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Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems, are considered, which
is a class of systems classically known as intelligent control systems, or in more modern and
specific terms, neural network control systems (NNCS). We broadly refer to this category
as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop
Applied Verification for Continuous and Hybrid Systems (ARCH) in 2025. In this edition
of the AINNCS category at ARCH-COMP, five tools have been applied to solve 12 bench-
marks, which are CORA, CROWN-Reach, immrax, JuliaReach, and NNV. For the second
year in a row, we have the largest interest in the community, with four previous participants
and one new participant, immrax. In reusing the hardware infrastructure and benchmarks
from last year, we can observe comparable results from previous improvements, with slight
improvements in computation time by CORA and NNV in selected benchmarks. A nov-
elty of this year is the di!erent problem abstraction between immrax and the rest of tools,
leading to result disparities in 2 benchmarks: Single Pendulum and Attitude Control.

G. Frehse and M. Altho! (eds.), ARCH25 (EPiC Series in Computing, vol. 108), pp. 71–121
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1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability to solve complex problems in
numerous application domains [81]. The success of these models in contexts such as adaptive
control, non-linear system identification [59], image and pattern recognition, function approx-
imation, and machine translation has stimulated the creation of technologies that are directly
impacting our everyday lives [71], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [65].

Despite these achievements, there have been reservations about utilizing them within high-
assurance systems for various reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [45]. In a study by Szegedy et al. [72],
the authors demonstrated that carefully applying a hardly perceptible modification to an input
image could cause a successfully trained neural network to produce an incorrect classification.
These inputs are known as adversarial examples, and their discovery has caused concern over
the safety, reliability, and security of neural network applications [81]. As a result, some research
has been directed toward obtaining an explicit understanding of neural network behavior.

Neural networks are often viewed as “black boxes” whose underlying operation is often
incomprehensible. Still, the last several years have witnessed numerous promising white-box
verification methods proposed for reasoning about the correctness of their behavior. However,
it has been demonstrated that neural network verification is an NP-complete problem [40].
Despite many recent e!orts and significant advances in the past decade [58, 76, 77, 78, 7,
23, 24, 41, 48, 70], there are remaining challenges that prevent these approaches from being
successfully applied to very large neural networks used in many real-world applications such
as [64]. Most of this work also focuses on verifying pre-/post-conditions for neural networks in
isolation. Reasoning about their usage behavior in cyber-physical systems, such as in neural
network control systems, remains a key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [19, 74]. Furthermore, this report
aims to provide readers with a perspective on the intellectual progression of this rapidly growing
field and stimulate the development of e”cient and e!ective methods capable of use in real-
life applications. Since the first iteration, there have been several publications investigating
the formal verification of AINNCS, out of which several of them have participated in one or
more of the previous competitions such as Verisig [34], VenMas [1] and ReachNN [22], among
others [78, 15, 28, 2, 43, 21, 55, 19, 17, 33, 69].

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to the
ongoing Verification of Neural Networks Competition (VNN-COMP) [9, 58], the latter of
which focuses on open-loop specifications of neural networks. In contrast, the AINNCS cat-
egory focuses on closed-loop behaviors of dynamical systems incorporating neural networks.
We want to stress that each tool has unique strengths and not all of the specificities can be
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highlighted within a single report. To reach a consensus on what benchmarks are used, some
compromises had to be made so that some tools may benefit more from the presented choice
than others. To establish further trustworthiness of the results, the code with which the re-
sults have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP, and the
submitted results are available at arch.repeatability.cps.cit.tum.de/frontend/submissions.

Specifically, this report summarizes results obtained in the 2025 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively,
and where u(x, t) is the output of a feedforward neural network provided an input of the plant
state x at time t. The architecture of the closed-loop systems we consider is depicted in Figure
1, where the input to the neural network controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

This year is the seventh iteration of the AINNCS category at ARCH-COMP and builds on
the previous iterations and reports [53, 38, 37, 50, 51, 49]. Participating tools are summarized
in Sec. 2. See [81] for further details on these and additional tools. The results of our selected
benchmark problems are shown in Sec. 3. Similar to last year, we run all tools on the same
hardware using docker images for further comparison. The docker images allow an automatic
evaluation of the tools on the submission server, thus, giving researchers immediate feedback on
the results of their submission. The submission server specifications are given in Appendix A.

The goal of the friendly competition is not to rank the results but rather to present the
landscape of existing solutions in a breadth that is impossible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users, and registration is open for anyone.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The tools
are CORA, CROWN-Reach, JuliaReach, and NNV, and first-time participant immrax. The tools
participating in the Artificial Intelligence / Neural Network Control Systems in Continuous and
Hybrid Systems Plants (AINNCS) category are introduced subsequently in alphabetical order.

CORA (Tobias Ladner, Matthias Altho!). CORA [2] is a COntinuous Reachability Analyzer
for the formal verification of cyber-physical systems using reachability analysis. It is written
in MATLAB and is available at https://cora.in.tum.de. CORA integrates various set rep-
resentations and operations on them, as well as reachability algorithms of various dynamic
system classes. For this competition, we used the approach described in [43, 47] for open-loop
and closed-loop neural network verification based on polynomial zonotopes [42]. Polynomial
zonotopes are particularly well suited for verifying neural networks due to their polynomial
time complexity for many operations. CORA realizes a fast layer-based computation of an
outer approximation of the output set of networks with various activation functions, including
ReLU, sigmoid, and tanh [43], and can automatically refine the neuron abstractions in neural
networks to obtain tighter enclosures [47]. Our neural network verification approaches are natu-
rally integrated into our reachability analysis methods for linear and nonlinear plant dynamics.
For most benchmarks, we can deploy a fully automatic verification process using CORA: We
first simulate random runs to find potential violations of the specifications. If one run violates
the specifications, we verify the violating run using reachability analysis, as simulations are not
sound. Otherwise, we try to verify the benchmark for the given specifications.

CROWN-Reach (Xiangru Zhong, Huan Zhang). CROWN-Reach is a new open-source tool
for reachability analysis of neural network control systems developed at UIUC. It aims to
strengthen and extend the successful ω,ε-CROWN neural network verifier [83, 79, 84, 67] to
the setting of neural network controller verification. CROWN-Reach consists of four main com-
ponents: bound-propagation for e”cient analysis of neural network controllers, Taylor model for
plant analysis, branch-and-bound to refine the reachable set, and a sampling-based falsifier. For
the analysis of neural network controllers, we use linear relaxation based perturbation analysis
(LiRPA) methods such as CROWN [85] and ω-CROWN [83] with extensions to cooperate with
Taylor Model flowpipe computation. Our tool is based on the auto LiRPA library[82], which
can automatically compute linear functional over-approximations for neural networks with var-
ious activation functions, including ReLU, tanh, and sigmoid, as well as neural networks with
general architectures (e.g., residual blocks and custom operators). We use the Flow*[16] library
for analyzing the plant with continuous dynamics using Taylor models, and these Taylor models
are symbolically combined with the linear bounds from CROWN to form the reachable set of
the entire system. The branch-and-bound refinement process splits the input state space and
utilizes parallelization (including both GPU and CPU) to achieve quick and precise analysis.
The bound propagation process can be accelerated on GPUs and can scale to very large net-
works, while the computation of Taylor models is executed on CPUs using multi-threading. A
paper describing the algorithm details of CROWN-Reach is currently being prepared. Code is
available at https://github.com/Verified-Intelligence/CROWN-Reach.
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immrax (Akash Harapanahalli, Samuel Coogan). immrax [31] is an open-source tool orig-
inally designed for interval analysis and mixed monotone reachability. The entire pipeline is
implemented in JAX, allowing for just-in-time compilation, easy scalability onto a GPU for par-
allel processing, and automatic di!erentiability through the entire framework to train neural
networks with specific robustness guarantees in closed-loop [29]. immrax embeds neural network
control systems into an embedding system, where a single trajectory provides an overapprox-
imating reachable set of the system. For this competition, we use two di!erent algorithms.
The first uses interval analysis techniques combined with the e”cient linear bound propagator
CROWN [85] for fast interval reachability [35]. The second is a new method for propagating
polytopes in H-rep, using CROWN [85] under the same-slope setting and the linearization of
the system around a center trajectory to build an adjoint parametric embedding system [30]. In
its current form, immrax only supports continuous feedback with the neural network controller,
meaning for each benchmark, we interpret them without the sample-and-hold. The code and
details are available at https://github.com/gtfactslab/immrax.

