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Abstract

Electric vehicle charging facilities o↵er their capacity constrained electric charge and parking to users for a fee. As electric
vehicle adoption grows, so too does the potential for excessive resource utilization. In this paper, we study how prices set
by the charging facility impact the likelihood that specified resource utilization levels are exceeded. Specifically, we present
probabilistic bounds on the number of charging spots and the total power supply needed at a facility based on the characteristics
of the arriving vehicles. We assume the charging facility either o↵ers a set of distinct and fixed charging rates to each user or
allows the user to decide a charging deadline, from which a charging rate is determined. Users arrive randomly, requiring a
random amount of charge. Additionally, each user has a random impatience factor that quantifies their value of time, and a
random desired time to stay at a particular location. Assuming rational user behavior, and with knowledge of the probability
distribution of the random parameters, we present high-confidence bounds on the total number of vehicles parked at the
station and the aggregate power use of all vehicles actively charging. We demonstrate how these bounds can be used by a
charging facility to determine appropriate pricing parameters and investigate through a Monte-Carlo simulation case study
the tightness of the bounds.

1 Introduction

The electric vehicle (EV) revolution promises to trans-
form transportation and mobility. This has been cat-
alyzed by improved a↵ordability of electric vehicles
(EVs) such that [16] predicts that by 2040 the global
new vehicle sales will be comprised of 58% EVs and
the global passenger vehicle market will be 31% elec-
tric. With the growing numbers of electric vehicles, the
demands on charging facilities will be greater.

The EV charging problem can be classified into the fol-
lowing categories: EV usage in the context of smart
grid or vehicle-to-grid, EV charging network design, EV
charging facility pricing, and EV routing and scheduling
[22,1]. Note that while these classifications are useful,
there exists literature which simultaneously addresses
more than one of these categories. Furthermore, capacity
considerations have been studied within game-theoretic,
optimization, and control system frameworks [18,24,25].

In [14], charging management is performed by solving
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a social welfare nonlinear optimization problem subject
to power constraints. Here, the distribution locational
marginal pricing provides an e↵ective way for mitigat-
ing charging facility congestion. In [8], scheduling elec-
tric vehicle charging is formulated as an optimal con-
trol problem which algorithmically converges to opti-
mal charging profiles which are cognizant of power con-
straints. The paper [3] considers a spatiotemporal model
for rapid charging facilities. There, the authors propose
a queuing theoretic model which predicts the demand on
charging facilities using the fluid tra�c model such that
the arrival rate of users is not known a priori. In [17], the
authors study the problem of optimal pricing and rout-
ing schemes for a charging network operator where users
specify their priority level while the charging network
operator chooses between a profit-maximizing and a so-
cial welfare-maximizingmode. The paper [13] studies the
problem of optimally charging EVs by distributing the
optimization program to ultimately compute the con-
gestion impact of a population of vehicles on the power
network. In [2], the authors propose a discrete choice
model with the ultimate goal of alleviating congestion
at an EV charging facility. In this paper, we focus on the
EV charging facility resource utilization problem using
two distinct pricing models to ultimately derive proba-
bilistic guarantees on resource utilization.

In practice, the dual purpose of EV charging facilities as
both a parking and charging location will often compete.
From a user perspective, charging station access is essen-
tial. For a charging facility operator, it is imperative to
provide satisfactory service to users. Apart from user ac-
commodation, operators may have to ensure that their
total power consumption stays below a certain level to
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avoid overloading the power grid. Thus, operators have
to properly manage the dual function of charging facili-
ties.

In this paper, we model the user-charging facility dy-
namics such that a user arrives with parameters which
are random variables. These variables are the users’ en-
ergy demand, impatience factor which quantifies how a
user values their time, and their desired time at a loca-
tion. The charging facility is able to charge vehicles for
a fee, and we consider two possible modes of operation:
a service level model in which a user chooses from a dis-
crete set of charging rates, and a deadline model in which
a user chooses a charging deadline. In either model, the
fee, i.e., price, set by the charging facility depends on
the user’s choice, and a user chooses a particular service
level or charging deadline which minimizes a total cost
that is a combination of the actual cost to charge the ve-
hicle and park at the facility and the user’s opportunity
cost from the time it takes to receive the charge.

