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This paper introduces a communication and planning framework to facilitate efficient
state update information between an autonomous robotic system and a human operator under
scenarios where continuous robotic monitoring is not available. The framework estimates the
operator’s mental model and uses the difference between the estimated mental model and the
actual world state and robot plans to trigger selective communication updates to the operator.
The framework is deployed in a simulation environment where a rapid task planning algorithm
adapts robot plans to a dynamic operational environment in real time. The proposed framework
aims to improve situational awareness and reduce cognitive load in contrast with baseline
methods where communication is triggered by mission milestones, obstacles encountered, or
periodically.

I. Introduction
Human command and control (C2) of swarms of robots is challenging for two reasons: communication and

interpretability. Translating an operator’s intent into machine-interpretable instructions is an open research question –
when robots in a swarm behave unexpectedly, operators are uncertain if the robots correctly understood the operator’s
intent they were supposed to do or were incapable. This challenge is exacerbated when the operator is unable to monitor
all swarm robots or has additional taskwork, causing reduced situation awareness about individual robot states and
plans. Moreover, open questions exist on the explainability of swarms – how a framework can synthesize the robots’
progress into communication that conveys important task information to the operator. In addition, we are interested in
abstracting the micromanagement of swarms away from the human operator through the use of real-time task planning
algorithms. Our objective is for the framework to route robots through high-level mission objectives, automatically
replan robots as they encounter obstacles, and selectively update the operator when robot plans have meaningfully
changed. Our work focuses on the system design and engineering of the framework, utilizing Bayesian mental models
and temporal-logic-based planners to enable fluent operator-swarm communication and efficient self-organization.

II. Related Work
First presented by Johnson-Laird in the early 1980s [1], a mental model is an internal conceptual representation,

a mental construct, or a long-lasting impression or understanding that captures the essential parts of the perceived
structure of the external system. It is a cognitive framework that allows the individual to perceive, understand, and
interpret the elements in the environment, allowing the individual to better predict the world [2]. Initial work on
human-robot communication focused on understanding how people form mental models of a robot’s factual knowledge.
Lee et al. concluded that "participants estimated a robot’s knowledge by extrapolating from their own knowledge and
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the information available about the robot" [3]. According to Baker [4], humans naturally develop a "Theory of Mind"
(ToM) when interacting with others, enabling them to model beliefs and intentions. The ability of humans to infer
beliefs about the robot’s state from low-level action information such as simple movements has been extensively studied
[5]. Research by Ramaraj [6] explored human-robot interaction failures to determine the ability of mental models to
resolve them. Utilizing the concept of Mental Models, Brooks and Szafron [7] focused on second-order mental models
to infer human perception of robots’s actions.

The significant impact of mental models in shared cognition and natural language, specifically in human-robot
teams, has been critically studied [8]. Demir et al. concluded that teams that had natural language information exchange
and shared mental models performed better than those without, in restricted conditions. The study also concluded that
the perceived workload of the robot by the human was higher in the absence of a shared mental model. The challenge of
communication from the robots and their ability to impact human perception, thereby their mental models, is an existing
problem in human-robot interaction. The preliminary work presented by Rueben et al. [9] focused on enabling robots to
"autonomously estimate and influence human beliefs about robot perceptual capabilities" [9] using a web-based game.
Further work by Nikolaidis et al. [10, 11] extended this to manipulation capabilities, emphasizing the need for accurate
human-robot shared models.

Current work on Shared Mental Models (SMM), specifically the review by Andrews et al. [12], focuses on
the definition and application of SMMs in human-AI teaming, signifying its importance in enabling and improving
team performance while proposing design considerations for enhancement of shared cognition. The importance of
explicit communication [13] in human-robot teams is undeniable to build team cognition and trust. Following that, a
computational framework demonstrating the positive impact of SMMs on coordination and team efficiency in simulated
space robotics tasks is implemented by Gervits et al. [14, 15]. SMMs have also been proposed as a valid method for
teaming with robots in high-stakes domains such as manufacturing and hazardous environments [16] to improve overall
team performance.

