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Abstract— The increasing market penetration of electric
vehicles (EVs) poses new business avenues for existing facilities
such as parking lots, gas stations, and other EV charging aggre-
gators. There remain several open problems for these players
in the EV power supply chain, such as pricing, scheduling
the charging, and capacity planning, with limited theoretical
understanding about their optimality. In this paper we consider
an EV charging aggregator that provides energy to randomly
arriving users with a user specified charging deadline, and we
assume the aggregator has a total power budget which must
be satisfied with high probability at each time instant.

We look at a class of parameterized static pricing functions
that incentivize EV users to provide the aggregators with
longer deadlines, to avoid having to charge each EV at the
peak kW rate. Under this pricing, we derive non-asymptotic
concentration bounds on the required power capacity under
stochastic arrival of users using a queuing theoretic approach.

Index Terms— Non-asymptotic concentration, Bernsteins in-
equality, M/G/∞ queues, Static pricing.

I. INTRODUCTION

The rapid influx of EVs in the automobile market poses
several challenges for service providers in the energy supply
chain. For example, power utility companies are concerned
with planning generation-capacity for the grid to sustain
a volatile electricity demand, minimizing overheads arising
from this load variability, and pricing power for large scale
users to correct the aforementioned problems without com-
promising on revenue.

On the other hand, public charging facilities such as park-
ing lots at airports, shopping malls, restaurants or hotels, and
DC fast charging facilities — hereafter together referred to
as aggregators — sell energy to individual users and face de-
cision making on two fronts, namely: (i) grid-to-aggregator,
which includes planning power capacity for an anticipated
demand, and (ii) aggregator-to-EV, which includes optimal
pricing and efficient scheduling to prevent unreasonable
service times. Several game theoretic and control theoretic
formulations have been proposed previously to analyze and
understand strategies that address these problems.

For example, as a model for individual users charging their
EVs at night, [8] gives a non-cooperative game theoretic
formulation for decentralized charging under shared power
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constraints. This work provides the existence of a Nash
equilibrium charging strategy for each EV which nearly
minimizes electricity generation costs by scheduling EV
demand to fill the overnight non-EV demand valley. With
a similar valley-filling objective, [3] considers an optimal-
control framework and provides a decentralized algorithm
for the overnight charging problem.

Similarly, [10] poses the grid-to-vehicle energy exchange
as a noncooperative Stackleberg game in which the grid
optimizes its revenue while the EVs choose their charging
strategies resulting in a Stackleberg equilibrium. On the
other hand, [4], [5] explore a pricing signal based distributed
control for charging of EVs under shared constraints in the
presence of an information-sharing network. On formulating
each EVs decision-making process as a game, the authors
give sufficient conditions on the pricing strategy of the aggre-
gator under which this game has a unique Nash equilibrium.
They also provide a distributed, consensus-based iterative
algorithm that achieves this equilibrium.

The above works assume no temporal variability in the
arrival and departure of EVs from the charging/discharging
process, which prohibits their direct application to day-time
public EV charging facilities such as parking lots of shopping
malls, hotels, restaurants or airports, as well as DC fast-
charging facilities. Under stochastic arrival of the users, [7]
describes distributed scheduling policies with near-optimal
aggregated performance that minimizes total cost of EV
charging. We now briefly describe our main contributions.

A. Main Contributions

The current work proposes a problem formulation which
aims to model a one-shot interaction between an aggregator
and its EV users at the beginning of the energy transfer.
Our formulation considers a stochastic arrival of EVs in the
charging facility and assumes that the users arrive with prede-
termined energy demand. Using knowledge of the stochastic
distribution of the energy demand, the aggregator broadcasts
a static pricing function. Based on their impatience, each
user chooses a service time deadline for the aggregator to
fulfill its energy demand, such that the total cost, i.e., the
monetary cost plus the opportunity cost of the service time
for charging, is minimized.

In this setting, if the pricing function of the aggregator
depends only on the energy demand, each user would choose
the shortest feasible service time in order to minimize
their opportunity cost. However in that case, the aggregator
would be forced to have an instantaneous power capacity
proportional to the product of the maximum power rate of



Fig. 1. Users arrive at the aggregator’s facility with energy demand xj and impatience factor αj . Based on the information
of the Poisson arrival rate λ, and statistics fx,α of the users’ demands and impatience factors, the aggregator chooses the
parameters a, c, τ of the pricing function (2) and broadcasts them to the users. Each user submits its deadline uj which
minimizes its total cost, i.e., monetary cost plus opportunity cost given by equations (1) and (3). Subject to this optimal
pricing, the aggregator also chooses a suitable power capacity K with the utility service so that constraint (PC) is rarely
violated.

charging and the maximum number of active users expected
for a given stochastic arrival rate.