JuliaReach (Luis Benet, Marcelo Forets, Christian Schilling). JuliaReach [15] is an open-
source software suite for reachability computations of dynamical systems, written in the Julia
language and available at http://github.com/JuliaReach. The package ClosedLoopReacha-
bility.jl handles the closed-loop analysis and queries sub-problems to our other libraries Reacha-
bilityAnalysis.jl for continuous-time analysis of plant models and NeuralNetworkReachability.jl
for set propagation through neural networks (both forward and backward [27]). Additional set
computations are performed with LazySets.jl [26]. The algorithm we use is described in [66].
For the plant analysis, we use the sound algorithm TMJets based on interval arithmetic and Tay-
lor models; this algorithm is implemented in TaylorModels.jl [11, 14], which itself incorporates
TaylorSeries.jl [12, 13] and TaylorIntegration.jl [60]. The algorithm uses a jet transportation of
a Taylor polynomial with interval coe”cients. It has the following main parameters for tweak-
ing: the absolute tolerance abstol and two parameters to define the order at which the Taylor
expansion is cut in time (orderT) resp. in space (orderQ). For the neural-network analysis, we
use an abstract interpretation based on zonotopes [70]. For falsification, we choose an initial
point but then use set-based analysis for validated simulations.

NNV (Diego Manzanas Lopez, Taylor Johnson). The Neural Network Verification (NNV)
Tool [78, 52] is a formal verification software tool for deep learning models and cyber-
physical systems with neural network components written in MATLAB and available at
https://github.com/verivital/nnv. NNV uses a star-set state-space representation and
reachability algorithm that allows for a layer-by-layer computation of exact or overapproximate
reachable sets for feed-forward [76], convolutional [73], semantic segmentation (SSNN) [77], and
recurrent (RNN)[75] neural networks, as well as neural network control systems (NNCS) [74, 78]
and neural ordinary di!erential equations (Neural ODEs) [56]. The star-set based algorithm
is naturally parallelizable, which allows NNV to be designed to perform e”ciently on multi-
core platforms. Additionally, if a particular safety property is violated, NNV can be used to
construct and visualize the complete set of counterexample inputs for a neural network (exact-
analysis). Using NNV in combination with HyST [8, 6] and CORA [2, 3, 4] allows for the
verification of closed-loop neural network control systems with nonlinear plant dynamics.
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3 Benchmarks

We have selected 12 benchmarks for this year’s competition – the selected benchmarks are the
same as last year’s competition. We now describe these benchmarks in no particular order and
have made them readily available online.2 All benchmarks are derived for continuous time.
Given the continuous dynamics ẋ = f(x), where x → Rn is the state vector, the discrete-
time versions for a time increment of #t are obtained in this competition using forward Euler
integration:

x(k + 1) = x(k) + f(x)#t.

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle [57]. The neural network computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC) [62]. For
this case study, the ego car is set to travel at a set speed vset = 30 and maintains a safe distance
Dsafe from the lead car. The car’s dynamics are described by the following equations [74, p.
17]:

ẋlead(t) = vlead(t), v̇lead(t) = alead(t), ȧlead(t) = ↑2alead(t) + 2ac,lead ↑ uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = aego(t), ȧego(t) = ↑2aego(t) + 2ac,ego ↑ uv2ego(t),
(1)

where xi is the position, vi is the velocity, ai is the acceleration of the car, ac,i is the acceleration
control input applied to the car, and u = 0.0001 is a coe”cient for air drag, where i → {ego,
lead}. We evaluate a neural network controller with five layers and 20 neurons each for this
benchmark. The inputs of the controller are the set speed vset, the desired time gap Tgap, the
ego velocity vego, the distance Drel = xlead ↑ xego, as well as the relative velocity vrel, and the
output is ac,ego.

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with ac,lead = -2. We want to check
whether there is a collision in the following 5 s. Formally, this safety specification of the system
can be expressed as Drel ↓ Dsafe, where Dsafe = Ddefault + Tgap · vego, and Tgap = 1.4 s and
Ddefault = 10. The initial conditions are: xlead(0) → [90,110], vlead(0) → [32,32.2], alead(0) =
aego(0) = 0, vego(0) → [30, 30.2], xego → [10,11]. A control period of 0.1 s is used.

3.2 TORA

This benchmark considers translational oscillations by a rotational actuator (TORA) [19, 36],
where a cart is attached to a wall with a spring and is free to move on a frictionless surface.
The cart has a weight attached to an arm inside it, which is free to rotate about an axis. This
serves as the control input to stabilize the cart at x = 0. The model is a four-dimensional
system, given by the following equations [36, eq. (4)]:

ẋ1 = x2, ẋ2 = ↑x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

2GitHub repository of benchmarks: https://github.com/verivital/ARCH-COMP2025
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This benchmark has three neural network controllers: the first has three ReLU hidden layers
and a linear output layer. This controller was trained using a data-driven model predictive
controller proposed in [20]. Note that the output of the neural network f(x) needs to be
normalized to obtain u, namely u = f(x) ↑ 10. The sampling time for this controller is 1 s,
and we verify it against specification 1 below. The other two controllers have three hidden
layers of 20 neurons each and one output layer. In contrast to the first controller, we use
sigmoid activation functions for the hidden layers and a tanh output layer. The sampling time
of these controllers is 0.5 s, the output of the neural network f(x) needs to be post-processed
as u = 11 · f(x), and we verify them against specification 2 below.

Specification 1. This is a safety specification. For an initial set of x1 → [0.6, 0.7], x2 →
[↑0.7,↑0.6], x3 → [↑0.4,↑0.3], and x4 → [0.5, 0.6], the system states have to stay within the
box x → [↑2, 2]4 for a time window of 20 s.

Specification 2. For an initial set of x1 → [-0.77, -0.75], x2 → [-0.45, -0.43], x3 → [0.51,
0.54], and x4 → [↑0.3,↑0.28], it is required that the system reaches the set x1 → [↑0.1, 0.2],
x2 → [↑0.9,↑0.6] within a time window of 5 s.

3.3 Unicycle

This benchmark considers a unicycle model of a car [19] with the x and y coordinates on a
two-dimensional plane, the velocity magnitude (speed), and steering angle as state variables.
The dynamic equations are (see [5, Sec. III.B]; a di!erent input is used here):

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range 10→4[↑1, 1]. A neural network controller was trained for
this system using a model predictive controller as a “demonstrator” or “teacher”. The trained
network has one hidden layer with 500 neurons. Note that the output of the neural network
f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i ↑ 20. The sampling
time for this controller is 0.2 s.

Specification This is a reachability specification. For an initial set of x1 → [9.5, 9.55], x2 →
[↑4.5,↑4.45], x3 → [2.1, 2.11], and x4 → [1.5, 1.51], the system has to reach the set x1 →
[↑0.6, 0.6], x2 → [↑0.2, 0.2], x3 → [↑0.06, 0.06], x4 → [↑0.3, 0.3] within a time window of 10 s.

3.4 VerticalCAS

This benchmark is a closed-loop variant of the aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped with
a collision avoidance system referred to as VerticalCAS [39]. VerticalCAS issues vertical climb
rate advisories every second to the ownship pilot to avoid a near mid-air collision (NMAC).
Near mid-air collisions are regions where the ownship and the intruder are separated by less
than 100ft vertically and 500ft horizontally. The ownship (black) is assumed to have a constant
horizontal speed, and the intruder (red) is assumed to follow a constant horizontal trajectory
towards ownship, see Figure 2. The current geometry of the system is described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and
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NMAC zone

h

ω

|ḣ0|

Figure 2: VerticalCAS encounter geometry

• ϑ , the time until the ownship (black) and intruder (red) are no longer horizontally sepa-
rated.

