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Abstract— We investigate the use of pricing mechanisms
as a means to achieve a desired feedback control strategy
among selfish agents. We study a hierarchical linear-quadratic
game with many dynamically coupled Nash followers and an
uncoupled leader. The leader influences the game by choosing
the quadratic dependence on control actions for each follower’s
cost function. We show that determining whether the leader can
establish the desired feedback control as a Nash equilibrium
among the followers is a convex feasibility problem for the
continuous-time infinite horizon, discrete-time infinite horizon,
and discrete-time finite horizon settings, and we present several
extensions to this main result. In particular, we discuss methods
for ensuring that the total cost incurred due to the leader’s
pricing is as close as possible to a specified nominal cost, as
well as methods for minimizing the explicit dependence of a
player’s cost on other players’ control inputs. Finally, we apply
the proposed method to the problem of ensuring the security
of a multi-network and to the problem of pricing for controlled
diffusion in a general network.

I. INTRODUCTION

In many engineering problems it is common for there to be
multiple decision making agents with competing interests. It
is important to accurately model these systems and develop
resilient control strategies that account for the interests of
all the participating agents while meeting the organizational
objective which may represent social welfare or the common
good. In systems where agents interact in a noncooperative
manner and there are socioeconomic considerations, game
theory can be a powerful tool for modeling agent interaction
and designing mechanisms to coordinate agents. From a
noncooperative, distributed control point of view, pricing
mechanisms allow for the leader to close the gap between
the centralized cost, which is equivalent to the cost incurred
when all agents play the socially optimal strategy, and the
decentralized cost, which is equivalent to the cost incurred
when each follower plays a purely selfish strategy.

There has been considerable literature proposing the use
of mechanisms as a means to achieve a socially optimal
solution [1]–[4]. The idea of designing local utility functions
to achieve a socially optimal solution to a multi-agent game
is not a new idea [5], [6]. While the problem of designing
utilities is considered, it is applied to the specific problem of
distribution of welfare. In some cases, the problem is only
considered in the static or finite game context. In [7], the
authors consider utility design to achieve a global objective
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while obeying coupling constraints. The authors propose
augmenting the system to form a state-based game when
such utilities do not exist.

We propose the use of pricing schemes as a means to
encourage cooperation among selfish agents in order to
achieve a societally optimal solution. The particular form of
the problem that we study is a linear-quadratic hierarchical
dynamic game with one leader and many Nash followers.
The class of pricing mechanisms we consider are quadratic
in the choice variables of the followers. The main difference
between the research proposed in this paper and the existing
literature is that we make a connection between mechanism
design and inverse optimal control for hierarchical, linear-
quadratic dynamic games and we formulate the problem of
designing pricing mechanisms for linear-quadratic dynamic
games in discrete and continuous time as a convex feasibility
problem. We apply the developed theory to the problems of
network security and controlled diffusion in a multi-agent
network.

The pricing mechanisms ensure the followers act accord-
ing to a desired Nash equilibrium strategy. Since we consider
a dynamic setting we do not lose the temporal information
of the game. Further, provide a pricing scheme that is guar-
anteed to enforce control strategies that are functions of the
system state which evolves according to a dynamical system.
In addition, we propose objectives which can be optimized in
order to select pricing mechanisms with desirable features.
In the network security application, the pricing mechanisms
are introduced in order to induce agents to invest in security.
In the controlled diffusion application, we consider the social
cost to be a centralized cost, i.e. the aggregate of the follower
costs. Hence, the pricing mechanism is used to close the gap
between the centralized and decentralized costs. The pricing
mechanisms we propose in both scenarios are designed to
integrate seamlessly into existing control schemes without
requiring large infrastructural changes.

In Section II, we formally define the pricing mechanism
design problem in both the continuous and discrete time
framework. In Section III, we state and prove our main
theorems. In Section IV, we propose two objective functions
for improved performance. In Section V, we apply the theory
developed to the problem of network security. In Section VI,
we formulate the problem of pricing for controlled diffusion
in a general multi-agent network. In section VII, we make
concluding remarks.

II. PROBLEM FORMULATION

Consider a dynamical game with one leader and p follow-
ers. Let xi ∈ Rni , denote the state of the ith follower and let



ui ∈ Rmi denote the control input of the ith follower, where
ni is the state dimension and mi is the input dimension of
the ith player. Further define n ,

∑p
i=1 ni, m ,

∑p
i=1mi,

and

x ,
[
xT1 . . . xTp

]T
, u ,

[
uT1 . . . uTp

]T
. (1)

The states are dynamically coupled and evolve under one of
the following dynamics:

ẋ(t) = Ax(t) +
∑p
i=1Biui(t) (CT)

or
x[k + 1] = Ax[k] +

∑p
i=1Biui[k] (DT)

for some matrix A ∈ Rn×n and Bi ∈ Rn×mi for i =
1, . . . , p and where CT and DT denote continous and discrete
time respectively. When the time dependence is obvious or
we wish to discuss both CT and DT states and inputs, we
sometimes omit the explicit dependence on the time variable
t or k. We make the following assumption:

Assumption 1. (A,
[
B1 · · · Bp

]
) is stabilizable.