The contributions of this paper are the following. First,
we formalize the two operating models described above.
To the best of our knowledge, this is the first model of
EV charging facilities that explicitly includes variable
pricing for varying levels of service, parking costs, and
user opportunity costs. This model provides a tractable
approach for studying EV charging under diverse con-
straints and user assumptions. Furthermore, using
knowledge on the probability distribution of the user
parameters, we derive confidence intervals on a charging
facility’s likelihood of not exceeding a specified number
of users (i.e., occupancy) and/or a specified threshold
of electric power draw. We study the practicality of the
two operating models considered by demonstrating how
a charging facility operator utilizes our results to set the
pricing function parameters for both operating models.
Lastly, in Section 4.3 we present a systematic approach
to setting charging facility parameters.

The statistical assumptions made in this paper presup-
pose that the model remains valid even beyond specified
resource limits, e.g., we ignore the possibility of queuing
at a charging facility, a phenomenon that does occur in
practice. This simplification leads to a mathematically
tractable formulation and will still provide important in-
sights, especially in the desired situation when resource
thresholds are rarely met or when such thresholds can
be physically violated if needed. For example, a charging
facility may not only be concerned with resource con-
sumption achieving its max limit but instead exceeding
some threshold that incurs some additional operational
costs. For the total power, a charging facility may not
have a hard-stop limit after attaining some power con-
sumption level but rather incurs a surcharge for exces-
sive power consumption. Furthermore, the present re-
sults give a direct relationship between the parameters of
the pricingmodels and the resource consumption bounds
such that the parameters can be tuned to achieve desir-

able system-wide behavior at the charging facility. For
example, while queuing at charging facilities is not un-
common currently, it is reasonable to expect that as EV
charging facilities become more commonplace and as re-
sources are better managed, as advocated for here, then
this phenomenon will become rarer. The consideration
of queuing at a charging facility when the capacity limit
is reached and the management of such techniques has
been studied extensively in scheduling literature such as
in the papers [9,10,17].

This paper extends the prior works [19,21]. In particu-
lar, we expand [19], which only considers the deadline
model in which a user chooses a charging deadline, by
considering a more general class of pricing functions, and
including a cost to the user if a user desires to stay at a
charging facility beyond their time to fully charge their
vehicle. We expand [21], which only considers the ser-
vice level model in which a user chooses from a discrete
set of charging rates, by including a parking fee. The ap-
proach we present in this paper di↵ers from other smart
charging literature in that it is sometimes referred to as
decentralized smart charging [7] or user-managed smart
charging [5]. This di↵ers from other smart charging ap-
proaches which focus more on variable rate charging and
the associated scheduling.

1.1 Notation

We denote the positive part of a real number x by [x]+ =
max(0, x). For an indexed set of variables {xk}, we let
�i

jx denote the di↵erence between the variable with in-
dex i and j, i.e., �i

jx = xi � xj . When considering
a collection of independent and identically distributed
(i.i.d) random variables indexed by subscripts, we use
non-subscript variables when referring to properties that
hold for any of the i.i.d random variables. For example,
E[x] is the expectation of each i.i.d random variable xj .

2 EV Charging Facility Model Formulation

Consider an EV charging facility that serves a local at-
traction or public facility, e.g., highway rest area, a shop-
ping center, business park, hotel, or government build-
ing, and which has a finite number of charging-capable
parking spots. The charging facility therefore provides
both parking and electric energy to vehicles.