We can, therefore, assume that the intruder is static and the horizontal separation ϑ de-
creases by one each second. There are nine advisories, and each of them instructs the pilot to
accelerate until the vertical climb rate of the ownship complies with the advisory:

1. COC: Clear Of Conflict;

2. DNC: Do Not Climb;

3. DND: Do Not Descend;

4. DES1500: Descend at least 1500 ft/s;

5. CL1500: Climb at least 1500 ft/s;

6. SDES1500: Strengthen Descent to at least 1500 ft/s;

7. SCL1500: Strengthen Climb to at least 1500 ft/s;

8. SDES2500: Strengthen Descent to at least 2500 ft/s;

9. SCL2500: Strengthen Climb to at least 2500 ft/s.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv → {1, . . . , 9} (numbers correspond to the above list) issued to
the ownship at the previous time step. VerticalCAS is implemented as nine ReLU networks Ni,
one for each (previous) advisory, with three inputs (h, ḣ0, ϑ), five fully-connected hidden layers
of 20 units each, and nine outputs representing the score of each possible advisory. Therefore,
given a current state (h, ḣ0, ϑ, adv), the new advisory adv↑ is obtained by computing the argmax
of the output of Nadv on (h, ḣ0, ϑ).

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC, then it can be any acceleration from the set {↑ g

8 , 0,
g
8}. For all remaining advisories, if

the previous advisory coincides with the new one and the current climb rate complies with the
new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ↓ 1500 for CL1500), the acceleration ḧ0

is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets:

• DNC: {↑ g
3 ,↑

7g
24 ,↑

g
4};

• DND: { g
4 ,

7g
24 ,

g
3};

• DES1500: {↑ g
3 ,↑

7g
24 ,↑

g
4};

• CL1500: { g
4 ,

7g
24 ,

g
3};
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• SDES1500: {↑ g
3};

• SCL1500: { g
3};

• SDES2500: {↑ g
3};

• SCL2500: { g
3},

where g represents the gravitational constant 32.2 ft/s2.
It was proposed to tweak the benchmark for the tools that cannot e”ciently account for

all possible acceleration choices. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration to take the ownship
closer to the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, ϑ, adv), the new advisory adv↑ and the acceleration
ḧ0, the new state of the system can be computed by the following equations [39, eq. (15)]:

h(k + 1) = h(k)↑ ḣ0(k)#ϑ ↑ 0.5ḧ0(k)#ϑ2

ḣ0(k + 1) = ḣ0(k) + ḧ0(k)#ϑ
ϑ(k + 1) = ϑ(k) +#ϑ

adv(k + 1) = adv↑

where #ϑ = 1.

Specification The ownship has to be outside of the NMAC zone after k → {1, . . . , 10} time
steps, i.e., h(k) > 100 or h(k) < ↑100, for all possible choices of acceleration by the pilot. The
set of initial states considered is: h(0) → [↑133,↑129], ḣ0(0) → {↑19.5,↑22.5,↑25.5,↑28.5},
ϑ(0) = 25 and adv(0) = COC.

3.5 Single Pendulum

We consider a classical inverted pendulum. A ball of mass m is attached to a massless beam of
length L. The beam is actuated with a torque T , and we assume viscous friction with a friction
coe”cient of c. The governing equation of motion can be obtained as [54, eq. (1)]:

ϖ̈ =
g

L
sin ϖ +

1

mL2

(
T ↑ c ϖ̇

)
, (4)

where ϖ is the angle of the link concerning the upward vertical axis and ϖ̇ is the angular velocity.
After defining the state variables x1 = ϖ and x2 = ϖ̇, the dynamics in state-space form is

ẋ1 =x2, (5a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T ↑ c x2) . (5b)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. The code, as well as training procedures, are provided. The model parameters are
chosen as

m = 0.5, L = 0.5, c = 0, g = 1, (6)

and the time step for the controller and the discrete-time model is #t = 0.05. The initial set is

x → [1.0, 1.175]↔ [0.0, 0.2].
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Specification ↗t → [0.5, 1] : ϖ → [0, 1] (analogously for k → [10, 20] in discrete time).

3.6 Double Pendulum

The double pendulum is an inverted two-link pendulum with equal point masses m at the ends
of connected massless links of length L. The links are actuated with torques T1 and T2, and
we assume viscous friction exists with a coe”cient of c. The governing equations of motion are
described by the following equations [54, eq. (3a-b)]:

2ϖ̈1 + ϖ̈2 cos(ϖ2 ↑ ϖ1)↑ ϖ̇22 sin(ϖ2 ↑ ϖ1)↑ 2
g

L
sin ϖ1 +

c

mL2
ϖ̇1 =

1

mL2
T1, (7a)

ϖ̈1 cos(ϖ2 ↑ ϖ1) + ϖ̈2 + ϖ̇21 sin(ϖ2 ↑ ϖ1)↑
g

L
sin ϖ2 +

c

mL2
ϖ̇2 =

1

mL2
T2, (7b)

where ϖ1 and ϖ2 are the angles of the links concerning the upward vertical axis (see Figure 3)
and g is the gravitational acceleration. After defining the state vector as x = [ϖ1, ϖ2, ϖ̇1, ϖ̇2]T ,
the dynamics in state-space form is

ẋ1 =x3, (8a)

ẋ2 =x4, (8b)

ẋ3 =
1

2
(

cos2(x1→x2)
2 ↑ 1

) cos (x1 ↑ x2)

(
x3

2 sin (x1 ↑ x2)↑ cos (x1 ↑ x2)

(
g sin (x1)

L
(8c)

↑x4
2 sin (x1 ↑ x2)

2
+

T1 ↑ c x3

2L2 m

)
+

g sin (x2)

L
+

T2 ↑ c x4

L2 m

)
(8d)

↑ x4
2 sin (x1 ↑ x2)

2
+

g sin (x1)

L
+

T1 ↑ c x3

2L2 m
, (8e)

ẋ4 =
↑1

cos2(x1→x2)
2 ↑ 1

(
x3

2 sin (x1 ↑ x2)↑ cos (x1 ↑ x2)

(
g sin (x1)

L
↑ x4

2 sin (x1 ↑ x2)

2
(8f)

+
T1 ↑ c x3

2L2 m

)
+

g sin (x2)

L
+

T2 ↑ c x4

L2 m

)
. (8g)

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark; the code, as well as training procedures,
are provided. The model parameters are chosen as in (6) The initial set is

x → [1.0, 1.3]4.

Specification 1 ↗t → [0, 1] : x → [↑1.7, 2]4 (analogously for k → [0, 20] in discrete time) for
#t = 0.05.

Specification 2 ↗t → [0, 0.4] : x → [↑1.5, 1.5]4 (analogously for k → [0, 20] in discrete time)
for #t = 0.02.

We verify controller double pendulum less robust against specification 1 and controller double
pendulum more robust against specification 2.
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Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

3.7 Airplane

The airplane example consists of a dynamical system that is a simple model of a flying airplane
as shown in Figure 4. The state is

x = [sx, sy, sz, vx, vy, vz,ϱ, ϖ,ς, r, p, q]
T , (9)

where (sx, sy, sz) is the position of the center of gravity, (vx, vy, vz) are the components of
velocity in (x, y, z) directions, (p, q, r) are body rotation rates, and (ϱ, ϖ,ς) are the Euler angles.
The equations of motion are reduced to [54, eq. (7)]:

v̇x =↑ g sin ϖ +
Fx

m
↑ qvz + rvy, (10a)

v̇y =g cos ϖ sinϱ+
Fy

m
↑ rvx + pvz, (10b)

v̇z =g cos ϖ cosϱ+
Fz

m
↑ pvy + qvx, (10c)

Ixṗ+ Ixz ṙ =Mx ↑ (Iz ↑ Iy)qr ↑ Ixzpq, (10d)

Iy q̇ =My ↑ Ixz
(
r2 ↑ p2

)
↑ (Ix ↑ Iz)pr, (10e)

Ixz ṗ+ Iz ṙ =Mz ↑ (Iy ↑ Ix)qp↑ Ixzrq. (10f)

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The control parameters include three force
components Fx, Fy and Fz and three moment componentsMx,My,Mz. Note that for simplicity,
we assume that the aerodynamic forces are absorbed in the force vector F . In addition to these
six equations, we have six additional kinematic equations [54, eq. (8,9)]:




ṡx
ṡy
ṡz



 =




cosς ↑ sinς 0
sinς cosς 0
0 0 1








cos ϖ 0 sin ϖ
0 1 0

↑ sin ϖ 0 cos ϖ








1 0 0
0 cosϱ ↑ sinϱ
0 sinϱ cosϱ








vx
vy
vz



 (11)
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Figure 4: The airplane example.

and




ϱ
ϖ
ς



 =




1 tan ϖ sinϱ tan ϖ cosϱ
0 cosϱ ↑ sinϱ
0 sec ϖ sinϱ sec ϖ cosϱ








p
q
r



 . (12)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning. The system involves the model parameters

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1,

and the time step for the controller and the discrete-time model is #t = 0.1. The initial set is

x = y = z = r = p = q = 0, [vx, vy, vz,ϱ, ϖ,ς] → [0.0, 1.0]6.