Each follower incurs the quadratic cost Ji given by one
of the following:
• Continuous-time, infinite horizon cost (CT cost):

Ji ,
∫∞
0
x(t)TQix(t) + u(t)TRiu(t) dt (2)

• Discrete time, infinite horizon cost (DT cost):

Ji ,
∑∞
k=0 x[k]TQix[k] + u[k]TRiu[k] (3)

• Discrete-time, finite horizon cost (DTFH cost):

Ji ,x[M ]TQi[M ]x[M ]

+
∑M−1
k=0 x[k]TQi[k]x[k] + u[k]TRi[k]u[k] (4)

where for CT or DT costs (resp. DTFH costs), for all i:
• Qi ∈ Rn×n, Qi � 0 (resp. Qi[k] ∈ Rn×n, Qi[k] �

0) is a fixed matrix (resp. are fixed matrices for k =
0, . . . ,M ), and

• Ri ∈ Rm×m (resp. Ri[k] ∈ Rm×m), is a fixed,
symmetric matrix (resp. are fixed, symmetric matrices
for k = 0, . . . ,M − 1) to be designed by the leader.

The goal is to design a set of matrices {Ri}pi=1 or
{Ri[1], . . . , Ri[M − 1]}pi=1 such that the Nash equilibrium
of the follower game meets the leader’s objective. We are
primarily interested in applications in which the leader has
access to each of the follower’s control, but not the states.
Hence, we fix Qi and search for an appropriate Ri for each
follower. This preserves the followers’ privacy.

We assume that the CT cost is used for games with CT
dynamics, and either the DT or the DTFH cost is used
for games with DT dynamics. For notation purposes, we
partition Ri in the CT and DT cost and write

Ri =


R11
i R12

i · · · R1p
i

R21
i

. . . R2p
i

...
. . .

...
Rp1i · · · · · · Rppi

 (5)

with Rjki ∈ Rmj×mk . Note that, since Ri is symmetric, it
must be that Rjki = (Rkji )T for all j, k. We similarly partition
Ri[k] for each k = 0, . . . ,M − 1 for the DTFH cost.

The leader’s only influence on the game is to choose
matrices Ri for i = 1, . . . , p or matrices Ri[k] for i =
1, . . . , p, k = 0, . . . ,M − 1, and we consider the leader’s
strategy space ΓL to be defined as follows:
• If CT or DT costs,

ΓL , {{Ri}pi=1 : Ri ∈ Rm×m, Riii � 0 i = 1, . . . , p}.
(6)

• If DTFH costs,

ΓL , {{Ri[0], . . . , Ri[M − 1]}pi=1 : Ri[k] ∈ Rm×m,
Riii � 0 i = 1, . . . , p, k = 0, . . . ,M − 1}. (7)

The game is played as follows: The leader announces a
strategy γL ∈ ΓL, and each follower responds by choosing a
causal feedback control law ui (the objective of the leader is
described subsequently). Each follower’s strategy space Γi is
defined to be the set of all causal state feedback controllers.
We refer to the game played by the followers after the leader
announces γL ∈ ΓL as the follower game. Given γL, we
assume the followers are rational and collectively play a Nash
equilibrium of the follower game. A Nash equilibrium is
defined as a collection of follower actions (u∗1, . . . , u

∗
p) with

u∗i ∈ Γi such that the following holds:

Ji(u
∗
i , u
∗
−i) ≤ Ji(ui, u∗−i) ∀ui ∈ Γi, ∀i (8)

where u∗−i denotes the set of actions taken by players other
than player i, i.e. −i , {1, . . . , i−1, i+1, . . . , p} and u∗−i ,
{u∗j}j∈−i. When the followers play a Nash equilibrium,
no single player can achieve a lower cost by unilaterally
changing his or her strategy.

Now that we have defined the followers’ actions in re-
sponse to a given strategy of the leader, we are in a position
to describe how the leader behaves. We assume that leader
has a desired set of feedback controllers:
• If CT costs,

udi (t) = −Kd
i x(t) for i = 1, . . . , p. (9)

• If DT costs,

udi [k] = −Kd
i x[k] for i = 1, . . . , p. (10)

• If DTFH costs,

udi [k] = −Kd
i [k]x[k] for k = 0, . . . ,M−1, i = 1, . . . , p

(11)
with Kd

i ∈ Rmi×n or Kd
i [k] ∈ Rmi×n for all k =

1, . . . ,M − 1.
In addition, we make the following assumption:

Assumption 2. The desired feedback gains {Kd
i }
p
i=1 or

{Kd
i [0], . . . ,Kd

i [M − 1]}pi=1 stabilize the system.

Remark 1. We do not make any assumptions on how the
leader obtains the desired feedback gains, but a number of
possibilities exist. For example, in the case of CT costs, each



agent may be equipped with a nominal R̂i such that the
nominal cost is

Ĵi =
∫∞
0
x(t)TQix(t) + u(t)T R̂iu(t) dt, (12)

and the leader’s cost is then
∑p
i=1 Ĵi (analogously for DT

and DTFH costs). The leader could then solve the resulting
team problem using standard linear quadratic regulator
theory (LQR) to obtain {Kd

i }
p
i=1 or {Kd

i [0], . . . ,Kd
i [M −

1]}pi=1, in which case Assumption 2 is guaranteed to be
satisfied.