We study the problem of how a choice of pricing model
for an EV charging facility enables a charging facility to
compute probabilistic guarantees on the likelihood that
desired resource utilization levels will not be exceeded.
In particular, we consider two fundamental operating
models: in the first model, called the defined service level
model (DSL), users directly choose from a discrete set of
charging rates. In the secondmodel, called the prescribed
deadline model (PD), users indirectly choose a charging
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Table 1
User Parameter Definitions
Var. Parameter Unit Range

j user index - -

aj arrival time hr. -

xj user demand kWh [xmin, xmax]

↵j impatience factor $/hr. [↵min,↵max]

⇠j desired time at location hr. [⇠min, ⇠max]

rj charging rate kW (0, Rmax]

uj prescribed deadline hr. [umin, umax]

rate by specifying a departure time. In the DSL model,
we assume the charging facility is able to provide elec-
tric energy at several discrete rates of charge for di↵er-
ing prices. This flexibility allows the charging facility to
manage both the total power usage and, indirectly, the
charging facility usage. In the PD model, users choose
a deadline and the charging facility is assumed to pro-
vide energy at a constant rate so that the vehicle is fully
charged by the deadline. In both models, a user’s choice
is determined by the amount of charge required for their
EV, the preferred amount of time they will spend at the
local attraction, the prices set by the charging facility,
and their impatience factor. We now make this setup
and the accompanying assumptions precise.

At this facility, a user j arrives at some time aj (in hr.)
with charging demand xj (in kWh), an impatience fac-
tor ↵j (in $/hr.), and a desired (i.e., minimum) amount
of time they will spend at the charging location ⇠j (hr.).
The impatience factor quantifies how much a user values
their time versus money, i.e., it is the opportunity cost
for the user to wait to charge their vehicle. Note that xj

is the charging demand users arrive with which, without
loss of generality, we refer to as a full charge. Throughout
the paper we will make the following assumption about
the aforementioned variables.

Assumption 1 (Users) User arrivals at the charg-
ing facility are a Poisson process with parameter �
(in EVs/hr.). Individual charging demand xj, the im-
patience factor ↵j, and the time spent at the charg-
ing location ⇠j for each user j are random variables
which are independent and identically distributed (i.i.d).
Additionally, there exists finite 0 < xmin < xmax,
0  ↵min < ↵max, and 0  ⇠min < ⇠max such that the
distributions of xj, ↵j, and ⇠j are only supported on
[xmin, xmax], [↵min,↵max], and [⇠min, ⇠max], respectively.
Furthermore, each xj and ↵j are assumed to be contin-
uous random variables but we allow for the possibility
that ⇠min = 0 and P(⇠j = 0) > 0 to accommodate the
practical special case in which, with nonzero probability,
users have no desire to remain at the charging facility.
In this case, the distribution of ⇠j is understood to be a
generalized probability density function.

Table 2
Parameter Definitions for the Charging Facility under the
DSL Model

Var. Parameter Unit Range

` service level - {1, . . . , L}
V ` price per unit of energy $/kWh -

R` charging rate kW (0, Rmax]

F parking fee $/hr. -

We assume that ↵j and ⇠j are i.i.d. and realize that this
may initially appear counterintuitive; however, due to
modeling di�culties, and our belief that it is reasonable
that a user’s impatience is independent of their desired
time spent at a location, e.g., doctor’s o�ce, business
center, we believe that this is a reasonable assumption.
The user parameters, their respective units, and upper
and lower bounds are summarized in Table 1. As men-
tioned previously, we consider two models for how a user
pays for charging their vehicle. In both models, users
balance the need for electric charge with the need for a
parking spot for at least their desired time at the local
attraction, which may be zero. In the DSL model, a user
chooses from a discrete number, possibly just one, of pos-
sible charging levels. Thus, a user can charge their vehicle
faster by paying more for a higher rate of charge. In the
DSL model, a user might also pay a parking fee if their
vehicle reaches full charge before the user’s desired time
at the attraction, ⇠j . In the PD model, the user directly
provides a departure time, i.e., a charging deadline, and
the charging facility provides electric power during the
resulting time window so that the vehicle has full charge
at departure. In both models, a user will always remain
at the charging facility at least for the desired time ⇠j ,
but they may stay longer if the charging facility o↵ers
su�cient discount for providing a slower charging rate.
We formalize these two models in the next two subsec-
tions.