Specification ↗t → [0, 2] : sy → [↑1, 1], [ϱ, ϖ,ς] → [↑1.0, 1.0]3. Analogously for k → [0, 20] in
discrete time.

We verify the airplane controller against the specification above.
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3.8 Attitude Control

We consider the attitude control of a rigid body with six states and three inputs [61, 68]. The
system dynamics is given by [61, Sec. V]:

φ̇1 = 0.25(u0 + φ2φ3), φ̇2 = 0.5(u1 ↑ 3φ1φ3), φ̇3 = u2 + 2φ1φ2,

ς̇1 = 0.5
(
φ2(ς

2
1+ς2

2+ς2
3↑ς3)+φ3(ς

2
1+ς2

2+ς2+ς2
3)+φ1(ς

2
1+ς2

2+ς2
3+1)

)
,

ς̇2 = 0.5
(
φ1(ς

2
1+ς2

2+ς2
3+ς3)+φ3(ς

2
1↑ς1+ς2

2+ς2
3)+φ2(ς

2
1+ς2

2+ς2
3+1)

)
,

ς̇3 = 0.5
(
φ1(ς

2
1+ς2

2↑ς2+ς2
3)+φ2(ς

2
1+ς1+ς2

2+ς2
3)+φ3(ς

2
1+ς2

2+ς2
3+1)

)
,

wherein the state x = (φT ,ςT )T consists of the angular velocity vector in a body-fixed frame
φ → R3 and the Rodrigues parameter vector ς → R3.

The control torque u → R3 is updated every 0.1 s by a neural network with three hidden
layers, each of which has 64 neurons. The activations of the hidden layers are sigmoid and
identity, respectively. We train the neural-network controller using supervised learning methods
to learn from a known nonlinear controller [61]. The initial state set is:

φ1 → [↑0.45,↑0.44],φ2 → [↑0.55,↑0.54],φ3 → [0.65, 0.66],

ς1 → [↑0.75,↑0.74],ς2 → [0.85, 0.86],ς3 → [↑0.65,↑0.64].

Specification The system should not reach the following unsafe set in 3 s (30 time steps):

φ1 → [↑0.2, 0],φ2 → [↑0.5,↑0.4],φ3 → [0, 0.2],

ς1 → [↑0.7,↑0.6],ς2 → [0.7, 0.8],ς3 → [↑0.4,↑0.2].

We want to show that the above specification does not hold.

3.9 Quadrotor

This benchmark studies a neural-network controlled quadrotor (QUAD) with twelve state vari-
ables [10]. We have the inertial (north) position x1, the inertial (east) position x2, the altitude
x3, the longitudinal velocity x4, the lateral velocity x5, the vertical velocity x6, the roll angle
x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch rate x11, and the yaw rate
x12. The control torque u → R3 is updated every 0.1 s by a neural network with 3 hidden layers,
each of which has 64 neurons. The activations of the hidden layers and the output layer are
sigmoid and identity, respectively. The dynamics are given by the following equations [10, eq.
(12-16)]:
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ẋ1 =cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)↑ cos(x7) sin(x9))x5

+ (cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6,

ẋ2 =cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+ (cos(x7) sin(x8) sin(x9)↑ sin(x7) cos(x9))x6,

ẋ3 =sin(x8)x4 ↑ sin(x7) cos(x8)x5 ↑ cos(x7) cos(x8)x6,

ẋ4 =x12x5 ↑ x11x6 ↑ g sin(x8, )

ẋ5 =x10x6 ↑ x12x4 + g cos(x8) sin(x7),

ẋ6 =x11x4 ↑ x10x5 + g cos(x8) cos(x7)↑ g ↑ u1/m,

ẋ7 =x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12,

ẋ8 =cos(x7)x11 ↑ sin(x7)x12,

ẋ9 =
sin(x7)

cos(x8)
x11 ↑

cos(x7)

cos(x8)
x12,

ẋ10 =
Jy ↑ Jz

Jx
x11x12 +

1

Jx
u2,

ẋ11 =
Jz ↑ Jx

Jy
x10x12 +

1

Jy
u3,

ẋ12 =
Jx ↑ Jy

Jz
x10x11 +

1

Jz
ϑω,

where

g = 9.81, m = 1.4, Jx = 0.054,

Jy = 0.054, Jz = 0.104, ϑω = 0.

The initial set is:

x1 → [↑0.4, 0.4], x2 → [↑0.4, 0.4], x3 → [↑0.4, 0.4], x4 → [↑0.4, 0.4],

x5 → [↑0.4, 0.4], x6 → [↑0.4, 0.4], x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0.

Specification The control goal is to stabilize the attitude x3 to a goal region [0.94, 1.06] and
remain within these bounds with a time horizon of 5 s (50 time steps).

3.10 2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an active deputy spacecraft is expressed
relative to the passive chief spacecraft in Hill’s reference frame [32]. The dynamics are given
by a first-order approximation of the relative motion dynamics between the deputy and chief
spacecraft, which is given by Clohessy-Wiltshire [18] equations [63, eq. (12)],





ṡx
ṡy
s̈x
s̈y



 =





0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 ↑2n 0









sx
sy
ṡx
ṡy



+





0 0
0 0
1
m 0
0 1

m



u, (13)

where m = 12 (kg), n = 0.001027 (rad/s), and u → R2.
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The neural network controller was trained on the Docking 2D environment with reinforce-
ment learning using the training procedure described in [63]. However, the training procedure
di!ered in providing only the full state (position and velocity) as input and with hard clipping
of output actions replaced with soft tanh clipping. The neural network architecture was a shal-
low multilayer perceptron with 2 hidden layers of 256 neurons and tanh activation functions,
and a linear output layer. The pre-processing and post-processing of the controller have been
incorporated into the model as linear layers. The controller was trained with a sampling time
of 1 s.

Specification The spacecraft should satisfy the following safety constraints for 40 s:

(ṡ2x + ṡ2y)
1
2 ↘ 0.2 + 2n(s2x + s2y)

1
2 , (14)

given the initial set is

sx → [70, 106], sy → [70, 106], ṡx → [↑0.28, 0.28], ṡy → [↑0.28, 0.28].

3.11 Navigation Task

The navigation benchmark models a simplified model of a robot [19] navigating to a goal
region while avoiding an obstacle along its path. The state is four-dimensional consisting of the
horizontal and vertical position x, y, the angle ϖ of the robot, and velocity ↼. The controller
gets all states as input and has an output u → [↑1, 1]2. The dynamics of the system are given
by:

ṡ =





↼ cos ϖ
↼ sin ϖ
u(1)

u(2)



 . (15)

This benchmark is designed to compare how di!erent training schemes improve the verifia-
bility of a controller. As a baseline, the first controller was trained using standard (point-based)
reinforcement learning. We used adversarial training to obtain a second, more robust controller:
During training, uncertainties of a given state are modeled using sets, and the weights are up-
dated based on the entire input set rather than individual points. This approach was first
developed in the supervised learning setting [44], and has also been applied during reinforce-
ment learning [80]. Both networks have two hidden layers with 64 neurons each and ReLU
activation, with a final layer with tanh activation to match the benchmark description. The
controllers were trained with a sampling time of 0.2 s.

Specification The robot should avoid an obstacle during the entire time horizon (t → [0, 6]s)
and reach the goal region at t = 6s. The initial set is given by:

x → [2.9, 3.1], y → [2.9, 3.1], ϖ → [0, 0], ↼ → [0, 0].

The obstacle is located at:

x → [1, 2], y → [1, 2], ϖ → [↑≃,≃], ↼ → [↑≃,≃].