Additionally, the leader could choose Kd
i to satisfy some

sparsity constraint. For example, the leader could choose Kd
i

such that Kd
i x is only a function of xi.

Remark 2. If agents do not have access to the full state
vector for feedback but instead only have access to yi =
Cixi, we consider the leader to have desired controllers
ui = −K̃d

i yi or ui[k] = −K̃d
i [k]yi[k]. We can then define

Kd
i = K̃d

i Ci or Kd
i [k] = K̃d

i [k]Ci and proceed as in the full
information case.

Knowing that the followers are rational, the leader’s task
is to find a strategy γL ∈ ΓL such that the followers choose
u∗i = −Kd

i x or u∗i [k] = −Kd
i [k]x[k], i.e. {u∗i }

p
i=1 is a Nash

equilibrium of the follower game.
We first review standard results from linear quadratic

regulator theory [8], [9]:

Proposition 1. Consider the dynamical system ẋ = Ax+Bu

with (A,B) stabilizable. If for R � 0,
[
Q N
NT R

]
� 0 there

exists a matrix P � 0 such that

ATP +PA+Q− (PB+N)R−1(BTP +NT ) = 0, (13)

then the feedback law u = −Kx with

K = R−1(BTP +NT ) (14)

minimizes

J =
∫∞
0
xTQx+ uTRu+ 2xTNu dt (15)

and A−BR−1(BTP +NT ) is stable. The minimizing cost
is J∗ = x(0)TPx(0).

Note that (13) is equivalent to

ATP + PA+Q−KTRK = 0. (16)

Proposition 2. Consider the dynamical system x[k + 1] =
Ax[k] + Bu[k] with (A,B) stabilizable. If for R � 0,[
Q N
NT R

]
� 0 there exists a matrix P � 0 such that

P = Q+ATPA−KT (BTPB +R)K (17)

with
K = (BTPB +R)−1(BTPA+NT ), (18)

then the feedback law u = −Kx minimizes

J =
∑∞
k=0 x[k]TQx[k] + u[k]TRu[k] + 2x[k]TNu[k]

(19)

and A − BK is stable. The minimizing cost is J∗ =
x[0]TP [0]x[0].

Define the discrete time index set K := {0, . . . ,M − 1}.

Proposition 3. Consider the dynamical system x[k + 1] =
A[k]x[k] + B[k]u[k]. Assume R[k] � 0 for all k ∈ K,[
Q[k] N [k]
N [k]T R[k]

]
� 0 for all k ∈ K, and Q[M ] � 0. If

there exists matrices P [k] � 0 such that P [M ] = Q[M ] and

P [k] = Q[k] +A[k]TP [k + 1]A[k]

−K[k]T (B[k]TP [k + 1]B[k] +R[k])K[k], ∀k ∈ K
(20)

with

K[k] = (B[k]TP [k + 1]B[k] +R[k])−1

· (B[k]TP [k + 1]A[k] +N [k]T ), ∀k ∈ K (21)

then the feedback law u[k] = −K[k]x[k], ∀k ∈ K minimizes

J= x[M ]TQ[M ]x[M ] +
∑M−1
k=0

(
x[k]TQ[k]x[k]

+u[k]TR[k]u[k] + 2x[k]TN [k]u[k]
)
. (22)

The minimizing cost is J∗ = x[0]TP [0]x[0].

We can apply Propositions 1–3 to develop a methodology
for obtaining γL ∈ ΓL that achieves the leader’s goal.

III. MAIN RESULTS

In the analysis that follows, we investigate player i’s
optimal control assuming that all other players use strategies
uj = −Kd

jx or uj [k] = −Kd
j [k]x[k]. We justify this

assumption by noting that the class of feedback strategies
are strongly time consistent, [10]. One may compare this
with open-loop strategies which are weakly time consistent
since player strategies are dependent on the initial state only.
Hence, any deviation by a player from his initial strategy
may result in the open-loop solution being suboptimal in
some sense. In addition, since we restrict to the class of
feedback strategies, if one player uses feedback then it is
optimal for the others to do so as well based on the strong
time consistency property and the rationality of the players.

We investigate separately the cases of continuous time
dynamics with infinite horizon costs, discrete time dynamics
with infinite horizon costs, and discrete-time dynamics with
finite horizon costs.

A. Continuous-Time, Infinite Horizon

Assume CT dynamics with CT costs. We introduce the
following notation. Let R−i−ii denote Ri with the ith block-
row and the ith block-column removed. Similarly, let Ri−ii

and R−iii denote the ith block-row and the ith block-column
of Ri each with the Riii block removed. Note that Rii−i =
(R−iii )T By abuse of notation (i.e., after an appropriate
row/column permutation), we have

Ri ,

[
Riii Ri−ii

R−iii R−i−ii

]
. (23)



We also introduce the following notation for the leader’s
desired control for all the followers except for follower i:

Kd
−i =

[
Kd

1
T · · · Kd

i−1
T

Kd
i+1

T · · · Kd
p
T
]T
.