2.1 Defined Service Level (DSL) Model

In the DSL model, the charging facility o↵ers L service
levels. Each service level ` 2 {1, . . . , L} corresponds to a
distinct charging rate R` > 0 (in kW) and price V ` > 0
(in $/kW) that is the cost per unit energy for the service
level. Thus, user j with energy demand xj pays xjV ` (in
$) to receive a full charge over the time horizon xj/R`

(in hr.) when choosing service level `. Additionally, the
users face a parking fee F (in $/hr.) which is equal across
all service levels. The parameters related to the charging
facility under a discrete pricing model are listed in Ta-
ble 2. To distinguish the parameters related to the charg-
ing facility from those related to the users, the charging
facility parameters are upper case and indexed by a su-
perscript, while the parameters for the users are lower
case and indexed by a subscript.

Assumption 2 (DSL Model Charging Rates)
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Among L service levels o↵ered by the charging facility, a
higher charging rate is more costly, i.e., if Ri > Rk then
V i > V k. Moreover, charging rates and prices are dis-
tinct so that Ri 6= Rk for all i 6= k. Lastly, and without
loss of generality, the charging facility’s pricing func-
tions are enumerated such that V 1 < V 2 < . . . < V L and
therefore R1 < R2 < . . . < RL. Define the maximum
charging rate Rmax := RL.

A user j will remain at a charging facility for the amount
of time to completely fulfill their demand xj and for
their desired time at the local attraction, ⇠j , whichever
is larger. Since user j values their time in excess of the
time they want to spend at the charging facility at a rate
↵j , they may be willing to pay for a higher service level
since it delivers a full charge faster. On the contrary, a
charging facility operates under space constraints so a
charging facility operator will impose a parking fee at a
rate F which penalizes a user for the time they spend in
excess of receiving a full charge. To this end, the total
cost faced by a user arriving at the charging facility with
impatience factor ↵j , desired time spent at the charging
location ⇠j , and charging demand xj , and who chooses
service level `, is given by

g`(xj ,↵j , ⇠j) =

xjV
` + ↵j

h xj

R`
� ⇠j

i

+
+ F

h
⇠j �

xj

R`

i

+
. (1)

In (1), the first term of the sum, xjV `, is the energy cost
to the user resulting from their demand at arrival. The
second term of (1), ↵j

⇥ xj

R` � ⇠j
⇤
+
, where xj

R` is the time
to charge for a particular service level `, is the cost asso-
ciated with how much a user values their time in excess
of the time they sought to spend at the charging facil-
ity location. Lastly, the third term in (1), F

⇥
⇠j � xj

R`

⇤
+
,

is the parking cost associated with spending more time
at a charging facility than the time to fulfill the user’s
demand xj . This model is motivated by real-world ap-
plications of idle fees [12]. In this paper, we restrict our
analysis to the case when users pay a parking fee while
idling, while recognizing that a choice model where users
pay a parking fee for the entire stay duration is a topic
for future research. Individual users choose a service
level at a charging facility which minimizes their to-
tal cost of charging factoring in their impatience. To
that end, let S(xj ,↵j , ⇠j) : [xmin, xmax]⇥ [↵min,↵max]⇥
[⇠min, ⇠max] ! {1, . . . , L} be defined by

S(xj ,↵j , ⇠j) = argmin
`2{1,...,L}

g`(xj ,↵j , ⇠j) . (2)

Then, a rational user j chooses service level S(xj ,↵j , ⇠j)
in order to minimize their total cost as formalized in the
later stated assumption.

For notational convenience, we also define the values rj
to be the charging rate chosen by user j after solving (2),

i.e., rj = RS(xj ,↵j ,⇠j), as indicated in Table 1. Observe
that the user charging times xj/rj , being uniquely de-
termined by xj , ↵j , and ⇠j , constitute a collection of in-
dependent and identically distributed random variables.
Furthermore, this means the time a user spends at the
charging location is max {⇠j , xj/rj} where xj/rj is the
time for a user to receive a full charge based on their
chosen service level.