Hence we look at a class of pricing functions which
incorporate the service time deadline along with the energy
demand, in order to incentivise users to choose suitably
longer deadlines for the aggregator to fulfill the energy
transfer. In general, the aggregator would allow impatient
users to charge faster, but at a higher price, while offering
discounted prices to patient users who are willing to provide
longer deadlines. This aims to model the scenario where
users could have varying impatience levels when charging
at facilities near their work places, or in parking lots of
shopping malls, or even gas stations equipped with charging
capabilities.

With this discount-based pricing function, we prove that
the requisite instantaneous power capacity for the aggregator
is proportional to the sum of the maximum power rate of
charging and the maximum number of active users.

More specifically, for a given stochastic arrival rate in
EVs/hr., we provide high probability upper bounds on the
number of active users and on the instantaneous power
necessary to fulfill the demand. These upper bounds can
aid the aggregators in making decisions regarding planning
the spatial capacity and power capacity for a known arrival
rate. We motivate the usefulness of high probability bounds
for aggregators by explaining two possible scenarios — (i)
In the rare event of the instantaneous power requirement
exceeding our bound, the aggregator may contract some
insurance with a third party that will provide the excess
power to the aggregator. (ii) Alternatively, such probabilistic
constraints could also help the aggregator plan for battery
back-ups or gasoline powered generators in the unfavourable
event of the power demand exceeding the capacity bound.

We simulate the performance of these bounds and observe
that they are tight for a large range of arrival rates as well
as confidence levels.

B. Organisation

We describe the exact model and the parametric pricing
function in Section II. In Section III we formally present the
main result of the paper in Theorem 3.1 and give its proof.
Section IV demonstrates numerical results on simulated data
which are coherent with Theorem 3.1. Section V discusses
the generality of our problem formulation and pricing scheme
to other resource aggregation problems catering to impatient
users. Finally, we conclude the paper in Section VI.

II. MODEL DESCRIPTION AND PRICING

We consider an EV aggregator who has a facility to charge
EVs. While charging the EVs, the aggregator obtains power
from a utility service and supplies it to the EVs as depicted
by the green dotten line in Figure 1.

A user j arriving at time aj (in hr.), with demand xj
(kW-hr.), is allowed to choose a service time deadline uj
(hr.) for the aggregator to fulfill the energy transfer. In
choosing the deadline, the user is faced with a pricing
function P (xj , uj) broadcast by the aggregator. Note that the
users have stochastic but predetermined demands and arrival
times, and only make decisions regarding the deadline uj .
We assume user j chooses uj such that it minimizes the
monetary cost P (xj , uj) plus an opportunity cost αjuj , i.e.,

uj ∈ argmin
u≥0

P (xj , u) + αju, (1)

where αj denotes the impatience factor ($/hr.) of user j. We
also assume that the demand xj and αj are bounded within
the intervals [xmin, xmax] and [αmin, αmax] respectively, and
these bounds are known to the aggregator.

Given the inputs xj and uj , the aggregator is tasked with
charging EV j by xj units of energy within the time interval
[aj , aj + uj ], in exchange for the payment P (xj , uj). For
simplicity, we assume that the users do not have to wait
for an available charger. Furthermore, we assume that the
aggregator employs a constant power charging strategy, i.e.,
the instantaneous power delivered by the aggregator to each



user j at time t throughout its service time t ∈ [aj , aj + uj ]
is xj
uj

(in kW), whereby the energy transferred is xj (kW-hr.).
We assume that from the aggregator’s perspective, each

user’s predetermined preferences (xi, αi) are independent
and identically distributed (i.i.d.) samples drawn from a
distribution denoted fx,α, which is known to the aggregator,
whereby uj are also i.i.d.. We assume a Poisson arrival of
EV users with rate λ (EVs/hr.), known to the aggregator.

In its transaction with the utility, the aggregator is faced
with a constraint on the instantaneous power drawn, denoted
Q(t). We assume this constraint has a probabilistic form, i.e.,
for a confidence level 1 − δK the aggregator is required to
have, for all t,

P

Q(t) :=
∑

i∈N (t)

xi
ui
≤ K

 ≥ 1− δK , (PC)

where we define N (t) := {i | t ∈ [ai, ai + ui]}, the set of
active users at time t.