(24)
Furthermore, define

Ãi , A−
∑
j 6=iBjK

d
j = A−B−iKd

−i (25)

Q̃i, Qi +
∑
j 6=i, 6̀=i(K

d
j )
TRj`i K

d
`

= Qi + (Kd
−i)

TR−i−ii Kd
−i (26)

Ñi , −
∑
j 6=i(K

d
j )
TRjii = −(Kd

−i)
TR−iii (27)

for all i. Note that (Ãi, Bi) is stabilizable by Assumption 2.
Under the assumption that all other players chose uj =

−Kd
jx, player i will experience the dynamical system

ẋ = Ãix+Biui (28)
with cost

Ji =
∫∞
0
xT Q̃ix+ uTi R

ii
i ui + 2xT Ñiui dt. (29)

We can now apply Proposition 1 and obtain the following:

Theorem 1 (CT costs). If γ∗ = {Ri}pi=1 and {Pi}pi=1 exists
such that the convex feasibility problem below is feasible
for all i ∈ {1, . . . , p}, then {u∗i = ud

i = −Kd
i x}

p
i=1 is a

Nash equilibrium of the follower game, thereby achieving
the leader’s goal:

Pi � 0 (30)

Riii � 0 (31)[
Q̃i Ñi

(Ñi)
T Riii

]
� 0 (32)

(Ãi)
TPi + Pi(Ãi) + Q̃i − (Kd

i )
TRiii K

d
i = 0 (33)

(BTi Pi + (Ñi)
T ) = Riii K

d
i (34)

Proof: By (8), {udi = −Kd
i x}

p
i=1 is a Nash equilibrium

for the follower game if for each i, ui = −Kd
i x is optimal

for cost (29) subject to dynamics (28). If there exists Ri,
Pi that satisfy (30)–(34) for all i, then by Proposition (1),
udi = −Kd

i x is optimal for (29) for all i.

B. Discrete-Time, Infinite Horizon

Assume DT dynamics and DT costs, and consider defini-
tions (23)–(27). Under the assumption that all other players
chose uj [k] = −Kd

jx[k], player i will experience the
dynamical system

x[k + 1] = Ãix[k] +Biui[k] (35)

with cost

Ji =
∑∞
k=0 x[k]T Q̃ix[k] + ui[k]TRiii ui[k] + 2x[k]T Ñiui[k].

(36)
Applying Proposition 2, we have

Theorem 2. If γ∗ = {Ri}pi=1 and {Pi}pi=1 exists such
that the convex feasibility problem below is feasible for all
i ∈ {1, . . . , p}, then {u∗i [k] = ud

i [k] = −Kd
i x[k]}pi=1 is a

Nash equilibrium of the follower game, thereby achieving
the leader’s goal:

Pi � 0 (37)

Riii � 0 (38)[
Q̃i Ñi

(Ñi)
T Riii

]
� 0 (39)

Q̃i + (Ãi)
TPiÃi − Pi (40)

−(Kd
i )
T (BTi PiBi +Riii )Kd

i = 0 (41)

(BTi PiBi +Riii )Kd
i = (BTi PiÃi + (Ñi)

T ) (42)

The proof is analogous to the proof of Theorem 1 and is
omitted.

C. Discrete-Time, Finite Horizon

Assume DT dynamics and DTFH costs. Analogous to the
previous cases, define:

Ri[k] ,

[
Riii [k] Ri−ii [k]

R−iii [k] R−i−ii [k]

]
(43)

Kd
−i[k] ,

[
Kd

1[k]
T · · ·Kd

i−1[k]
T

Kd
i+1[k]

T · · ·Kd
p[k]

T
]T
(44)

Ãi[k] , A−B−iKd
−i[k] (45)

Q̃i[k] , Qi + (Kd
−i[k])TR−i−ii [k]Kd

−i[k] (46)

Ñi[k] , −(Kd
−i[k])TR−iii [k]. (47)

Under the assumption that all other players chose uj [k] =
−Kd

j [k]x[k], player i will experience the dynamical system

x[k + 1] = Ãix[k] +Biui[k] (48)

with costs

Ji = x[M ]T Q̃i[M ]x[M ] +
∑M
k=0

(
x[k]T Q̃i[k]x[k]

+ui[k]TRiii [k]ui[k] + 2x[k]T Ñi[k]ui[k]
)
. (49)

Applying Proposition 3, we have

Theorem 3. If γ∗ = {Ri[0], . . . , Ri[M − 1]}pi=1 and
{Pi[0], . . . , Pi[M ]}pi=1 exists such that the convex feasibility
problem below is feasible for all i ∈ {1, . . . , p}, then
{u∗i [k] = ud

i [k] = −Kd
i [k]x[k]}pi=1 is a Nash equilibrium

of the follower game, thereby achieving the leader’s goal:

Pi[M ] =Q̃i[M ] (50)

Riii [k] � 0 (51)[
Q̃i[k] Ñi[k]

(Ñi[k])T Riii [k]

]
� 0 (52)

Pi[k] =Q̃i[k] + Ãi[k]TPi[k + 1]Ãi[k]

− (Kd
i [k])T (BTi Pi[k + 1]Bi +Riii [k])Kd

i [k] (53)

(BTi Pi[k]Bi +Riii [k])Kd
i [k] = (BTi Pi[k]Ãi[k] + (Ñi[k])T )

(54)

where (51)-(54) hold for all k ∈ K.