Across disciplines, research converges on the idea that mental models are essential for effective teamwork by aligning
objectives, subgoals, and roles. Julie A. Adams has significantly contributed to formalizing SMMs in human teams,
emphasizing shared cognition as a cornerstone for improving team dynamics. Her work, alongside DeLoach and Scheutz
[17], underlines how shared mental models enhance both team performance and cohesion in collaborative environments.
Adams et al. [17] proposed a computational framework for integrating mental models into robotics, detailing the data
structures and processes necessary to develop, update, and sustain these models. Meanwhile, Johnson [18] investigated
the interplay between autonomy and interdependence in human-agent-robot teams, finding that collaboration often
yields better outcomes than heightened autonomy, especially in complex tasks.

These studies collectively underscore the importance of mental models in HRI, providing insights into designing robots
that can effectively understand and predict human behavior, thereby enhancing collaborative efficiency, communication,
and user satisfaction.

III. Theoretical Framework
This work proposes a framework comprising two main components possessed by a swarm to address the key

challenges in human-swarm awareness synchronization. The first component models the human operator’s understanding
of the location and progress of each robot using the information delivered by the swarm to the operator. We term this
component a Simulated Human Mental Model (SHMM) as an approximation of the operator’s situational awareness. In
the second component, we use a task planning algorithm that anticipates a frequent request to update individual robot
trajectories in response to unknown and dynamic environmental features. Instead of solving for a point-to-point mission
plan, our planner articulates planning objectives beyond the scope of pointwise navigation, while also providing the
capability to optimally revise the existing plan in real time. We couple the two components to have a more efficient
human-robot interaction where the human’s awareness is updated only when the robot’s replanning causes sufficient
deviation from the SHMM to merit communication.

Fig. 1 shows a system diagram of the overall framework, which includes a SHMM (the estimated mental model of
the operator), Robot States & System Plan (the swarm’s own understanding of its current state), and the communication
and replanning blocks. In the communication block, both the SHMM and the System Plan are used to identify whether
aspects of the operator’s situational awareness should be repaired. The swarm continuously tracks these with the Robot’s
system plan and assesses the disparity between them using metrics such as position coordinates and total mission time.
If the deviation between them surpasses a threshold, the swarm will inform the human operator on the true states of the
robots to realign the operator’s awareness to its own situational perception. We will further discuss the mental model
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Fig. 1 The swarm tracks both the SHMM and the Robot States & System Plan and measures the disparity
between them to evaluate the timing and attributes to synchronize the awareness of the operator. An optimal
replanning block will respond to environmental changes and update robot states and future plans.

and communication in the following subsections.

A. Simulated Mental Model & Communication
Many different attributes can be utilized to trigger communication. In the scenario envisioned, we can identify

3 primary triggers: time, distance, and mission progress. Time indicates the amount of time that has elapsed given
the mission progress and distance traveled compared to what was anticipated initially or based on previous updates.
Distance indicates the amount of distance that has been traversed given the mission time and progress compared to
initial estimates. Mission progress indicates the number of milestones accomplished compared to initial estimates.

The pseudocode presented in Algorithm 1 overviews the human-robot interaction framework and how it integrates
the SHMM with the System Plan in order to trigger appropriate communication messages during robot swarm missions.
The program begins by initializing the simulation environment and the mental model. The SHMM includes features
such as robot positions, waypoints, mission objectives, and time elapsed towards the robot’s mission objectives. The
System Plan is initially set to be all nominal conditions when the mission starts. For each of the various missions and
environments, the SHMM will be initialized as the best estimate (often the mean) of all simulation runs for the specific
mission and environment for the initial plan and goal structure. It will be used to represent human perception and
maintain situational awareness of the human operator.

The mission time is defined as the total time required for the robots to reach the mission objective. It is the sum of
the time taken to get to the current position and the estimated time remaining to get to the goal position from the current
position. For the SHMM, based on the previous simulation runs, the average mission time for the specific mission and
environment is preset as the expected mission time. The 3 threshold values, low, medium, and high, are preset based on
the observed mission time for the SHMM. The deviation metric of choice is selected by the human operator. Now, the
communication system is connected to the simulation and replanning algorithm, and the robots begin their missions.

At each timestep, the System Plan gets populated with the feature values from the simulation, and for each of those
time steps, the mission time is calculated and compared with the preset SHMM mission time value. To quantify the
disparity between the mental models’ mission time at each timestep, one of the following deviation metrics is utilized by
the framework:

1) Manhattan Distance (L1 norm): The Manhattan Distance calculates the absolute sum of differences between
the SHMM and System Plan mission times across all timesteps. It is useful for measuring the total deviation
without emphasizing large outliers.