The goal region is located at:

x → [↑0.5, 0.5], y → [↑0.5, 0.5], ϖ → [↑≃,≃], ↼ → [↑≃,≃].
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3.12 CartPole

We consider an inverted pendulum (pole) mounted on a movable one-directional cart. The
controller’s goal is to balance the pendulum upright by moving the cart. The pole of length lp
has a total mass mp. The cart’s responsiveness is defined by its acceleration magnitude xacc.
By using cartpole equations [25] and the momentum inertia defined by I = 3

4mpl2 we get a
physical description of the system. With x1 → [↑0.5, 0.5] being the carts position (with its
velocity x2 = ẋ1) and x3 → R being the angle of the pendulum (with {2↽z, z → Z} being the
inverted state, x4 = ẋ3 the angular velocity) the state vector is defined by [x1, x2, x3, x4]T . This
results into the following behaviour.

ẋ1 = x2 (16)

ẋ2 = xacc · f(x1, x2, sinx3, cosx3, x4) (17)

ẋ3 = x4 (18)

ẋ4 =
mp · lp · (g · sinx3 ↑ xacc · f(x1, x2, sinx3, cosx3, x4) · cosx3)↑ µp · x4

I
(19)

with f(x1, x2, sinx3, cosx3, x4) being the output of the controller.
The system parameters are given by

lp = 0.41m, mp = 0.08 kg, I = 10.5 · 10→3 kgm2,

xacc = 2
m

s2
, µp = 2.1 · 10→3 kgm2

s2
, g = 9.8

m

s1

The initial set is defined by

(x1, x2, x3, x4) → [↑0.1, 0.1]↔ [↑0.05, 0.05]↔ [↑0.1, 0.1]↔ [↑0.05, 0.05]

The controller has a latency of ϑ = 0.02 s.

Specification After a settling time of 8 seconds the controller is able to stabilize the pendulum
((x3, x4 → [↑0.001, 0.001]2)) in the middle of the rail (x1 → [↑0.001, 0.001]):

↗t → [8 s, 10 s] : x1, x3, x4 → [↑0.001, 0.001]3

4 Verification Results

For each of the participating tools, we obtained verification results for some or all of the bench-
marks. This year’s competition (as in the previous 2 years) included the submission of the tools
for repeatability prior to the writing of the report to ensure a fairer comparison. Reachable
sets are shown for those methods that are able to construct them. The published results are
available on the website of the submission system3 and in the repeatability repository4.

4.1 CORA

For this year’s iteration, we fine-tuned parameters for all benchmarks to strike a balance between
required precision and computation time. An overview of the results are given in Tab. 1 and
detailed below.

3Submission system: https://arch.repeatability.cps.cit.tum.de
4Repeatability repository: https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2025/AINNCS
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Table 1: CORA. Overview of results: Verified (✁), falsified (✂), and unknown (?).

Benchmark Instance Result Time [s]

Unicycle reach ✁ 8.077
ACC safe-distance ✁ 3.091
TORA remain ✁ 9.699
TORA reach-tanh ✁ 3.166
TORA reach-sigmoid ✁ 6.001
Single Pendulum reach ✁ 3.810
Double Pendulum less-robust ? 4.231
Double Pendulum more-robust ✂ 5.224
Airplane continuous ✂ 2.713
VCAS middle-19.5 ✁ 0.197
VCAS middle-22.5 ✁ 0.130
VCAS middle-25.5 ✂ 0.033
VCAS middle-28.5 ✂ 0.034
VCAS worst-19.5 ✁ 0.096
VCAS worst-22.5 ✂ 0.061
VCAS worst-25.5 ✂ 0.059
VCAS worst-28.5 ✂ 0.043
Attitude Control avoid ✁ 3.418
QUAD reach ✁ 30.376
Docking constraint ? 100.121
NAV standard ✁ 423.451
NAV robust ✁ 1.990
CartPole* reach ✁ 241.478

0 1 2 3 4 5
40

60

80

100

time

d
is
ta
n
ce

Distance

Safe distance

Simulations

Figure 5: CORA. Computed reachable set and simulations of the ACC benchmark.

4.1.1 ACC

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 5.
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Figure 6: CORA. Computed reachable set and simulations of the TORA benchmark: ReLU
controller (top), tanh controller (bottom left), and sigmoid controller (bottom right).

4.1.2 TORA

CORA is able to verify both the remain and the reach instance for all controllers of this
benchmark. The computed reachable set as well as some simulations are visible in Fig. 6.

4.1.3 Unicycle

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 7.
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Figure 7: CORA. Computed reachable set and simulations of the unicycle benchmark.

4.1.4 VCAS

The VCAS benchmark has discrete time steps and multiple controllers, which is currently not
supported by CORA. Thus, a custom algorithm was built for this benchmark. To deal with
the discrete input set ḣ0(0) → {↑19.5,↑22.5,↑25.5,↑28.5}, we run the algorithm with each
element of the input set individually. As proposed in the benchmark specifications, we show
the results when always the middle acceleration of the controllers is chosen and the results when
always the worst acceleration is chosen.

VCAS (middle acceleration) Here we always use the middle of the possible accelerations.
We are able to verify the benchmark for ḣ0(0) → {↑19.5,↑22.5} and can show violations for
ḣ0(0) → {↑25.5,↑28.5}. The computed reachable set along with some simulations are shown
in Figure 8.

VCAS (worst acceleration) Here we always use the worst possible acceleration. We
are able to verify the benchmark for ḣ0(0) → {↑19.5} and can show violations for ḣ0(0) →
{↑22.5,↑25.5,↑28.5}. The computed reachable set along with some simulations are shown in
Figure 9.

4.1.5 Single Pendulum

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 10.

4.1.6 Double Pendulum

CORA is able to falsify the instance using the more robust controller by providing a verified
simulation run going outside the safe set, whereas the result for the less robust controllers
remains unknown. The verified simulation run violating the specification is visible in Fig. 11.
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Figure 8: CORA. Computed reachable set of the VCAS benchmark with middle acceleration.
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Figure 9: CORA. Computed reachable set of the VCAS benchmark with worst acceleration.

4.1.7 Airplane

CORA is able to falsify this benchmark by providing a verified simulation run going outside
the safe set. The verified simulation run violating the specification is visible in Fig. 12.

4.1.8 Attitude Control

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 13.
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Figure 10: CORA. Computed reachable set and simulations of the single pendulum benchmark.
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Figure 11: CORA. Verified simulation run using the more robust controller violating the
specification of the double pendulum benchmark.

4.1.9 Quadrotor

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 14.

4.1.10 2D Spacecraft Docking

The spacecraft docking benchmark appeared di”cult to verify for our approach. While the
simulations seem to be stable, the reachable set explodes over time and thus we are unable to
verify the benchmark. The computed reachable set along with some simulations are shown in
Figure 15.
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Figure 12: CORA. Verified simulation run violating the specification of the airplane bench-
mark.
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Figure 13: CORA. Computed reachable set and simulations of the attitude control benchmark.

4.1.11 Navigation Task

CORA is able to verify both instances; however we want to notice that the robust controller
is much easier to verify whereas the standard controller can only be verified using recursive
splitting. The computed reachable set along with some simulations are shown in Figure 16.

4.1.12 CartPole

CORA is able to verify this benchmark for a smaller initial set, where each radius is set to 40%
of its original length per dimension. The computed reachable set, along with some simulations,
is shown in Figure 17.
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Figure 14: CORA. Computed reachable set and simulations of the quadrotor benchmark.
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Figure 15: CORA. Computed reachable set and simulations of the 2D spacecraft docking
benchmark.
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Figure 16: CORA. Computed reachable set and simulations of the navigation task benchmark:
Standard controller (left) and robust controller (right).

→0.15 →0.1 →5 · 10→2 0 5 · 10→2 0.1

→4

→2

0

2

4

·10→2

x(1) (position)

x
(3

)
(a
n
g
le
) Reachable set

Initial set

Goal set

Simulations

Figure 17: CORA. Computed reachable set and simulations of the cartpole benchmark.
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4.2 CROWN-Reach

This subsection presents the results of CROWN-Reach. Here we briefly introduce the specific
setting for each benchmark. All the implementation and parameters can be found in the
repeatability repository. An overview of the results is given in Tab. 2.