The proof is analogous to the proof of Theorem 1 and is
omitted.

Observe that we have considered the problem of finding
prices for the ith follower as an inverse LQR problem with
the additional constraint that Qi is fixed.

IV. OBJECTIVE FUNCTIONS FOR IMPROVED
PERFORMANCE

Often, the feasibility problems from Theorem 1–3 have
many solutions, affording the opportunity to add objectives
for finding a particular γ∗L ∈ ΓL. We discuss two possibilities
below.

A. Revenue Neutral Pricing
It is often the case that nominal prices γ̂L ∈ ΓL exist

for a game. This nominal cost can be interpreted as costs
imposed if no leader existed and may be actual energy costs,
material costs, labor costs, etc. By considering these nominal
costs, the leader calculates team optimal or socially optimal
control inputs and, using these as the desired controllers, the
leader finds γ∗L ∈ ΓL using Theorems 1–3 such that the team
optimal controller is a Nash equilibrium for the modified
game. Thus, the difference between costs incurred under
γ∗L versus γ̂L can be interpreted as incentives or penalties
established by the leader to induce the team optimal solution
to the nominal game in the noncooperative setting.

Let R̂i, Ĵi , etc. be associated with the game with
nominal leader strategy γ̂L. There is no a priori association
between the nominal incurred costs Ĵi and the costs after
incentive pricing J∗i . However, it may be desirable to coerce
a relationship either using an objective function or additional
problem constraints. For instance, if

∑p
i=1 J

∗
i <

∑p
i=1 Ĵi,

the costs “collected” by the leader are less than the nominal
costs that are incurred. Conversely, if

∑p
i=1 J

∗
i �

∑p
i=1 Ĵi,

the followers may find the game unduly unfair.
Now consider the feasibility problems of Theorems 1–3.

Define

S1 := {({Ri}pi=1, {Pi}
p
i=1) : (30)-(34) hold} , (55)

S2 := {({Ri}pi=1, {Pi}
p
i=1) : (37)-(42) hold} , and (56)

S3 := {({Ri[0], . . . , Ri[M − 1]}pi=1,

{Pi[0], . . . , Pi[M ]}pi=1) : (51)-(54) hold} . (57)

Suppose we wish
∑p
i=1 J

∗
i =

∑p
i=1 Ĵi. One solution is to

enforce
∑p
i=1Ri =

∑p
i=1 R̂i , or

∑p
i=1Ri[k] =

∑p
i=1 R̂i[k]

for all k. This ensures that the total follower costs of the
modified game at each time step is equal to the total nominal
follower costs at each time step. However, this is often an
unattainable goal. We alternatively consider

∑p
i=1 Ji versus∑p

i=1 Ĵi, which compares the total costs throughout the
modified game versus the total nominal costs. Ideally, we
want

∑p
i=1 Ji =

∑p
i=1 Ĵi, however we can instead add the

relaxed revenue neutral objective min
∣∣∣∑p

i=1 Ji −
∑p
i=1 Ĵi

∣∣∣.
We can now formulate the following optimization problems
given the revenue neutral objective:

min |
∑
i E(x(0)TP 0

i x(0))− C| (P-1)
subj. to ({Ri}pi=1, {Pi}

p
i=1) ∈ So

where o = 1, 2, 3 if the problem is CT, DT, or DTFH
respectively, and where P 0

i = Pi if the problem is CT or
DT and P 0

i = Pi[0] if the problem is DTFH. If x(0) is
known, then E(x(0)TP 0

i x(0)) = x(0)TP 0
i x(0) and C =∑p

i=1 Ĵi. If x(0) is not known a priori we can assume a
probability distribution on x(0) and use expectation. In this
case, C , E(

∑p
i=1 Ĵi). A standard assumption is that x(0)

is uniformly distributed on the unit sphere, in which case
E(x(0)TP 0

i x(0)) = Tr(P 0
i ) where the expectation is taken

over x(0).
We can also easily include constraints such as∑p
i=1 x(0)TPix(0)−C ≥ 0 or

∑p
i=1 Tr(Pi)−C ≥ 0, and

similarly for DTFH costs to ensure that the total modified
costs are at least the total nominal costs. In simulations and
examples, it is often the case that prices can be found such
that

∑p
i=1 Ji =

∑p
i=1 Ĵi.