A. Static Parametric Pricing

We consider a parametric pricing function P which aims to
invite users to provide the aggregator with longer deadlines
uj . In particular, we study the following pricing function,

P (x, u) = x(a · e−u/τ + c). (2)

The incentive for the users is in the form of discounted rates
per kW-hr for longer charging deadlines u. Parameter c is
the base rate, a is the surge price (both in $/kW-hr) and τ
is the effective service time (in hrs).

Remarks: Observe that the function P (x, u) is non-
increasing and convex in the decision variable u, justified by
a diminishing marginal discount for longer deadlines. Due to
the convexity, (1) has a unique minimizer. Moreover using
first order optimality conditions, for this parametric pricing
function, the deadline and the payment can be expressed in
closed form as

uj = τ · log
(
axj
αjτ

)
, and (3)

P (xj , uj) = c xj + αjτ, (4)

where (4) is obtained on substituting (3) in (2). The peak
rate a does not affect the revenue and base rate c does not
affect the deadline decision. Both the deadline and payment
are monotone increasing in a and c respectively. This may
appear strange since the aggregator could potentially increase
the parameters a and c indefinitely. However, practical con-
siderations prevent the aggregator from doing so since for
high prices, EV users will eventually balk and find a different
aggregator.

In the analysis that follows, we assume the arrival rate λ
of EV users is known to the aggregator, and c is fixed. We
denote by rmax the maximum instantaneous rate (in kW) at
which power can be transferred to an EV. This could indicate
the power rating for a Level 3 DC Fast Charging unit.

In light of this maximum rate rmax, the aggregator must
choose (a, τ) such that uj ≥ xj

rmax
for all EVs j, in order

to ensure each user provides the least feasible service time
deadline.

Lemma 2.1: Suppose αj ≤ αmax, and xmin ≤ xj ≤
xmax. For any τ, if,

a ≥ αmaxτ ·max

exp
(
xmax

rmaxτ

)
xmax

,
exp

(
xmin

rmaxτ

)
xmin

 , (5)

then one can guarantee that uj ≥ xj
rmax

for all users j.
Proof: Observe that any xj ∈ [xmin, xmax] can be

expressed as xj = γxmin+(1−γ)xmax, for some γ ∈ [0, 1].
Using Jensen’s inequality for the log(·) function, we have,

uj := τ log
axj
αmaxτ

≥ τµ log axmin

αmaxτ
+ τ(1− µ) log axmax

αmaxτ
,

≥ τµ xmin

rmaxτ
+ τ(1− µ) xmax

rmaxτ
=

xj
rmax

.

The last inequality follows from (5), proving the claim.
The above Lemma gives a method to choose a such that no

user can choose a deadline infeasible for the fastest charging
rate available. On the contrary if a user had choosen a
deadline uj <

xj
rmax

, then one can argue that there exists
no scheduling strategy wherein the instantaneous power
transferred to user j never exceeds rmax.

III. MAIN RESULT

Our main result in this paper is the following theorem.
Theorem 3.1: Suppose users arrive at the aggregator at a

Poisson arrival rate λ (EVs/hr.) and the maximum possible
rate of charging is rmax (in kW). Assume that users have
independent and identically distributed demands xj and
impatience factors αj . Furthermore, each user chooses a
deadline uj given by equation (3) and is delivered power
at a constant rate xj

uj
with expected value Exj

uj
=: µ and

variance Var
(
xj
uj

)
=: ν. Then the following holds for a

system at steady state.
(a) With confidence 1 − δM , the number of users in the

system N(t) := |N (t)| will not exceed

M(δM ) = λ · Eu+
2

3
log

1

δM
+

√
λEu log

1

δM
,

i.e., P(N(t) ≤M(δM )) ≥ 1− δM . (6)

(b) With confidence 1−δK , the instantaneous power drawn
by the aggregator will not exceed

K(δK) = min
θ∈(0,δK)

{
M(θ) · µ+

2

3
rmax log

1

δK − θ

+

√
2νλEu log

1

δK − θ

}
,

i.e., P(Q(t) ≤ K(δK))) ≥ 1− δK . (7)

where M(θ) is as defined in part (a).

The above theorem prescribes two quantities which aid an
aggregator plan its capacity both for physical space, as well
as the instantaneous power capacity required to sustain the
energy demand with the desired confidence. The steady-state



assumption means that the arrival process has overcome the
transients and the number of active users is well depicted by
its stationary distribution.