Assumption 3 (DSL Users are Rational) Each
user chooses a charging rate according to (2) and leaves
the charging facility once they have satisfied their charg-
ing demand or when their desired time at a charging
facility has been reached, whichever is greater. Thus,
user j occupies a charger at the facility during the time
interval [aj , aj +max {⇠j , xj/rj}].

A practically important special case of (1) occurs when
there is no local attraction beyond the charging facility
so that users only wish to charge their vehicle, i.e., ⇠j =
0 for all j and the charging facility does not serve a
secondary purpose of providing parking, and thus we
may take F = 0. In this special case, (1) becomes

g`(xj ,↵j) = xjV
` + ↵j

xj

R`
. (3)

We refer to this special case as the DSL free parking
model (DSL-FP model). If we refer to the DSL model in
an instance which excludes the DSL-FP special case, we
sometimes refer to it as the DSL metered parking model
(DSL-MP model) for emphasis.

Note that the DSL-FP model is the focus of our prior
work [21]; hence, the total cost function (1) is a gener-
alization of that considered in [21] which accounts for
parking fees and users staying at a particular location
longer than their time-to-charge. In the DSL-FP model,
as in the DSL-MP model, given a collection of pricing
functions as in (3), a user j chooses their service level by
solving (2).

As described above, the DSL model allows for a charg-
ing facility that o↵ers multiple discrete charging levels.
For example, this model is well-suited for existing charg-
ing infrastructure, which is currently divided into three
charging levels [4].

However, it may be more convenient for the user to
provide a deadline by which they expect to receive a
full charge, and for the charging facility to determine a
price and charge rate to fulfill this deadline. Such pricing
schemes have indeed been implemented in practice [11].
In other words, it may be the case that the users are
not restricted to a predefined set of service levels, but
rather can pick any charging rate by proxy of choosing
a charging deadline. This setting is characterized in the
following subsection.
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2.2 Prescribed Deadline (PD) Model

In this section, we construct the PD model for the EV
charging facility and utilize the variable definitions pre-
sented in Table 1.

As in the DSL model, in the PD model a user j arrives
with charging demand xj , a desired time at the loca-
tion ⇠j , and an impatience factor ↵j . However, in the
PD model, the user j chooses a charging deadline uj

rather than a discrete charging rate. The charging fa-
cility broadcasts a single pricing function P (xj , uj) that
constitutes the financial cost to a user receiving charge xj

over the deadline uj . Then,

C(xj , uj ,↵j , ⇠j) = P (xj , uj) + ↵j(uj � ⇠j) (4)

is the total cost faced by a user j who arrives with de-
mand xj , impatience factor ↵j , planned time at loca-
tion ⇠j , and who chooses a charging deadline uj � ⇠j .
Hence, (4), penalizes users more for choosing a charg-
ing deadline uj greater than their desired time at a lo-
cation ⇠j at a rate ↵j . A rational user j chooses their
charging deadline according to

uj 2 argmin
u�⇠j

C(xj , u,↵j , ⇠j) . (5)

In (4), we see that in addition to paying a price to charge
as a function of the demand and chosen deadline, a user
faces an opportunity cost which is a function of their
impatience and how much time beyond their desired
time, ⇠j , they spend at the charging facility.

Assumption 4 (PD Users are Rational) Each user
chooses a charging deadline according to (5) and leaves
the charging facility at the chosen deadline. Thus, user j
occupies a charger at the facility during the time interval
[aj , aj + uj ].

We explore the problem of charging facilities within
the context of resource utilization awareness; therefore,
there are either physical or operational limitations on
the charging facilities such as a maximum charging
rate allowable per user. This point is formalized in the
following assumption.

