server calls the plugin it initializes three
threads: a Crazyflie firmware receiver thread, a firmware
sender thread, and a CFLib receiver thread. The firmware
receiver thread waits for a handshake message from the
firmware on port 19950+N , where N is the robot instance
index starting at zero. When the handshake message is
received then the address of the receiver is stored and used
in the sender thread. When the connection is established
the receiver thread continues to parse packets from the
firmware. One of the issues we discovered when modifying
the Crazyflie firmware is that there can only be a single
communication link at a time. Therefore, if we set up a socket
link interface between the firmware and simulator, then we
cannot use CFLib or Crazyswarm2 to communicate with the
fleet to provide offboard control or high-level commands.
The solution we found was to set up a relay system within
the plugin so that packets that contain motor messages are
directly applied to the motor model while packets that are
directed to an external library such as CFLib are first driven
through the communication delay feature to simulate radio
communication delay. The communication delay parameters
can be modified in the Crazyflie SDF model file. Message
handling for a multi-producer and single-consumer queue is
done through a concurrent queue [15]. For example, new
sensor messages are packed and inserted into a message
queue along with messages from the CFLib receiver thread.
The messages are then dequeued in the firmware sender
thread and sent through the socket link.

3) ROS 2 & External Software: A novel feature of our
simulator interface is that it supports connecting external
client software to the firmware in a simulator environment.
This allows users to design scripts to control a fleet of
Crazyflies using software such as the Bitcraze CFLib API,
Crazyswarm2, or the Bitcraze Crazyflie C++ link. Users can
test and verify their scripts directly in a simulator environ-
ment before a hardware deployment. Prior research devel-
opment with the above software tools involved designing
scripts and testing directly on hardware. This often leads to
unnecessary crashing of drones during experimental testing
of new scripts. This is especially pertinent for researchers

that are new to drone research, Crazyflie software tools, or
designing complex offboard controllers that are robust to
communication delay. A feature in our simulator interface
is that we do not have a direct dependency on ROS 2. This
was intended for users that are not familiar with the ROS 2
interface, but are familiar with the CFLib API. For users that
want to add ROS 2 support for their drone fleet, then we rec-
ommend using the Crazyswarm2 software package because
it supports CFLib as the backend communications interface.
This also adds RViz2 support for visualization of your drone
fleet in simulation or during hardware deployment. The SITL
firmware fully supports parameter and logging features and
those can be modified in the Crazyswarm2 configuration
files.

B. Model Predictive Controller
In order to demonstrate the capabilities of our simulator

interface we provide a case study of a trajectory tracking
example that uses model predictive control (MPC) to track
a set of temporally parameterized functions of position and
velocity. A main component of MPC is choosing a model
that mathematically characterizes a physical description of
the dynamics of the real system. This involves a trade-
off between complexity and fidelity of the model. Complex
models are typically difficult to solve in real time and are
even more challenging to use when we need to meet specific
time constraints such as running the controller at 100Hz.
Therefore, [16], [17] uses a reduced-order model with as-
sumptions about the higher-order dynamics. One example is
time-scale separation with slower dynamics being used for
the reduced-order model and allowing low-level controllers
to handle the faster dynamics. Quadrotor dynamics are
typically modeled using twelve states and a control input
for each motor. Controlling motors directly from a ground
station with communication delay would be challenging and
is also not officially supported by Bitcraze firmware and
client software tools. Our proposed solution is to allow an
onboard inner-loop PID controller to track desired attitude
angles. We assume the realized rotational dynamics for the
inner-loop system are a first-order linear system with time
constant ⌧ and an angle command that is applied to the inner-
loop controller. Define

ṗx = vx

ṗy = vy

ṗz = vz

v̇x = [cos� cos sin ✓ + sin� sin ]uT

v̇y = [cos� sin ✓ sin � sin� cos ]uT

v̇z = [cos� cos ✓]uT � g

�̇ =
1

⌧�
(�comm � �)

✓̇ =
1

⌧✓
(✓comm � ✓)

 ̇ =
1

⌧ 
( comm �  )

(1)

as the reduced-order model for the Crazyflie that is used
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Fig. 3: A comparison of our simulator to a real flight hardware experiment on a Crazyflie 2.1 nano quadcopter for a desired
(a) lemniscate trajectory and (b) circular trajectory.

for the MPC formulation with position and velocity states
p and v respectively in the three dimensions. To describe
the orientation of the quadrotor we use Euler angles defined
as �, ✓, and  for roll, pitch, and yaw respectively. The
control inputs to this system are the commanded attitude
angles �comm, ✓comm, and  comm to the inner-loop controller
and mass-normalized collective thrust uT . For the MPC prob-
lem we seek to minimize the linear least squares objective
function

L =
1

2

N�1X

i=1

kyi � yirefk2W +
1

2
kyN � yNrefk2WN

(2)

with y = [px, py, pz, vx, vy, vz], reference yref 2 Rny ,
weighing matrix W 2 Rny⇥ny from the weighted L2-norm,
i.e. kxk2W = xTWx, and terms with N denote parameters
in the terminal cost.