The proof of Theorem 3.1 borrows ideas from non-
asymptotic concentration inequalities in the context of queu-
ing theory. As verified by our simulations presented in
the later sections of the paper, the upper bounds for the
confidence levels are reasonably tight and improve as λ
increases.

Proof: To prove the theorem, we need to show (6) and (7).
(a) Observe that N(t) is the number of users in the

system of a steady state M/G/∞ queue. Hence its stationary
distribution is Poisson distributed with mean parameter λEu,
(see [9]). Equation (6) follows by application of Corollary
1.2 detailed in Appendix.

(b) In order to prove (7), we first look at the following
random variable, Q(t) =

∑
i∈N (t)

xi
ui
, whereby on applying

Bernsteins inequality from Lemma 1.1, we get,

P [Q(t) > µN(t) + s|N(t)] ≤ exp
( − 1

2s
2

N(t)ν + srmax

3

)
, (8)

where µ = Exj
uj
. Observe that using the union bound gives,

P (Q(t) > µM(θ) + s) ≤ P (Q(t) > µN(t) + s)

+ P(N(t) > M(θ)). (9)

By part (a), the second term in (9) is bounded by θ. In
order to upper bound the first term in (9), we expand it using
Bayes theorem as

∞∑
l=0

P (Q(t) > N(t)µ+ s | N(t) = l)P(N(t) = l),

which is less than
∞∑
l=0

exp

( − 1
2s

2

N(t)ν + rmaxs
3

)
P(N(t) = l),

using (8).
Observe that this is the expected value of the random func-

tion exp
(

−s2
2N(t)ν+ 2rmaxs

3

)
, which by Jensen’s inequality (see

[2, Sec. 3.1.8]) is upper bounded by exp
(

−s2
2EN(t)·ν+ 2rmaxs

3

)
.

Consequently, we have,

P (Q(t) > N(t)µ+ s) ≤ exp

(
−s2

2EN(t) · ν + 2rmaxs
3

)
.

Now, for s∗ := 2rmax

3 log 1
δK−θ +

√
2EN(t)ν log 1

δK−θ ,

we get P(Q(t) > N(t)µ+ s∗) ≤ δK − θ. Together with (6)
and (9) and using EN(t) := λEu, gives

P(Q(t) > K) = P(Q(t) > M(θ) · µ+ s∗) ≤ δK .

Since this inequality holds for all M(θ) such that θ lies in
the interval (0, δK), it also holds for M(θ∗) which gives the
least upper bound K over this interval. Since the objective
function blows up to +∞ at θ = δK and θ = 0, but is
continuous and finite in the interval θ ∈ (0, δK), it can be
argued with ease that the infimum is achieved in this interval.
This proves the claim.

In the next section, we verify the performance of Theorem
3.1 on a simulated dataset. There, we observe that the
performance of the bound K improves as the arrival rate
λ increases.

IV. SIMULATIONS, RESULTS AND DISCUSSIONS

A. Simulation Setup

In this section, we simulate an aggregator as shown in
Figure 1 in order to verify the gap between the theoretical
upper bounds from (6) and (7) predicted by Theorem 3.1
and the 1 − δ percentiles of the quantities N(t) and Q(t)
at steady state. Let N δ[T0] and Qδ[T0] denote the (1− δ)th
percentiles of N(t) and Q(t) respectively, in a randomly
chosen contiguous segment of duration T0. More precisely,
Qδ[T0] is the smallest value for which

1

T0

∫ t0+T0

t0

I{Q(τ)>Qδ[T0]}dτ ≤ δ,

where I{·} is the indicator function. Note that t0 is chosen
uniformly at random. However, since we are interested in
steady state behaviour, the choice of t0 does not affect the
statistics of these percentile quantities. N δ[T0] is defined in
a similar manner. We choose T0 = 8 hr., to observe the
behaviour in a typical work day, and for the rest of the paper,
we drop the paranthesis [T0] while describing the quantities
N δ and Qδ . Recall that we need to verify that M − N δM

and K −QδK are almost always non-negative and that they
are reasonably small with respect to M and K themselves.

To get a sufficient number of samples for N δ and Qδ ,
we simulate 10 instances of the EV arrival process in 100
hr. long simulations. Since the arrival process is assumed
to be Poisson with rate λ EVs/hr., for each of the 10
instances, N EV users arrive uniformly at random at the
aggregator’s facility during the interval [0, 100] hr, where
N ∼ Poisson(100 ·λ) independently for each instance. Each
user exits the facility at the end of the service time deadline
given by (3). We thus obtain

N(t) =

N∑
i=1

I{ai≤t≤t+ui}, and Q(t) =

N∑
i=1

I{ai≤t≤t+ui}
xi
ui
.