Assumption 5 (PD Model Charging Rates) The
pricing function P (xj , uj) is such that there exists an
upper bound Rmax on the charging rate for any user
solving (5) under the PD model, i.e., Rmax � rj , where
rj = xj/uj, for all users j when uj is chosen according
to (5). Moreover, the charging facility provides electric
power at the constant rate rj over the charging time
horizon uj for each user j.

Remark 1 In the PD model, note that the charg-
ing deadline uj, and therefore also the charging rate

rj = xj/uj, is a continuous random variable. This con-
trasts with the DSL model where rj is a discrete random
variable.

There exist many candidate functions that can be uti-
lized as pricing functions. Analysis of the minimizer
in (5) is particularly amenable in the case that the
pricing function P (xj , uj) is convex in the deadline vari-
able uj . In that case, C(xj , uj , ⇠j) is also convex in uj ,
and hence there exists a unique minimizer u⇤ for (5).
The following is an example of such a pricing function.

Example 1 Consider the pricing function

P (xj , uj) = xj

�
D(uj � !)2 +B

�
, (6)

where D is the surge price (in $/kWh-hr.2), ! is a time
o↵set parameter (in hr.), and B is the base price (in
$/kWh).Then, from (5), a user j chooses deadline

uj 2 argmin
u�⇠j

xj

�
D(u� !)2 +B

�
+ ↵j(u� ⇠j) .

Note that the term (uj � !)2 allows the charging facility
to penalize a user for choosing a deadline less than or
greater than ! at a surge price rate D. The surge price
penalty is in addition to the base price B that a user pays
for their charging demand.

Since (4) substituted with (6) is convex in u, the mini-
mizer is unique and available in closed-form so that user
j will choose deadline

uj := u⇤ = max

⇢
⇠j ,

�↵j

2Dxj
+ !

�
. (7)

As previously mentioned, we operate under Assump-
tion 5, i.e., Rmax � xj/uj must hold. Interpreting Rmax

as an a priori fixed value, the charging facility must then
choose parameters D, B, and ! to satisfy Assumption
5. Algebraic manipulations combined with reasoning
when the maximum is attained lead to the fact that
! > xmax/Rmax and

D >

"
max

xj2[xmin,xmax]

↵minRmax

2!xjRmax � 2x2
j

#

+

. (8)

In practice, (8) provides a way for charging facilities to
set the surge price D so that the charging rate Rmax for
each user is satisfied.

Remark 2 In the DSL model the user will remain at the
charging location for max{⇠j , xj/rj}. This means that
there exists the possibility that the user selects a charging
rate which fulfills the vehicles charging demand before the

5



user has reached their desired time to spend at the loca-
tion ⇠j. However, in the PD case, a user selects a deadline
uj and the appropriate rate is set that fulfills the charg-
ing demand exactly at the deadline time. This means that
in the PD model the vehicle will finalize charging exactly
when the users leaves.

Remark 2 points to a subtle distinction that is impor-
tant because we are interested in providing probabilistic
bounds on the number of present users at the charging
facility. Hence, in the DSL model, there is a di↵erence in
the number of users actively charging and the number
of users present at the charging facility.

Next, we formally introduce the problem statement for
the charging facility which lays the foundation for the
main result for both the DSL and PD models and which
captures the subtle distinction in Remark 2.

2.3 Guarantees on Charging Facility Resource Utiliza-
tion

Charging facilities are concerned with knowing the likeli-
hood of exceeding certain resource utilization levels. Let
the set of present users at the charging facility at time t
be defined as

N(t) =

(
{i : t 2 [ai, ai +max{⇠i, xi

ri
}]} if DSL

{i : t 2 [ai, ai + ui]} if PD

and let ⌘(t) = |N(t)| be the cardinality of the set of
present users. Moreover, let the set of actively charging
users be

Nact(t) =

(
{i : t 2 [ai, ai +

xi
ri
]} if DSL

{i : t 2 [ai, ai + ui]} if PD

and let ⌘act(t) = |Nact(t)| be the cardinality of the set
of actively charging users. Then,

Q(t) =
X

i2Nact(t)

ri

is the total charging rate at time t for all actively charg-
ing users, i.e., the charging facility’s total power con-
sumption. Note that ri = xi/ui in the summation for
the PD model.