B. Minimizing Impact of Non-Local Controls on Cost

In general, solutions to the feasibility problems from The-
orems 1–3 produce pricing mechanisms for specific agents
that depend on other agents control actions as well as their
own control actions. In many situations, this kind of pricing
mechanism could be construed as unfair by competitive
agents who do not want to be penalized for the actions of
their neighbors. In reality in any market economy, the price
of a scarce resource for a particular agent depends on how
much of that resource is being used by other agents; however,
this may do little to dispel the perception of unfairness. In
order to mitigate this problem, the leader may design pricing
mechanisms for each agent that have minimal dependence on
other agents’ control actions while still inducing the agents to
use the desired feedback gains. This amounts to minimizing
the norm of the Ri−ii , R−iii , and R−i−ii blocks in Equation
(23). We can now formulate the following optimization
problems:

min
∑
j 6=i, 6̀=i w

i
j`‖R

j`
i ‖2 +

∑
j 6=i w

i
ij

(
‖Riji ‖2 + ‖Rjii ‖2

)
(P-2)

subj. to ({Ri}pi=1, {Pi}
p
i=1) ∈ So,

min
∑M−1
k=1

(∑
j 6=i,` 6=i w

i
j`‖R

j`
i [k]‖2

+
∑
j 6=i w

i
ij

(
‖Riji [k]‖2 + ‖Rjii [k]‖2

))
(P-3)

subj. to ({Ri[0], . . . , Ri[M − 1]}pi=1,

{Pi[0], . . . , Pi[M ]}pi=1) ∈ S3.

where o = 1, 2 if the problem is CT or DT respectively. We
call these objectives local pricing objectives.

The weighting terms wij` allow the leader to place more
emphasis on minimizing specific subblocks of Ri. For ex-
ample, the leader might care about minimizing the R−i−ii

block more since it is the part of the pricing mechanism that
depends solely on other agents’ control actions whereas the
Ri−ii and R−iii blocks depend both on agent i’s actions and
other agents’ actions.

In addition to considering the revenue neutral and local
pricing objectives individually, we may consider a weighted



sum of the two objectives with weights wrn and wlp for the
revenue neutral and local pricing objectives respectively.

V. EXAMPLE 1: PRICING FOR NETWORK SECURITY

In this section we consider a numerical example of the
pricing mechanism design problem for coordinating multiple
interconnected networks to invest in security. Self-spreading
attacks on computer networks are expensive owing to the
damage they cause and the security investment required to
defend against them [11], [12]. The leader’s goal is to design
pricing mechanisms that coordinate the networks so that the
overall multi-network is stabilized.

A. Epidemic Model for Multi-Network

A common model for self-spreading attacks is the classical
epidemic model adapted to a multi-network framework. We
adopt that model here. In the multi-network epidemic model
the state xi denotes the number of infected hosts in network
i for i = 1, . . . , p. Let the control action ui be the malware
removal rate for network i. The parameters α and β are
the cross-network and inter-network pairwise infection rates
respectively. Let Ni denote the number of hosts in network i
for i = 1, . . . , p. We may analyze a modified version of the
nonlinear epidemic model given in [11] since the modified
model is more difficult to stabilize. The model is given by

ẋi

{
[Ax+Bu]i, (xi > 0) ∨ ([Ax+Bu]i ≥ 0 ∧ xi = 0)

0, otherwise
(58)

where A ∈ Rp×p with entries

Ai,j =

{
βNi, if i = j
αNi, otherwise. (59)

B. Network Utilities

Each network independently tries to choose ui so that
the ith network is stabilized. We propose the use of pricing
mechanisms to coordinate the networks by inducing them to
choose a desired control action which stabilizes the entire
multi-network. In Bloem, et. al., Theorem 1 of [12], it is
proven that a system with dynamics (58) is stable with
feedback u = −Kdx if the closed-loop matrix has negative
diagonal entries and non-positive off-diagonal entries. As
such, we define the desired solution {Kd

i }
p
i=1 to be a set

of feedback gains that stabilize the closed loop system in
the sense of this theorem.

The individual networks each have quadratic nominal
utilities given by

Ĵi =
∫∞
0
xTi Qixi + uTi R̂iui dt (60)

where Qi and R̂i is the cost of an infected network host
and the cost of the implemented patching response rate for
network i respectively. The leader chooses a set of pricing
matrices {Ri}pi=1 such that network i is induced to choose
the stabilizing feedback gain Kd

i for i = 1, . . . , p.

C. Simulation Results

For the numerical simulations we take α = 2β
3 since it

is assumed that α < β implies attacks will spread at a
slower rate if security is in place [12]. We compute the Nash
equilibrium of the follower game under the nominal costs
using the method of Lyapunov iterations, see [13]. We refer
to this cost as the nominal cost. We determine a set of desired
feedback gains for the leader by computing the solution to
the infinite time LQR optimization problem for the whole
multi-network and we use the resulting feedback gains if
they satisfy Theorem 1 of [12]. Otherwise, we modify them
to satisfy the theorem. We use code written in MATLAB that
employs YALMIP to solve the optimization problem1, [14].