For the purpose of discretization during computation, these
quantities are calculated at minute long intervals. From these
quantities, we obtain 10 contiguous segments of duration 8
hr. to obtain 10 values of N δ and Qδ per instance. Note that
the reason for choosing a 100 hr. long simulation for each
of the 10 instances is not only to get sufficient number of
samples for the behaviour in 8 hr. segments, but also to avoid
the transient effects in the arrival process at the beginning of
the instance. Since the transients are given by

E[N(t)|N(0) = 0] = λEu(1− e−t/Eu),

(see [6, Sec. 5.2.2]) the transients exist for approximately
3Eu. Therefore, we choose the starting point of each 8 hr.
contiguous segment t0 uniformly at random from the interval
[3Eu, (100− T0)].



Fig. 2. The above figure presents the gaps measured using
equation (10) for simulated quantiles N δM and QδK with
confidence parameters δM = δK = 0.01. The error bars
indicate the standard deviation of the gaps G0.01N and G0.01Q .
Hence, for a confidence of 99% the upper bound tightens as
the arrival rate increases.

B. Choice of parameters

We assume that fx,α is a uniform distribution such that xj
is independent of αj , where both xj and αj are uniformly
distributed in the intervals [xmin, xmax] and [αmin, αmax]
respectively. We simulate for the following choice of param-
eters: xmax = 100, xmin = 10 (in kW-hr.), and αmax = 100,
αmin = 10 (in $/hr). Since the choice of c does not affect
the deadline decisions, we choose c = 0 for simplicity.
However, in reality it would mimic the price for level 1 EV
charging. Ideally, the aggregator can choose τ to meet the
revenue targets, however we choose τ = 0.5 hr., for which
we get Eu = 1.2 hr. For the current choice of parameters
rmax, xmin, xmax and αmax, the surge price a = 5.3$/kW-hr.
for this choice of τ , as indicated by Lemma 2.1.

For this choice of parameters, we get that uj are distributed
around the mean 1.21 hr. with a standard deviation 0.41 hr.
Similarly, the power delivered to each user xj

uj
is distributed

around its mean 45.07 kW with a standard deviation of 15.27
kW. Moreover, the maximum power rate delivered to a user
is 122.75 kW.

C. Performance of bounds with varying arrival rate

The gap between the upper bounds given by Theorem 3.1
and the corresponding simulated quantiles N δM and QδK is
compared using the following metrics,

GδMN =
M −N δM

M
, and GδKQ =

K −QδK
K

, (10)

with a lower value indicating better performance by the
theorem. Figure 2 describes these metrics calculated for λ
values ranging from 50 EVs/hr. to 1000 EVs/hr, δM = 0.05,
and δK = 0.05. The monotonic decreasing nature of the

curves indicates that N δM and QδK are well estimated as
the scale of the aggregators business increases.

While λ = 1000 EVs/hr. is a reasonable scale of arrival
rates for parking lots of airports, etc., one might argue that
the result in Theorem 3.1 seems too conservative for the
scale of parking lots of shopping malls. However, consider
a scenario where there are n aggregators facilities with each
having an arrival rate of λ1, λ2, . . . , λn. Recall that the
net arrival rate of users at the n aggregators is given by
λ =

∑n
i=1 λi, whereby, on sufficient scaling, aggregators

can combine resources and use the results of Theorem 3.1
for planning their capacity.

D. Performance of bound with varying confidence levels

Figure 3 shows a comparison between M and N δM , and
K and QδK for two values of λ. Observe that the bounds M
and K are tight in the sense that an aggregator who plans
for λ = 150 according to Theorem 3.1 would not be able to
provide for an arrival rate of λ = 200 while maintaining the
probabilistic constraint (7).

The space capacity requirement M prescribed by Theorem
6 is not overly conservative in the sense that if an aggregator
plans according to 1 − δM = 0.85, they would not be able
to satiate (6) with higher confidence 1 − δM ≥ .95, as
shown by the black dotted line in Figure 3. However, we see
that the bound K varies significantly from QδK in the high
confidence regime 1− δK > .95, i.e.Theorem 3.1 prescribes
a capacity more conservative than may be necessary.

We now comment on the assumptions made in the analysis
which may be relaxed and discuss the applicability of our
framework to other similar resource aggregation problems
catering to impatient users.