𝑑Manhattan =

𝑛∑︁
𝑖=1
|𝑇SHMM,𝑖 − 𝑇System Plan,𝑖 |

where:
• 𝑇SHMM,𝑖: Mission time from the SHMM at timestep 𝑖,
• 𝑇System Plan,𝑖: Mission time from the System Plan at timestep 𝑖,
• 𝑛: Total number of timesteps.
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Algorithm 1 Human-Robot Interaction Framework with Mental Models and Replanning
1: Initialize:

Environment
Simulated Human Mental Model (SHMM)← Initial Plan
Robot Mental Model (System Plan)← Initial State and Initial Plan
Communication Framework

2: Set Mission Goals and Parameters
3: Set SHMM Mission Time SHMMoriginal ← Estimated time to execute initial plan
4: Set Threshold values based on the expected Mission Time of the current Mission
5: Select the deviation metric.
6: while Mission Not Complete do
7: Receive System Plan data from simulation at current timestep - (Index, Pos-x, Pos-y, Time)
8: Compute Mission Time for System Plan:
9: System PlanMission Time = Timecurrent + Timeremaining

10: Retrieve corresponding SHMM data for the current timestep
11: Compute Deviation Metric to compare SHMM and System Plan:

Δ = deviation metric(SHMMMission Time, System PlanMission Time)
12: if Δ > Threshold then
13: Trigger communication to Operator:
14: Generate message comparing SHMM and System Plan
15: Update SHMM using Bayesian logic:

SHMMupdated ← deterministic_bayesian_update(SHMMoriginal,Δ,Threshold,Uncertainty Factor)
16: Set SHMMcurrent ← SHMMupdated ⊲ Use updated SHMM for next comparisons
17: end if
18: Calculate Hybrid Distance Metric
19: if Obstacle detected or Replanning needed (based on task feasibility and distance metrics) then
20: Run LTL-D* to find the new optimal trajectories
21: end if
22: Update system plan and execute tasks
23: end while
24: End Mission

2) Mean Absolute Error (MAE): The Mean Absolute Error measures the average magnitude of deviations between
the SHMM and System Plan mission times. It provides a simple measure of overall deviation.

MAE =
1
𝑛

𝑛∑︁
𝑖=1
|𝑇SHMM,𝑖 − 𝑇System Plan,𝑖 |

3) Root Mean Squared Error (RMSE): The RMSE calculates the square root of the average squared differences
between the SHMM and System Plan mission times. It emphasizes larger deviations, making it sensitive to
outliers.

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(
𝑇SHMM,𝑖 − 𝑇System Plan,𝑖

)2

4) Correlation Coefficient (Pearson’s 𝑟): The Correlation Coefficient measures the linear relationship between
SHMM and System Plan mission times. A value close to 1 indicates a strong positive correlation, while a value
near -1 indicates a strong negative correlation.

𝑟 =

∑𝑛
𝑖=1

(
𝑇SHMM,𝑖 − 𝑇SHMM

) (
𝑇System Plan,𝑖 − 𝑇System Plan

)√︃∑𝑛
𝑖=1

(
𝑇SHMM,𝑖 − 𝑇SHMM

)2 ∑𝑛
𝑖=1

(
𝑇System Plan,𝑖 − 𝑇System Plan

)2

where:
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• 𝑇SHMM: Mean mission time of SHMM,
• 𝑇System Plan: Mean mission time of System Plan.

5) Relative Mean Absolute Error (RMAE): The Relative Mean Absolute Error expresses the MAE as a fraction
of the average mission time of the SHMM. It provides a normalized measure of deviation, allowing comparisons
across different missions.

RMAE =
MAE

mean (𝑇SHMM)
When the deviation exceeds a threshold, a communication message is sent to the commander addressing the deviation.

Subsequently, the SHMM is updated to reflect the commander’s expected current state of perception. The update follows
a deterministic Bayesian logic defined as:

𝑇SHMM =

{
𝑇SHMM, original + 𝛿, if |𝛿 | > 𝜃

𝑇SHMM, original, otherwise

Where:
• 𝑇SHMM: Updated SHMM mission time,
• 𝑇SHMM, original: Original SHMM mission time before update,
• 𝛿 = 𝑇System Plan − 𝑇SHMM: Deviation between the System Plan and SHMM mission times,
• 𝜃: Threshold value beyond which the update occurs.