1) Comparing Objectives: For the first set of simulations,
we fix the number of networks to be p = 4 and let
N1 = 3500, N2 = 3900, N3 = 3000 and N4 = 3400.
We then design pricing schemes, namely {Ri}pi=1, without
minimizing any objective, using the revenue neutral objective
in (P-1) for CT, using the local-pricing objective in (P-2),
and finally using a weighted sum of these two objectives.
For simplicity, we let wij` = wiij = 1 for all i, j, ` and
we let wrn = wlp = 1. Table I records the nominal cost to
each network, the team or centralized cost (where networks
use {Kd

i }
p
i=1), and the costs under the four different pricing

schemes. All four pricing schemes induce each network to
use the desired feedback gains but the values of the matrices
{Ri}pi=1 and the costs incurred by each network under the
pricing schemes are different. One should note that if the
pricing scheme is designed without an objective, the solver
simply returns the first feasible set of pricing matrices to
which it converges. In this example, the prices chosen with-
out objectives are significantly higher than the nominal cost
incurred by each network at the team optimal solution. The
revenue neutral objective minimizes the difference between
the team optimal cost and the aggragate of the followers’
costs under the pricing scheme. In this example, the costs
are rendered equal.

It is interesting to note that applying the local pricing
objective significantly reduces the magnitude of the non-local
terms of the R1 matrix. However, the magnitude of the non-
local terms depends greatly on the weights used in the local
pricing objective.
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Fig. 1. p = 4, percent savings using pricing scheme plotted against Q : R̂.
1Code available at

www.eecs.berkeley.edu/˜scoogan/allerton12.html



TABLE I
COSTS UNDER AN EPIDEMIC MODEL FOR NETWORK SECURITY

Individual Nominal Costs a
CTSb

N1 N2 N3 N4

NOM 1.260 1.288 1.226 1.253 5.028
TO 1.247 1.279 1.209 1.239 4.974

Individual Costs w/ Pricingc
CTS Leader Profitd

N1 N2 N3 N4

NO 3.709 3.707 3.709 3.710 4.974 9.860
RN 1.245 1.247 1.238 1.244 4.974 0
LP 1.134 1.133 1.114 1.132 4.974 -0.461

RN, LP 1.193 1.454 1.149 1.178 4.974 0

aNominal costs incurred at the original Nash equilibrium with nominal
costs (NOM) and when players use the team optimal control (TO).

bCost To Society, the cost incurred under the nominal costs.
cCosts incurred under four different pricing schemes designed with no

objectives (NO), with only the revenue neutral objective (RN), with only
the local pricing objective (LP), and with both the revenue neutral and local
pricing objectives, see section IV. Followers use {Kd

i }
p
i=1.

dThe difference between the CTS and the total cost with pricing. If the
pricing scheme is revenue neutral, the leader profit is 0.
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Fig. 2. p = 4, percent savings using pricing scheme plotted against β

2) Varying Parameters: For the second simulation, using
the same multi-network as in the previous example, we first
vary Qi in the ratio Qi : R̂i from 1 to 10 with fixed R̂i = 1
for each i and we fix the inter-network infection rate β =
5.8×10−5. Then, we vary the inter-network infection rate β
from 1×10−5 to 1×10−4 and we fix Qi : R̂i = 1 : 1 for all i.
In both cases, we minimize a weighted sum of the objectives
in (P-1) for CT and (P-2) with wrn = 0.5 and wlp = 1 and
we compute the percentage savings gained from using the
pricing mechanism as the nominal cost. Figure 1 shows the
percentage savings as a function of the cost ratio Q : R̂. The
percent savings decreases with increasing Q : R̂ ratio. This
is reasonable since Q represents the cost of the infection to
the network. Hence, as the Q : R̂ ratio increases it cost more
to the network for infections relative to the cost of patching.
Figure 2 shows the percentage savings as a function of β.
We see that the percent savings increases with β which is
reasonable since β represents the strength of the attack.

3) Varying Network Sizes: In the last set of simulations,
we consider a multi-network with p = 6 networks of
two different sizes. We again minimize a weighted sum
of the objectives in (P-1) for CT and (P-2) with wrn =
1 and wlp = 1 with respect to {Ri}pi=1 and subject to
({Ri}pi=1, {Pi}

p
i=1) ∈ S1. Let the first multi-network have

network sizes N1 = 5000, N2 = 3000, N3 = 2000,

TABLE II
COST FOR p = 6 MULTI-NETWORK EXAMPLES 1 AND 2

Multi-Network 1 Multi-Network 2
Network Network

Size
Cost w/
Pricing

Nom.
Cost

Network
Size

Cost w/
Pricing

Nom.
Cost

1 5000 1.355 1.695 5000 1.439 1.969
2 3000 1.293 1.427 4000 1.343 1.815
3 2000 1.190 1.302 4500 1.395 1.891
4 900 1.129 1.173 5500 1.474 2.050
5 90 1.085 1.083 6000 1.499 2.133
6 1000 1.121 1.185 4750 1.418 1.930

Total 7.173 7.865 8.567 11.789
Savings 9.64% 37.61%

N4 = 900, N5 = 90, and N6 = 1000. Similarly, for
the second multi-netowk let N1 = 5000, N2 = 4000,
N3 = 4500, N4 = 5500, N5 = 6000, and N6 = 4750.
Table II contains the nominal and the pricing induced cost for
each agent as well as the total cost. The first multi-network
we consider has one small network with 90 nodes and the
other networks are roughly the same size and an order of
magnitude larger than the smallest network. In this example,
the pricing induced strategies save 9.64% as compared to the
nominal cost. The second multi-network contains networks
that are all the same size in magnitude and the savings in
this example are 37.61%. We conjecture that the difference
in percentage savings is exemplary of networks of the same
size versus ones with greatly varying sizes.