4.2.1 ACC

CROWN-Reach is able to verified this benchmark. The reachable sets of both ”distance” Drel

and ”safe distance” Dsafe are shown in Fig. 18.

4.2.2 TORA

CROWN-Reach is able to verify all three instances of this benchmark. The computed reachable
sets of the system are shown in Fig. 19. Note that for the instance under the ReLU controller
(with specification 1), the initial set of x1 and x2 is uniformly divided into 4↔ 3 subsets.

4.2.3 Unicycle

CROWN-Reach is able to verify this benchmark. The reachable sets are shown in Fig. 20.

Table 2: CROWN-Reach. Overview of results: Verified (✁), falsified (✂), and unknown (?).

Benchmark Instance Result Time [s]

ACC safe-distance ✁ 2.525
Airplane continues ✂ 5.556
Attitude Control avoid ✁ 3.485
Single Pendulum reach ✁ 0.633
TORA remain ✁ 2.793
TORA reach-sigmoid ✁ 5.293
TORA reach-tanh ✁ 7.486
Unicycle reach ✁ 10.126
Balancing reach ? 6.431
VCAS worst-19.5 ✁ 0.339
VCAS worst-22.5 ✂ 0.053
VCAS worst-25.5 ✂ 0.031
VCAS worst-28.5 ✂ 0.027
VCAS middle-19.5 ✁ 0.274
VCAS middle-22.5 ✁ 0.275
VCAS middle-25.5 ✂ 0.057
VCAS middle-28.5 ✂ 0.037
Double Pendulum more-robust ✂ 1.227
Double Pendulum less-robust ✁ 66.742
NAV robust ✁ 20.902
NAV standard ✁ 129.437
QUAD reach ✁ 3484.873
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Figure 18: CROWN-Reach. Computed reachable sets of distance and safe distance in the
following 5 seconds.
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Figure 19: CROWN-Reach. Computed reachable sets of the TORA benchmark under the
ReLU controller (top), the ReLU/tanh controller (bottom left), and the sigmoid controller
(bottom right). All three instances are verified.
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Figure 20: CROWN-Reach. Computed reachable sets of the Unicycle benchmark. The target
set is proved to be reachable.
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Figure 21: CROWN-Reach. Computed reachable sets (for verified instances) and simulation
trajectories (for falsified instances) of the VCAS benchmark. The strategy for choosing accel-
eration is fixed to either ”worst” (top) or ”middle” (bottom). The initial value of ḣ0 is chosen
from {↑19.5,↑22.5,↑25.5,↑28.5} (from left to right).

4.2.4 VerticalCAS

The VCAS benchmark has multiple controllers. To handle this benchmark, we treat the four
possible inputs ḣ0(0) → {↑19.5,↑22.5,↑25.5,↑28.5} separately and fix the acceleration selec-
tion strategies between “always choosing the middle one” and “always choosing the worst one”.
At each control step, CROWN-Reach bounds the outputs of the neural network controller and
verifies that the advisory option is unique. To conclude, CROWN-Reach is able to show that
when using the “worst” strategy, instances with ḣ0(0) = ↑19.5 is verified. When using the
“middle” strategy, instances with ḣ0(0) = ↑19.5 or ḣ0(0) = ↑22.5 are verified. All other
instances are falsified by random simulation. The result visualizations are shown in Fig. 21.
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Figure 22: CROWN-Reach. Computed reachable sets of the Single Pendulum benchmark.

Figure 23: CROWN-Reach. Result visualizations for the benchmark Double Pendulum,
including the instance under the less robust controller (left) and the one under the more robust
controller (right). For the falsified instance, we plot one counterexample trajectory. For the
verified one, we show its reachable sets.

4.2.5 Single Pendulum

CROWN-Reach is able to verify this benchmark. The reachable sets are shown in Fig. 22.

4.2.6 Double Pendulum

CROWN-Reach is able to falsify the instance under the more robust controller by running a
simulation starting from the initial point (1.3, 1.3, 1.3, 1.3), and is able to verify the instance
under the less robust controller by uniformly dividing the initial set into 5↔ 5↔ 3↔ 3 subsets.
The result visualizations are shown in Fig. 23.
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Figure 24: CROWN-Reach. A trajectory from an initial point reaches out of the safe set,
falsifying the Airplane benchmark.
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Figure 25: CROWN-Reach. Computed reachable sets of the Attitude Control benchmark.

4.2.7 Airplane

CROWN-Reach is able to falsify this benchmark by showing that the trajectory starting from
a counterexample initial state reach out of the safe set, as shown in Fig. 24.

4.2.8 Attitude Control

CROWN-Reach is able to verify this benchmark. The computed reachable sets are shown in
Fig. 25.

4.2.9 Quadrotor

CROWN-Reach is able to verify this benchmark with input splits. The initial set is uniformly
divided into 8↔ 8↔ 8↔ 2↔ 1↔ 1 subsets and verified in parallel. The reachable sets are shown
in Fig. 26.
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Figure 26: CROWN-Reach. Computed reachable sets of the Quadrotor benchmark. Here
for visualization, reachable sets are sampled on the dimension time.

Figure 27: CROWN-Reach. Computed reachable sets of the Navigation Task benchmark.
Both the standard instance (left) and the robust one (right) are verified.

4.2.10 Navigation Task

CROWN-Reach is able to verify both instances of this benchmark with input splits. For the
standard instance, the initial set is uniformly divided into 40↔ 16↔ 1↔ 1 subsets and verified
in parallel. For the robust instance, the initial set is uniformly divided into 5↔5↔1↔1 subsets
and verified in parallel. The reachable sets are shown in Fig. 27.

4.3 immrax

In order to accommodate our tool’s capabilities, we interpreted the benchmarks in a slightly
di!erent manner. Namely, for the control system ẋ = f(x, u), we assume the neural network is
in continuous feedback, rather than with the sample-and-hold architecture pictured in Figure 1,
meaning our closed loop system takes the form ẋ(t) = f(x(t),$(h(x(t)), v(t))).
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Table 3: immrax. Overview of results: Verified (✁), falsified (✂), and unknown (?).

Benchmark Instance Result Time [s]

ACC safe-distance ✁ 0.066
AttitudeControl avoid ✂ 0.507
NAV robust ✁ 42.384
SinglePendulum reach ✂ 0.005
TORA reach-tanh ✁ 0.020
TORA reach-sigmoid ✁ 0.023

Figure 28: immrax. The computed reachable sets of the relative distance and the safe distance
are pictured. The benchmark is verified since there is no intersection of these sets.

4.3.1 ACC

We take the neural network to be in continuous feedback with the plant instead of with the
sample-and-hold. We were able to verify the benchmark using the interconnection mode inclu-
sion function from [35]. The results are shown in Figure 28.

4.3.2 Attitude Control

We take the neural network to be in continuous feedback with the plant instead of with the
sample-and-hold. We were able to verify the benchmark using the H-polytope adjoint embed-
ding system. The results are shown in Figure 29.

4.3.3 NAV

We take the neural network to be in continuous feedback with the plant instead of with the
sample-and-hold. We were able to verify the robust neural network using the H-polytope adjoint
embedding system, with the determinant control barrier function enabled with ⇀ = 0.1, after
partitioning the input set into 225 = 15 ↔ 15 ↔ 1 ↔ 1 evenly spaced regions. The results are
shown in Figure 30.
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Figure 29: immrax. The reachable set for the attitude control system is shown.

Figure 30: immrax. The computed reachable set for the NAV benchmark with the robust
controller is pictured.

4.3.4 Single Pendulum

When the neural network is taken in continuous feedback with the plant, the controller fails to
satisfy the specification. Figure 31 shows a simulation from the upper corner of the initial set,
which fails to enter the safe set within 0.5 seconds, as well as our computed reachable set using
the H-polytope adjoint embedding system.

4.3.5 TORA

We take the neural network to be in continuous feedback with the plant instead of with the
sample-and-hold. We were able to verify the reachability specifications with the tanh and
sigmoid controllers using the H-polytope adjoint embedding system. The results are shown in
Figure 32.
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Figure 31: immrax. The reachable set for the single pendulum benchmark is shown. In
continuous feedback, the controller fails to verify the specification, and a sample simulation
from the upper corner of the initial set is shown to miss the safe set.