The deterministic update logic is based on the idea that the system’s prior belief or state (the SHMM mission time) is
updated based on the observed deviation between the expected SHMM mission time value and the observed System
Plan mission time value. This update only happens when the observed deviation exceeds the predefined threshold. Once
the update happens, the current SHMM mission time value is replaced with the updated value and the robot continues
on the path with no further communication to the human operator until the next update point.

Some other communication triggers could include those triggered by environmental changes and the robot’s internal
state. Some of the environmental changes can include variations in the terrain or expected weather conditions, and
obstacles. It can be handled by integrating cameras and sensors like LiDAR to trigger communication. The robot’s
internal state could include metrics like the battery level and this can be handled by implementing a mechanism to
have the robot consistently send data at every timestep to the framework, allowing it to use it as a metric to trigger
communication when it falls below a preset threshold value.

B. Temporal-logic-based System Plan & Replanning
The task planning block consistently rewires existing trajectories to update the System Plan whenever dynamic

environments trigger the discovery of new optimal solutions. In this work, replanning is achieved through a state-of-
the-art revision algorithm named LTL-D* [19]. LTL-D* is designed for tasks based on linear temporal logic (LTL)
[20], which is used as a description of a sequence of tasks assigned and to be performed. LTL provides rich semantics
that extend beyond simple point-to-point navigation among regions of interest and are also capable of expressing
sophisticated logics involving temporal ordering of tasks such as sequencing and coverage [21]. LTL specifications are
ideal for assigning long-duration tasks to robots in a swarm and offer complexity that exceeds human tracking capacity,
particularly when the swarm contains a significant population of robots. However, a major limitation of LTL-based
planning lies in its inefficiency in real-time plan revisions when environments are subject to frequent changes or robots
face unexpected disturbances. As robots’ workspace and state space scale, the complexity of rewiring a feasible solution
grows exponentially. Instead of building a new optimal plan from scratch which is the least efficient approach, we
leverage LTL-D* to enhance the computational speed of replanning in our framework.

A Linear Temporal Logic (LTL) formula is constructed upon the atomic propositions 𝑎𝑝 ∈ 𝐴𝑃 and the Boolean
and temporal connectors in the grammar of 𝜑 := ⊤| 𝑎𝑝 | ¬𝜑 | 𝜑 ∧ 𝜓 | ⃝ 𝜑 | 𝜑 U 𝜓, where the Boolean operators
denote “negation" (¬), “conjunction" (∧), and the temporal modalities denote “next" (⃝) and “until" (U). Other useful
temporal connecters including “eventually" (♢𝜑 = ⊤U 𝜑) and “always" (□𝜑 = ¬♢¬𝜑) are also widely used in our task
specifications given instructions and rules of the missions. Consider a simple example where a robot is assigned to start
from location A and instructed to move toward location F after visiting any of the locations B, C, D, or E. The robot
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is also commanded to go to each location at least once. We can express the corresponding LTL specification for this
mission as follows:

𝜑1 =(𝐴→ ♢𝐵) ∧ □(𝐵→ ⃝((¬𝐶 ∧ ¬𝐷 ∧ ¬𝐸)U𝐹)
𝜑2 =(𝐴→ ♢𝐶) ∧ □(𝐶 → ⃝((¬𝐵 ∧ ¬𝐷 ∧ ¬𝐸)U𝐹)
𝜑3 =(𝐴→ ♢𝐷) ∧ □(𝐷 → ⃝((¬𝐵 ∧ ¬𝐶 ∧ ¬𝐸)U𝐹)
𝜑4 =(𝐴→ ♢𝐸) ∧ □(𝐸 → ⃝((¬𝐵 ∧ ¬𝐶 ∧ ¬𝐷)U𝐹)

where each specification describes the robot going to one of locations and not passing by any other spot before reaching
location F. The overall specification of the task for each robot is a conjunction of all the tasks above:

𝜑 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3 ∧ 𝜑4

In our framework, the System Plans are executed on discretized abstractions of the collision-free workspace and the
robot’s operating states, both of which are modeled as weighted transition systems (WTSs). LTL specification can
be encoded into a non-deterministic Büchi automaton (NBA) which provides a set of feasible task sequences that are
acceptable to the NBA. A feasible solution that satisfies the LTL specification and is executable within the workspace
and operating states can be explored from a product automaton, which is obtained by combining the WTSs and the NBA.
A product automaton resembling a graph structure allows us to leverage LTL-D* algorithm, a modified version of D*
Lite [22], to rewire a new optimal solution. For brevity, we omit the mathematical formulation and proof of optimality
guarantee of LTL-D* and refer the interested readers to [19] for details.