IV. SIMULATION AND HARDWARE
DEPLOYMENT

In this section, we provide a case study for our simulator
interface that compares simulation to hardware flight tests
for a Bitcraze Crazyflie 2.1 nano quadcopter.

A. Simulation & Hardware Results
To test our simulator interface we use a lemniscate refer-

ence trajectory defined as

x(t) = sin(!t)

y(t) = sin(!t) cos(!t)

vx(t) = ! cos(!t)

vy(t) = ! cos(2!t)

(3)

and a circular reference trajectory, both with time t and
angular rate !. Then, we let the MPC compute attitude and
thrust commands to the Crazyflie at a rate of 100Hz. For both
trajectories we start the angular rate parameter at zero and

increment slowly to a desired steady-state value using the
function, ! = 0.75 tanh(at) with tuning parameter a. This
approach reduces the error in the desired and current velocity
at the beginning of the test when the vehicle is hovering with
zero velocity. For our tests we use [18] to solve the MPC
problem with a prediction horizon of T = 3 s and N = 20.

To start the simulation we spawn the desired number of
Crazyflies on Gazebo, launch Crazyswarm2 to provide the
ROS 2 interface, and then launch our ROS 2 decentralized
MPC nodes. With everything set up we finally publish a
takeoff and start trajectory message to the MPC node and
start collecting data. In our tests we command a fleet of
sixteen drones to track a tilted circular reference trajectory.
In Fig. 5 we provide a snapshot of the test in the RViz2
interface with the T = 3 s horizon look ahead path computed
by MPC for each drone in green. We also provide a plot with
the trajectory of each drone.

We then conduct a real flight hardware demonstration from
the Robotarium at Georgia Tech as pictured in Fig. 4 with the
MPC controller for the two reference trajectories and provide
plots in Fig. 3. The simulation and real hardware flight
demonstration are both capable of tracking the reference
trajectory. Note that the main component of this paper is
the simulator interface and its capability to test control al-
gorithms and obtain similar results to hardware deployment.
Therefore, we do not make a deep dive into comparing the
performance of MPC.

B. Computation Time

A drone fleet simulation requires running an instance of
the Crazyflie firmware and Gazebo Sim plugin for each
robot in the fleet. To study how drone fleet sizes affects
the simulator performance we provide a bar graph in Fig.
6 that displays the real time factor from Gazebo versus the
drone fleet size. This test is conducted using a 16-core AMD
Ryzen 9 5950x desktop processor. In the current stage of the
interface the Gazebo simulator side runs at an independent



Fig. 4: A hardware demonstration of a Crazyflie nano
quadcopter following a circular trajectory using our model
predictive controller on ROS 2.
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Fig. 5: Sixteen Crazyflie nano quadcopters with our proposed
software-in-the-loop simulator interface commanded to track
a tilted circular trajectory using MPC.
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Fig. 6: A bar graph displaying the real time factor from
Gazebo as a percentage for a number of drone fleet sizes
using a 16-core AMD Ryzen 9 5950x desktop processor. A
percentage of 100 indicates that the simulation clock is at
real time speed.

time as the firmware. This means that there is no lock-
stepping to synchronize the firmware rate with the Gazebo
sensors. We recommend running at a real time factor above
80% for stability of the estimator and control module.

V. CONCLUSIONS & DISCUSSIONS
This work presents a software-in-the-loop simulator inter-

face for a fleet of Crazyflie nano quadrotors. We derived our
work by analyzing the limitation and important features of
other available simulators. Our work differs in that it runs the
firmware in a desktop machine with simulated sensors, runs a
Gazebo Sim plugin interface with simulated communication
delay, and the interface is capable of communicating with
external client software for the Crazyflies using CFLib. The
goal is to allow researchers that use the Crazyflie to test
their code in a simulated environment before a hardware
deployment to a drone fleet. This ensures that simple bugs
can be caught early without crashing drone hardware. This
also enables users to do development in the firmware such
as developing a new estimator or controller and testing
the development code in a simulator before deploying to
hardware.
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