Figure 32: immrax. The computed reachable set for the TORA reachability benchmarks with
the tanh (left) and sigmoid (right) controllers are pictured.

4.4 JuliaReach

This subsection presents the results of JuliaReach. For each problem, JuliaReach uses slightly
di!erent settings as described below. An overview of the results is given in Tab. 4.

4.4.1 ACC

Using the parameters abstol=1e-3, orderT=5, orderQ=1, JuliaReach verifies the specifica-
tion in 0.6 s,. Figure 33 shows the reach sets of Drel and Dsafe.
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Table 4: JuliaReach. Overview of results: Verified (✁), falsified (✂), and unknown (?).

Benchmark Instance Result Time [s]

ACC safe-distance ✁ 0.638
TORA remain ✁ 232.083
TORA reach-sigmoid ✁ 0.458
TORA reach-tanh ✁ 0.357
Unicycle reach ✁ 16.341
VCAS middle-19.5 ✁ 0.020
VCAS middle-22.5 ✁ 0.001
VCAS middle-25.5 ✂ 0.000
VCAS middle-28.5 ✂ 0.000
Single Pendulum reach ✁ 11.126
Double Pendulum less-robust ✁ 2399.201
Double Pendulum more-robust ✂ 0.830
Airplane continuous ✂ 4.737
AttitudeControl avoid ✁ 5.728
QUAD reach ? 11.392
Docking constraint ? 4.459
NAV robust ✁ 5.197

Figure 33: JuliaReach. Analysis results for the ACC benchmark. The plot additionally shows
simulations.

4.4.2 TORA

The TORA benchmark problem has three di!erent controllers. For the ReLU controller, the
approximation error is hard to tame for the JuliaReach approach. To maintain enough precision
for verification, the initial states are split into 4↔ 4↔ 3↔ 5 boxes. While each box spawns an
independent analysis that could be parallelized, the sequential verification took 232 s. We use
the parameters abstol=3e-2, orderT=3, orderQ=1. Figure 34 shows the reach sets of all 240
runs, projected to x1/x2 and x3/x4, respectively.

For the sigmoid and ReLU/tanh controllers, we do not require to split the initial states
and use the parameter abstol=2e-2 instead. The specifications are verified in 0.5 s and 0.4 s,
respectively. Figure 34 shows the reach sets, projected to x1/x2.
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Figure 34: JuliaReach. Analysis results for the TORA benchmark under the ReLU controller
(top), the sigmoid controller (bottom left), and the ReLU/tanh controller (bottom right), re-
spectively. The plots additionally show simulations.

Figure 35: JuliaReach. Analysis results for the Unicycle benchmark. The orange subset of
the last reach set is obtained at time point t = 10. The first plot additionally shows simulations.
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Figure 36: JuliaReach. Analysis results for the VerticalCAS benchmark.

4.4.3 Unicycle

Wemodel the disturbance w as a constant with an uncertain initial value. Simulations show that
the target set is reached only at the last moment, so the analysis requires high precision to prove
containment of the last reach set. Using the parameters abstol=1e-1, orderT=3, orderQ=1

and splitting the initial states into 3↔ 1↔ 7↔ 1 boxes, JuliaReach verifies the specification in
16 s. Figure 35 shows the reach sets of all 21 runs, projected to x1/x2 and x3/x4, respectively.
JuliaReach can evaluate the Taylor polynomial at the time point t = 10 (rather than the last
time interval), which results in a more precise result (as shown in the plots).

4.4.4 VerticalCAS

The VerticalCAS benchmark problem di!ers from the other problems in that it uses multiple
controllers and discrete time. There is currently no native support for this setting in JuliaReach;
instead, we used a custom algorithm that always chooses the central acceleration. JuliaReach
achieves the following results for the di!erent initial values ḣ(0). ḣ(0) = ↑19.5: verified in
0.02 s; ḣ(0) = ↑22.5: verified in 0.001 s; ḣ(0) = ↑25.5: falsified in 0.0004 s; ḣ(0) = ↑28.5:
falsified in 0.0004 s; Figure 36 shows the vertical distances over time.

4.4.5 Single Pendulum

Using the parameters abstol=1e-9, orderT=5, orderQ=1, and splitting the initial states into
3↔4 non-uniform boxes, JuliaReach verifies the specification in 11 s. Figure 37 shows the reach
sets projected to time and ϖ.

4.4.6 Double Pendulum

For the less robust controller, using the parameters abstol=1e-9, orderT=5, orderQ=1 and
splitting the initial states into 2 ↔ 2 ↔ 3 ↔ 6 boxes, JuliaReach verifies the specification in
40 minutes. Figure 38 shows the reach sets of all 72 runs, projected to ϖ1/ϖ2 resp. ϖ̇1/ϖ̇2.

The more robust controller violates the specification; hence, it su”ces to start the analysis
from a subset of the initial states and interrupt when a violation is detected. When starting from
the highest value in each dimension, a violation occurs within eighteen control periods. Using
the parameters abstol=1e-2, orderT=3, orderQ=1, JuliaReach falsifies the specification in
0.8 s. Figure 38 shows the simulation with a validated reach set around, projected to ϖ̇1/ϖ̇2.
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Figure 37: JuliaReach. Analysis results for the Single Pendulum benchmark. The plot
additionally shows simulations.

Figure 38: JuliaReach. Analysis results for the Double Pendulum benchmark under the less
robust controller (top) and the more robust controller (bottom). The plots additionally show
simulations.

4.4.7 Airplane

This system violates the specification. When starting from the highest coordinate in each di-
mension, a violation occurs within seven control periods in dimension sy. Using the parameters
abstol=2e-2, orderT=3, orderQ=1, JuliaReach falsifies the specification in 4.7 s. Figure 39
shows the simulation with a validated reach set around, projected to y/ϱ.
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Figure 39: JuliaReach. Analysis results for the Airplane benchmark until time t = 0.7. The
plot additionally shows a simulation.

Figure 40: JuliaReach. Analysis results for the Attitude Control benchmark. The plot
additionally shows simulations.

4.4.8 Attitude Control

Using the parameters abstol=1e-4, orderT=5, orderQ=1, JuliaReach verifies the specifica-
tion in 5.7 s. Figure 40 shows the reach sets projected to φ1/φ2.

4.4.9 Quadrotor

Although simulations indicate that the controller is correct, the precision of JuliaReach is not
high enough to prove it. Correctness can be proven for a smaller initial set [↑0.004, 0.004]6 ↔
{0}6. Using the parameters abstol=1e-1, orderT=3, orderQ=1, JuliaReach verifies the spec-
ification in 11 s. Figure 41 shows the reach sets, projected to x3 over time.

4.4.10 2D Spacecraft Docking

Although simulations indicate that the controller is correct, the precision of JuliaReach is
not high enough to prove it. Correctness can be proven for a smaller initial set [70, 106]2 ↔
[↑0.14, 0.14]2. Using the parameters abstol=5e-1, orderT=3, orderQ=1, JuliaReach verifies
the specification in 4 s. Figure 42 shows the reach sets, projected to x1 over time. Since the
specification is four-dimensional, it cannot be illustrated in the plot.
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Figure 41: JuliaReach. Analysis results for the Quadrotor benchmark. The plot additionally
shows a simulation.

Figure 42: JuliaReach. Analysis results for the 2D Spacecraft Docking benchmark. The plot
additionally shows simulations.

4.4.11 NAV

JuliaReach cannot verify the standard controller. For the robust controller, using the parame-
ters abstol=1e-3, orderT=3, orderQ=1, JuliaReach verifies the specification in 5 s. Figure 43
shows the reach sets projected to x1/x2.
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Figure 43: JuliaReach. Analysis results for the NAV benchmark (robust controller). The plot
additionally shows simulations.

4.5 NNV

This subsection presents the results of NNV. For each problem, NNV uses slightly di!erent
settings, which can be found in the repeatability repository. An overview of the results is given
in Tab. 5. All other benchmarks were unknown due to the conservativeness of the approach.

4.5.1 ACC

NNV successfully verifies the safety propertyDrel ↓ Dsafe. The results are depicted in Figure 44,
which shows the reach sets of the relative distance and the minimum safety distance between
the ego and lead cars.