During the robot’s execution of the tasks, changes in a dynamic environment can be systematically reflected as
modifications to the edges of the WTSs representing the environment. Replanning scenarios addressed in this paper
assume that the task assignments to each robot remain consistent, only unexpected environmental changes would cause
the original plan to fail. We classify these failures into two scenarios: (i) when the desired LTL specification can be
fulfilled through replanning, and (ii) when the desired LTL specification is unachievable and can only be met in a
"relaxed" manner. Relaxation is achieved through considering plant that would violate the initial LTL specifications.
To resolve these failures, LTL-D* seeks an optimal replanning solution that minimizes violations of the desired task
specifications. Our replanning performs at least 10 times faster than the replanning from scratch for the feasible scenario
and around two orders of magnitude faster than replanning from scratch for infeasible scenario and guarantee the optimal
solution [19].

C. Simulation Pipeline
To demonstrate the proposed framework, we developed a simulation pipeline integrating the mental models and

replanning algorithm. Our simulator uses NVIDIA’s Isaac Sim 4.2.0 [23] [24], which is a high-fidelity robotics
simulation designed for validating robotics systems in virtual environments for human-in-the-loop study. The simulator
has two objectives: to provide a realistic looking environment, and to enable testing the full framework without
large-scale hardware experiments in varied environments. The simulation is configured to receive task plans from the
replanning algorithm for each agent we want to simulate. We then simulate the agents in the environment sending the
state information for each agent (e.g. agent position) to any external tools that might need the information. This also
includes the status of the agent and in the case that an infeasible scenario is encountered, such information is shared with
the replanning algorithm so that new instructions can be provided. Communication between the simulation pipeline and
the framework uses ROS2. While the framework is agnostic to agent type, for our demonstrations we use unmanned
aerial vehicles (UAVs). Fig. 2 provides an example where the task planning algorithm and the Isaac Sim simulation
send results to an external WebServer and User Interface for testing the framework.

Simulation is the natural first step in evaluating this framework as it allows us to work through any technical issues
with larger numbers of robots and environment complexities before adding in the difficulty of real-hardware. Figures 3,
4, and 5 are examples of potential environments created in Isaac Sim for such evaluation. When creating environments
to test the overall framework, there are additional considerations related to the agents themselves. Firstly, we need to
be able to generate an array of tasks that reflect the capabilities of the agents and which can also exploit the flaws of
the agents to force replanning scenarios. For example, the warehouse environment in Fig. 4 has many loose objects
in pathways which make it difficult for larger ground agents to traverse, but would be trivial for agents like UAVs to
navigate over. Conversely, the maze-like environment in Fig. 3 provides fewer, more obvious pathways. In this case, the
complexity of navigation tasks now comes from the ability to either open doors, which bipedal agents might excel at,
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Fig. 2 Diagram overview of the framework message transmission pipeline. It consists of the Planner Node (task
planning algorithm), the Isaac Sim Node (the simulation environment), the WebServer and the User Interface
aiming to interact with human subjects to collect and analyze data. In the diagram, both the Current Status and
Future Plans are data structure used under ROS communication framework.

Fig. 3 Maze-like outdoors environment showing
well-defined gridded pathways with sparse tasks in
specified locations.

Fig. 4 Warehouse-like indoors environment show-
ing semi-defined gridded pathways and loose tasks
in random locations.

Fig. 5 Unstructured outdoors environment show-
ing non-gridded pathways with loose objects and
tasks.

or to find another path which may include more difficult terrain, which a quadcopter would be better suited for. We
can also incorporate more dynamic tasks which are unexpected by the agents. In the example environments, falling
objects like boxes have been incorporated which both forces replanning and adds potential complexity which tests the
robustness of the SHMM. These dynamic tasks and changes are easily controlled either with the simulation directly or
through communication from other tools connected via the simulation pipeline.