V. REMARKS AND DISCUSSION

Through our simulations, we see that the first term domi-
nates in the expression for the instantaneous power capacity
K given in equation (7), i.e., for large enough λ, we have
K ∝ λ · Eu · Ex

u . Observe that this is lower bounded
by λ(E

√
x)2 using Holders inequality (see [2, Sec. 3.1.9]).

Hence the optimal asymptotic rate is indeed linear in λ when
using a constant power charging strategy.

In our analysis λ is assumed to be constant, while in
reality the arrival rate could be modelled as a slowly varying
non-homogenous Poisson process λ(t). In such a situation,
results from Mt/G/∞ queues [9] could be invoked to obtain
instantaneous power capacities K(t).

For the high-confidence regime 1 − δ > .97, the bound
on instantaneous power capacity given by Theorem 3.1
is conservative, suggesting that the rate of dependence of
the prescribed capacity K with the confidence level δK
could be suboptimal. We conjecture that this stems from the
dependence of K on M, the maximum number of active
users, instead of EQ(t) in (7).

Our problem formulation is fairly general and can be
applied to other resource aggregation problems where an
aggregator is distributing a constrained resource to impatient
users looking to minimize their opportunity cost along with



Fig. 3. A comparison be-
tween the quantities M and
N δM , as well as K and QδK .
While dotted lines correspond
to the theoretical bounds M
and K, the bold lines depict
the mean of N δ

M and QδK ,
with the error bars highlight-
ing their standard deviation.
The blue plots correspond to
λ = 150 EVs/hr., whereas the
red plots correspond to λ =
200 EVs/hr.

the monetary cost. In such conditions, our pricing function is
appropriate under suitable modifications. To enumerate a few
examples of such aggregators with impatient users, consider
cab aggregating services such as Uber and Lyft. In order to
satiate the stochastic demand with fewer active cabs, these
services provide users a cheaper alternative of sharing their
rides (Uber Pool and Lyft Line respectively), in exchange
for a slight delay in the transportation service. Similarly,
services such as FedEx and Amazon offer discounted rates
for delivery if the users choose longer service times. Another
possible application of our model could be a discount-based
pricing scheme for cloud-based computing services such as
Amazon AWS, where users could choose a service time
deadline if offered a cheaper rate per floating point operations
(FLOPS).

VI. CONCLUSIONS

In this paper we presented a capacity planning problem
faced by EV charging aggregators under stochastic energy
demand and presented a static pricing function which in-
centives users to choose a longer service time deadline
for the aggregator to perform the energy transfer. For the
resulting deadline decisions by the users, with the help of
nonasymptotic concentration inequalities, we give high prob-
ability upper bounds on the instantaneous power capacity
required, as paraphrased in Theorem 3.1. This bound varies
as O(rmax + M), where rmax is the maximum allowable
rate (in kW) for charging EVs and M is the maximum
number of active users at the aggregators facility. In contrast,
a service time invariant pricing scheme could have resulted
in the aggregator requiring a power capacity proportional to
O(rmax ·M).

Numerical simulations show that this upper bound on the
power capacity is tight with respect to the corresponding
quantile of instantaneous power for a sizable range of the
confidence levels. The power capacity prescribed by the
bound gets tighter for larger arrival rates of users as shown
in Figure 2.

APPENDIX

Lemma 1.1: (Bernstein’s inequality [1, Cor 2.11]) Let
Xi be independent random variables, with |Xi − EXi| ≤ b,

and
∑n
i=1 Var(Xi) ≤ nϑ, then,

P
( n∑
i=1

(Xi − EXi) ≥ s
)
≤ exp

( −s2

2nϑ+ 2bs/3

)
.

Corollary 1.2: If X is a Poisson random variable with
mean parameter λ, then for all ε > 0, with probability at
least 1− ε, we have X ≤ λ+ 2

3 log
1
ε +

√
2λ log 1

ε .
Proof: Observe that X is the limit of the sum

∑
iXi

where Xi ∼ Ber(p) such that lim
n→∞

np = λ. Drawing
parallels with Lemma 1.1, b is 1 and nν is np(1 − p) ≤
np → λ. As result, P(X − λ > s) ≤ exp

(
−s2

2λ+2/3

)
≤ ε,

where the last inequality is obtained by substituting s =
2
3 log

1
ε +

√
2λ log 1

ε , and using some elementary algebraic
manipulations.

Lemma 1.3: ([9, Equation (23)]) The stationary distribu-
tion of the number of users in a M/G/∞ queue, with
poisson arrival λ and mean service time ES is poisson
distributed with mean λ · ES.
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