Table 5: NNV. Overview of results: Verified (✁), falsified (✂), and unknown (?).

Benchmark Instance Result Time [s]

ACC safety ✁ 26.751
Airplane continuous ✂ 35.961
NAV robust ✁ 405.291
Single Pendulum reach ✁ 99.484
TORA remain ✁ 25.038
TORA reach-tanh ✁ 63.521
TORA reach-sigmoid ✁ 118.312
VCAS middle19 ✁ 5.445
VCAS middle22 ✁ 3.619
VCAS middle25 ✂ 3.592
VCAS middle28 ✂ 3.603
VCAS worst19 ✁ 3.618
VCAS worst22 ✂ 3.502
VCAS worst25 ✂ 3.462
VCAS worst28 ✂ 3.387
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Figure 44: NNV. Safety analysis results for the adaptive cruise control (ACC) benchmark.
Distance between cars (Drel) is depicted against the safety distance (Dsafe).

4.5.2 Airplane

NNV is able to show that the property is violated by computing the reach sets from a smaller
initial region. The results are depicted in Figure 45.

Figure 45: NNV. Analysis results for the airplane benchmark, showing the reach sets in blue

and the goal region in green.

4.5.3 NAV

By partitioning the input set, NNV is able to verify the safety (avoid obstacle) and reach (green
goal region) properties of the robust controller, but not of the standard one. The results are
depicted in Figure 46.

4.5.4 Single Pendulum

For the single pendulum, NNV successfully verifies the benchmark after partitioning the input
set into 35↔40 regions. The reach sets are depicted in Figure 47.
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Figure 46: NNV. Verification results of the navigation benchmark with the robust controller.
In blue are shown the reachable sets, in green the target regions (reach) and in red the unsafe
(obstacle) area.

Figure 47: NNV. Analysis results for the single pendulum benchmark showing the sets in blue

and the unsafe region in red.

4.5.5 TORA

NNV is able to verify all three controllers for the TORA benchmark. NNV partitions the
initial sets of the specifications corresponding to the ReLU-tanh and sigmoid controllers into
4↔8↔6↔4, and 4↔4↔6↔4, respectively. The reach sets are shown in Figure 48.

4.5.6 VCAS

NNV successfully verifies the NMAC safety property for the whole time horizon for each of the
cases. There are 5 cases where we prove that the system is unsafe and 3 where the system is
safe, which corresponds to [middle, 19.5], [middle, 22.5], and [worst, 19.5]. These results are
depicted in Figures 49 and 50.
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Figure 48: NNV. Analysis results for the Tora benchmark showing the TORA sets in blue

and the goal region in green. The left figures correspond to the sigmoid controller, the middle
two to the ReLU-tanh controller, and the two on the right to the ReLU controller. For the
sigmoid and ReLU-tanh controllers only the reach sets at every control period are shown in the
top row. The corresponding zoomed-in pictures of the goal region are depicted in the bottom
row.

Figure 49: NNV. Analysis results for the VerticalCAS benchmark, showing the aircraft sets in
blue and the unsafe region in red, when selecting the middle acceleration value at each control
period

Figure 50: NNV. Analysis results for the VerticalCAS benchmark, showing the aircraft sets in
blue and the unsafe region in red, when selecting the worst possible acceleration value at each
control period.

113



ARCH-COMP25 AINNCS Manzanas Lopez et al.

5 Category Status and Challenges

Repeatability Evaluation. For the third year in a row, this competition presents the re-
sults of all tools on the same hardware using docker images for further comparison, using the
platform introduced in the 2023 competition. The docker images allow an automatic evalu-
ation of the tools on the submission server, thus, giving researchers immediate feedback on
the results of their submission. Running all tools on the same hardware helps to compare the
computation time between the tools, however, one has to factor in the e”ciency of the pro-
gramming language of the tools. We can objectively compare computation results and evaluate
the improvements made by the tools in this aspect. The submission server specifications are
given in Appendix A. Additionally, this year the submission server provides a beta feature for
automated figure conversion for easier integration with LATEX for presenting the results.

YoY performance comparison. As we have reused all 12 benchmarks from last year and
the hardware platform is the same as well, we can directly compared 2025 vs. 2024 results. From
the previous tool participants, we can observe very similar results, only one more benchmarks
instance is verified (CORA), while there has been some e”ciency improvements in terms of
computation time from both CORA and NNV.

NNCS verification problem abstractions. Following last year’s including of a statistical
verification approach, this year the report includes the results of a tool, immrax, that abstracts
the NNCS verification problem to be a continuous-feedback problem, rather than a hold and
sample control approach (see Figure 1) utilize by all other participants (in this and all past
iterations). Given the verification problem is di!erent, it may lead to di!erent results (verified
vs. violated), as we can observe for the single pendulum and attitude control benchmarks, where
all other tools that solve the problem are able to successfully verify them, but immrax is able
to find counterexamples that violate the specifications.

Challenging benchmarks. The neural network architectures presented in this work are
fairly simple. As last year, they have no more than a thousand neurons and no more than 5
hidden layers in their architecture, unlike some of the networks that can be analyzed in isolation.
Also, the maximum number of inputs and outputs of the controllers are 12 and 6, respectively,
both in the airplane benchmark. Considering the VCAS benchmark, these networks have 9
outputs, although these are translated into a single input to the plant model. However, for
some benchmarks, there are still state-space explosion and scalability issues to address in both
the neural network controllers and plant analysis. These issues could come from the repeated
interaction between the network and the states, as we can observe the CartPole benchmark
being challenging for most tools. The high frequency of the control steps may lead to an
increased conservativeness of the approaches, preventing most tools from successfully analyzing
the benchmark. Another challenging benchmark is the docking spacecraft, which is due to
the nonlinear specification, one of a kind in this competition. While the plant dynamics and
controller are on the “simpler” side, the nonlinear safety specification causes the benchmark to
remain unsolved one more year.
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Benchmark formats. Following previous iterations, we have found it more useful and con-
venient to simply share the plant models in a plain format, such as MATLAB functions, where
the participants could easily extract the ODEs. As for the neural network models, we provide
them in the ONNX format56, .mat format7, and the original format used by the proposer of the
benchmark. In the future, we will consider other options to improve specification description
for benchmarks, as a plain text file is now being used. The creation of a standard format like
VNNLIB 8 for AINNCS may help formalize the benchmarks, clearly specifying the input set as
well as the AINNCS property (safety, reach, avoid, etc), hopefully lowering the entry barrier for
new tools. Another format to consider is to use a unified file that specifies the feedback connec-
tion between the controller and plant, control period, specification, etc, for improve automation
of benchmark execution.

6 Conclusion and Outlook

This report presents the results of the seventh ARCH friendly competition for closed-loop
systems with neural network controllers. For this edition, five tools have participated and at-
tempted to solve 12 benchmarks: CORA, CROWN-Reach, immrax, JuliaReach, and NNV. The
problems elucidated in this paper are challenging and diverse; the presented results probably
provide the most complete assessment of current tools for the safety verification in AINNCS.
The report provides a good overview of the intellectual progression of this rapidly growing
field, and it is our hope to stimulate the development of e”cient and e!ective methods capable
of use in real-world applications. Since its inception, the complexity of the benchmarks has
consistently increased along with the capabilities of the participant tools, leading to the most
challenging competition and the best verification results thus far, which is a good indicator
for this growing and maturing field. For this year, we reused the same 12 benchmarks from
last year as there are some that remain unsolved to this date. Finally, as we continue to reuse
and build upon previous participations, we encourage anyone interested to begin analyzing
the benchmarks presented in this iteration, available at: https://github.com/verivital/ARCH-
COMP2025. The reports of other categories can be found in the proceedings and on the ARCH
website: cps-vo.org/group/ARCH. We hope releasing all the code would help other researchers
and tools participate in future iterations as well as compare to the state-of-the-art verification
tools in the domain.
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A Specification of Used Machines

This year, we run all tools on the same hardware using tool-specific Docker images. The spec-
ifications for the server used for the evaluation are given below. For details on the submission
system, we refer to the repeatability report of this year’s ARCH competition [46].

• Processor: AMD EPYC 7742 64-Core

• Memory: 995 GB

• OS: Ubuntu 22.04

• Docker: 20.10.21
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