IV. Discussion
The proposed framework in human-swarm interaction combines real-time path replanning and cognitive mental

model-based communication and leads to improved human situational awareness and selective communication of the
essential details, thereby reducing the cognitive load on the operator. In this section we present preliminary results
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of the framework for two specific mission goals, addressing the theoretical advantages and challenges, followed by a
description of the future direction for this project.

A. Framework Performance across Mission Goals
Figures 6 (a) and 6 (b) show the framework in action for a mission goal position or an end destination of (19,19) and

(29,29), respectively. In the figures, the X-axis represents the simulation time step or index, and the Y-axis represents the
mission time. The dotted blue lines indicate the SHMM values for mission time and orange lines indicate the System
Plan mission time values. Each time, the System Plan mission time deviation exceeds the preset threshold, an update is
sent to the commander with a communication message detailing specific mental model features comparing SHMM and
System Plan array values for that specific timestep. The deviation is marked by the purple stars, which act as the update
points on the plot. At each update point, the SHMM updates the mission time value to represent the updated human
perception due to the communication message.

B. Theoretical Advantages and Challenges
The proposed framework addresses specific challenges in human-robot interaction associated with cognitive load,

situational awareness, and information overload on the operator.
• Reduce Operator Cognitive Load: Communication to the operator only happens when major deviations occur

and they are with regards to the overall mission time. This communication strategy significantly reduces cognitive
fatigue and helps avoid information overload on the operator.
Operators are only notified of significant deviations, avoiding information overload.

• Improve Situational Awareness: This communication message details specific aspects of the environment and
the path corresponding to the robot’s mission and sends it when the mission time deviation exceeds threshold.
This communication message enables the human operator’s perception to synchronize with the reality in the
simulation, thereby improving situational awareness.

Some of the challenges associated with the framework include:
• Threshold Calibration: Utilization of preset threshold for specific environments and missions leads to excessive

fine-tuning of the algorithm and makes it very mission-specific, thereby affecting scalability and affecting
communication and human perception in unknown environments and missions.

• Integration and Compute: Integrating the simulation, replanning algorithm, and communication framework
efficiently in real-time will likely introduce complexities associated with software compatibility and computational
overhead. Ensuring optimal performance with ideal integration in dynamic environments will require a careful
selection of software packages, high-performance computers, and optimization techniques. Managing a swarm of
robots is also computationally expensive.

• Deterministic Bayesian update: The utilization of a simple deterministic Bayesian update logic could result in
an oversimplification of complex decision-making processes where more advanced stochastic and non-stochastic
probabilistic methods might function better.

C. Future Work
Future work aims to refine the framework and evaluate the proposed framework via user studies. A software pipeline

integrating the replanning algorithm, simulation, and communication framework will be created to publish the results
onto a User Interface (UI). The UI will then be used to design and conduct a user study comparing two scenarios: the
baseline scenario, where the system communicates every slight deviation and updates the SHMM with the exact System
Plan feature values, and the proposed system, which employs Bayesian update logic to communicate deviations only
when the deviation exceeds the threshold value.

With the initial mental model provided, the situational awareness, cognitive load, decision-making accuracy, response
time, and satisfaction level of the participants will be measured using standardized tools like the Situational Awareness
Rating Technique (SART), the Situation Awareness Global Assessment Technique (SAGAT), and the NASA Task Load
Index (NASA-TLX). Using a combination of quantitative statistical tests and qualitative analysis, we will determine
the ideal communication strategy and effectiveness of the proposed communication framework to maintain effective
situational awareness while minimizing the cognitive load on the commander.
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(a) Performance for the 19x19 Map (b) Performance for the 29x29 Map

Fig. 6 Framework Performance Across Mission Goals: (a) shows the performance for a mission goal at (19,19),
and (b) illustrates the performance for a goal at (29,29). The X-axis represents simulation time steps, and the
Y-axis shows mission time. The dotted blue lines denote SHMM mission time values, the orange lines show System
Plan mission time values, and the purple stars mark deviations where the commander receives updates.

Additionally, this UI will allow for more intuitive interactions for the operator. It will provide features to control the
mental model disparity threshold, and it will present communication messages along with the actual simulation video. It
will also potentially have features to take input from the operator and serve as an interface for bidirectional communication.