A further consideration would be to assess the cost of im-
plementing the pricing scheme to the leader. It is interesting
to note that in this formulation the leader chooses the desired
feedback gains {Kd

i }
p
i=1 simply with the goal of stabilizing

the network. Another formulation would be to allow the
leader to choose the optimal feedback gains {Kd

i }
p
i=1 that

stabilize the network where optimality is defined with respect
to some utility representing the cost of implementing the
pricing mechanism. We leave this for future work.
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Fig. 3. Network of 7 interconnected players.

VI. EXAMPLE 2: PRICING FOR CONTROLLED DIFFUSION

Consider the network shown in Fig 3 where each agent
i = 1, . . . , 7 has state ξi[k] ∈ R at time k. A common control
problem is to design a distributed control strategy fi[k] such
that the states converge to the same value under the dynamics
ξi[k + 1] = fi[k], i.e. |ξi[k] − ξj [k]| → 0 for all i, j. A
solution is the following discretized version of the so-called
consensus strategy [15]:

ξi[k + 1] = ξi[k]− ε
∑
j∈Nj

(ξi[k]− ξj [k]) + ui (61)

where Nj = {j : an edge connects i to j} is the neighbor-
hood of agent i, ε > 0 is a chosen stepsize, and we have



TABLE III
RESULTS FOR EXAMPLE 2.

Teams Nominal
Cost

Cost with Pricing
Mechanisma

{1}, {2}, . . . , {6}, {7} 11.0785 11.0454
{1, 2}, {3, 4}, {5, 6, 7} 11.0638 11.0454
{1, 2, 3, 4}, {5, 6, 7} 11.0561 11.0454
{1, . . . , 7}(i.e., Team Optimal) 11.0454 N/A

aSince the cost with pricing is equal to the team optimal cost, we see
that revenue neutral pricing is achieved in all three cases.

included an exogenous input ui. We call problems with an
exogenous input controlled diffusion problems and they arise
often in multirobot rendezvous and flocking [16], and sensor
networks [17]. We define the matrix L entrywise as

[L]ij =

{
−1 if i 6= j and i is connected to j
di if i = j

(62)

where di is the degree of node i in the network. We let
ξ =

[
ξ1 . . . ξ7

]T
, u =

[
u1 . . . u7

]T
, and write the

controlled diffusion dynamics as

ξ[k + 1] = (I7 − εL)ξ[k] + u (63)

Where I7 is the 7 × 7 identity matrix. We consider three
noncooperative dynamic games: 1) each agent is a noncoop-
erative player, 2) the agents are divided into 3 noncooperative
teams(players), 3) the agents are divided into 2 noncooper-
ative teams(players), see Table III for the team divisions. In
addition, we consider the team optimal solution, which is
equivalent to one team with all the players. In each case,
a player’s control input is the set of exogenous inputs to
that players’ agents. The cost to each player i is assumed
to be

∑∞
k=0(

∑
j∈Ti

ξ2i + u2i ) where Ti is the indices of
agents on team i. A full state optimal controller is found
by solving the LQR problem min

∑∞
k=0 ξ

T ξ + uTu. For
a given team, we assume that the states of all the agents
on that team and the states of their neighbors are available
for measurement, and suboptimal desired controllers for
each player are then obtained from the full state optimal
controller by extracting the appropriate rows for each player
and zeroing out entries corresponding to state measurements
unavailable to that player. We then find new prices for the
game using Theorem 2 and a revenue neutral objective.
Results are summarized in Table III, where we choose ε =
0.1. We see that exactly revenue neutral prices are possible
in all three cases considered.

VII. CONCLUSION

This paper investigated pricing for linear-quadratic dy-
namic games. We posed the game as a dynamic game
with many followers and one leader. We used results from
LQR theory to derive our main result showing that the
problem of obtaining costs to ensure a particular desired
Nash equilibrium for the followers is a convex feasibility
problem. We presented extensions to this problem which
maintain the convexity of the resulting program, namely

making costs revenue neutral and minimizing dependence
of costs on nonlocal control actions.

Future work involves examining the robustness of the
pricing scheme as well as the Nash equilibrium strategies to
affine perturbations and characterization of the feasible set of
pricing matrices. In addition, a related problem to pricing for
controlled diffusion is incentivizing efficient HVAC control
and occupant behavior in buildings. In future research, we
will consider a HVAC system model proposed in [18] and
design pricing schemes with the goal of improving overall
efficiency.
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[11] T. Alpcan and T. Başar, Network Security: A Decision and Game-
Theoretic Approach. Cambridge Univ Press, 2010.

[12] M. Bloem, T. Alpcan, and T. Basar, “Optimal and robust epidemic re-
sponse for multiple networks,” Control Engineering Practice, vol. 17,
no. 5, pp. 525–533, 2009.
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