Refinements and Improvements
Refining and improving the existing framework will be a primary area of focus for our future works on the framework.

Some of the potential improvements include:
• Increased features: Enhance the System Plan and SHMM to accommodate more features associated with the

mission and in multiple modes, allowing for more dimensions of improvement for the framework.
• Dynamic threshold determination: Utilization of a dynamic threshold determined by the observed disparity

will allow the framework to be adaptable and scalable to varying missions and environments.
• Composite harmonic score: Instead of one specific deviation metric, a composite harmonic score of a

combination of all the metrics will allow a more comprehensive measure of the disparity between the mental
models. It will also allow the human operator to set weights to specific individual metrics based on mission-specific
parameters and operator preferences, thereby improving usability and flexibility.

• Complex Bayesian models: Instead of the deterministic Bayesian update logic used here, a variety of stochastic
and non-stochastic Bayesian logic models could result in better performance of the framework and reduce potential
confusion in human perception.

• Utilization of LLMs for communication: Instead of hard-coded communication systems, Large Language
Models (LLMs) could be utilized to generate more realistic, natural, and human-readable context-aware messages
personalized for the operator’s requirements and preferences in communication, thereby enhancing usability and
interoperability. It can also account for unforeseen situations and environments and account for the experience
level of the current human operator or commander.

• Task Coordination between robots: Our task planning algorithms is primarily designed to handle task
assignments for individual robots. However, many robotic swarms are capable of performing coordinated tasks
that require collaboration among multiple robots. These coordinated tasks often involve synchronized actions or
shared goals that cannot be achieved by a single robot operating in isolation. For instance, two or more robots may
need to jointly transport a heavy object, execute a complex assembly process, or perform area coverage tasks that
require dynamic communication and role reassignment.
Such coordinated behaviors demand a higher level of task planning complexity, as the system must account for
inter-robot dependencies, timing constraints, and the spatial relationships between robots. Incorporating these
capabilities into task planning algorithms would significantly enhance the effectiveness and versatility of swarm
robotics in dynamic and unpredictable environments. This necessitates the development of algorithms that can
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seamlessly integrate individual task assignments with multi-robot coordination strategies while maintaining
computational efficiency and scalability.

• Simulation Improvements
There are three main areas where we would like to improve the simulation pipeline in the future. The first area is
to improve the capabilities and types of agents we can test in the simulation environment. At the moment, agents
can only perform path base tasks regardless of agent type. This means that the range of issues that can cause
replanning is restricted to issues that limit the pathways available to certain agents and the difficulty of traversing
such pathways. We would like to expand these tasks to include things such as picking up objects or interacting
more with the environment to give a wider array of potential issues for testing. The second area we would like to
improve is the range of information we can get from the system. At the moment, we mainly get agent states (e.g.
position, velocity, etc.) and when the agent either completes a task or needs replanning, also known as the agent
status. We would like to expand this to also include other information which might be useful in testing the SHMM
such as sensor data, agent visual data (e.g. cameras), and simulated status information (e.g. remaining battery).
Finally, we would like to greatly increase the number of testing environments available to us, which includes
changing the types of environments represented and the features in each environment. Type of environments
describes both how they look visually, such as outdoor versus indoor environments, and the degree to which
pathways in the environment follow a rectangular grid. Additionally, features can include potential obstacles and
the available tasks encountered in the environment. We intend to expand on both types of environments and
features to give us a larger array of scenarios to further test the robustness of the proposed framework.

V. Conclusion
The proposed human-robot interaction framework marks a step towards the integration of cognitive mental models

and real-time trajectory replanning in swarm robot missions. Despite challenges with integration, the framework’s
potential to maintain effective situational awareness and reduce cognitive load is promising. Further work on the
framework will explore system refinements, testing its capability at scale in dynamic environments, validating it’s
capabilities whilst addressing existing limitations to create a more robust and real-world human-robot interaction. The
framework’s modular design and metrics-based deviation assessment allow seamless integration into autonomy software
engineering pipelines whilst ensuring flexibility across varying missions and uncertain and dynamic environments. This
framework sets a precedent for future developments in adaptive decision-making and autonomy software engineering
for swarm robots, and presents a theoretical foundation for cognitive-mental model-based communication systems.
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