We consider the problem in which the charging facil-
ity is interested in providing probabilistic guarantees on
the number of present users in the system and the total
power requirements at any given time t. We thus wish
to compute a high-confidence bound on the total num-
ber of active users and their respective aggregate power
draw at any given time, as is made precise in the follow-
ing problem statement.

Problem Statement 1 Given an EV charging facility
operating under the DSL (resp., PD) model satisfying
Assumption 2 and 3 (resp., Assumption 4 and 5) and
EV users satisfying Assumption 1, for any M number
of users andR total charging facility power consumption
rate, compute �(M) and �(R) such that

P(⌘(t) < M) � 1� �(M) (9)

and
P(Q(t) < R) � 1� �(R) . (10)

3 Main Results

In this section, we first introduce several propositions
which formalize the probability that a randomly selected
user will choose a particular service level in the DSL
model. These results elucidate the remarkable fact that,
conditioned on the ratio xj/⇠j , the probability of choos-
ing a particular rate in the DSL model depends only on
the impatience factor ↵j . We formalize the results for
the DSL model in the following subsection. We do not
present similar results for the PD model since many of
the distributions of interest in the PD model are derived
distributions resulting from algebraic operations on ran-
dom variables and thus, in general, do not have closed
form expressions. Lastly, we present a theorem which
solves the problem statement above and provides proba-
bilistic guarantees of the form (9)–(10) for both the DSL
and PD model.

3.1 User Choice under DSL Model

Define the ratio

⇢j = xj/⇠j .

In the case that ⇠j = 0, which by Assumption 1 may
occur with nonzero probability, we take ⇢j = 1 and
the following analysis still holds. When analyzing the
pricing function in (1), it becomes apparent that a user j
selecting service level ` pays either a cost associated with
their opportunity cost (i.e., impatience) when xj/R` >
⇠j (equivalently, ⇢j > R`) or a cost associated with the
parking fee when xj/R` < ⇠j (equivalently, ⇢j < R`).
Note that ⇢j (in kW) is the charging rate that would
deliver full charge to user j over their desired time ⇠j .

We formalize these observations in Proposition 1 which
defines the probability the DSL pricing functions of the
form of (1) will be the minimum within the set of service
levels and hence will be the choice of a particular user.
For the remainder of the paper we let R̄` = 1/R` for all
` 2 {1, . . . , L}. Additionally, fP(⇢) is the distribution
of ⇢j supported on [⇢min, ⇢max] and note that EP [z(⇢)] =R1
�1 z(�)fP(�)�. for some function z(⇢).
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Fig. 1. The figure shows the probability that a user j with
desired charging rate ⇢j = xj/⇠j chooses service level k.
Depending upon the users impatience factor, a user may
choose a lower charging level than the partition boundaries
of where the desired charging rate ⇢j lies.

Proposition 1 Under Assumptions 1, 2, and 3, con-
sider the set of L functions of three independent RVs�
g`(xj ,↵j , ⇠j)

 L
`=1

where each g` is of the DSL model as
defined in (1) and selection function S(xj ,↵j , ⇠j) as de-
fined in (2). Then, for k 2 {1, . . . , L},

P(S(xj ,↵j , ⇠j) = k) = EP

h
P
⇣
gk = min

i
gi | ⇢j

⌘i
,

where

P
⇣
gk = min

i
gi | ⇢j

⌘
=

8
>>>>>>>><

>>>>>>>>:

1 if ⇢j < R1 ^ k = 1
0 if ⇢j < R1 ^ k > 1
P
�
¯
↵k
1 < ↵j < ↵̄k

1

�
if ⇢j 2 [Rm, Rm+1) ^ k  m

P
�
¯
↵k
2 < ↵j < ↵max

�
if ⇢j 2 [Rm, Rm+1) ^ k = m+ 1

0 if ⇢j 2 [Rm, Rm+1) ^ k > m+ 1
P
�
¯
↵k
3 < ↵j < ↵̄k

3

�
if ⇢j � RL

and

↵̄k
1 =

min

0

@↵max,min
m<i

F
⇣

1
⇢j

� 1
Ri

⌘
��k

i V

1
Rk � 1

⇢j

, min
k<im

�i
kV

�k
i R̄

1

A ,

¯
↵k
1 = max

✓
↵min, max

i<km

�i
kV

�k
i R̄

◆
,

¯
↵k
2 = max

0

@↵min, max
i<m+1

F
⇣

1
Rk � 1

⇢j

⌘
��k

i V

1
⇢j

� 1
Ri

1

A ,

↵̄k
3 = min

✓
↵max, min

k<i

�i
kV

�k
i R̄

◆
,

¯
↵k
3 = max

✓
↵min, max

i<k

�i
kV

�k
i R̄

◆
.

Furthermore, the charging rates rj chosen by each user j
is a collection of independent and identically distributed
discrete random variables each with probability mass
function (PMF)

pr(r) =

8
><

>:

EP [P (g1 = mini gi | ⇢j)] if r = R1 ,
...

EP [P (gL = mini gi | ⇢j)] if r = RL .

Proposition 1 states that the probabilities of a service
level being theminimizing choice for a user is computable
by leveraging the law of total probability. While in some
intervals, the probability P (gk = mini gi | ⇢j) is either 0
or 1, in others it is an integration over an interval of the
distribution of the impatience factor where there exists
a possibility that P (gk = mini gi | ⇢j) is zero within a
particular partition. Lastly, Proposition 1 formalizes the
fact that choosing a service level amounts to choosing a
particular charging rate and presents the resulting PMF
for the charging rates rj . The proof of Proposition 1 is
in Appendix A.1.

The random variable ⇢j has domain [⇢min, ⇢max] with
⇢min = xmin/⇠max and ⇢max = xmax/⇠min with possibly
⇢max = 1. Moreover, since ⇢j is user j’s desired charge
rate, we partition its domain based on the L service
levels. In particular, we obtain the partition intervals
⇢j < R1, ⇢j 2

⇥
Rm, Rm+1

�
for all m 2 {1, . . . , L � 1},

and RL  ⇢j . This is illustrated in Fig. 1.

Fig. 1 illustrates P (gk = mini gi | ⇢j) when L = 4 ser-
vice levels. Considering the case when ⇢j < R1, we
see that P (g1 = mini gi | ⇢j) = 1 which follows the
first case statement for P (gk = mini gi | ⇢j) in Propo-
sition 1. Analyzing the case when ⇢j 2 [R1, R2),
we see that P (g1 = mini gi | ⇢j) decreases while
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P (g2 = mini gi | ⇢j) increases for increasing ⇢j . Lastly,
considering the case when ⇢j 2 [R2, R3), we see that
P (g1 = mini gi | ⇢j) is constant, P (g2 = mini gi | ⇢j)
decreases, and P (g3 = mini gi | ⇢j) increases for in-
creasing ⇢j . Note however that while ⇢j 2 [R2, R3), it
may still be optimal for a user to choose level R1. This
results from the impatience factor with which a user
arrives. Specifically, if a users impatience factor is low
enough they may opt to choose a slower charging rate
since the parking fee may result in a higher cost. Note
that the same phenomenon occurs when ⇢j 2 [R3, R4)
and extends for any L service levels.

In the DSL-FP special case described by the total cost
function (3), Proposition 1 becomes the following corol-
lary.

Corollary 2 Under Assumptions 1, 2, and 3, con-
sider the set of L functions of two independent RVs�
g`(xj ,↵j)

 L
`=1

where each g` is of the DSL-FP model
as defined in (3). Then, for k 2 {1, . . . , L},

P
�
S(xj ,↵j) = k

�
= P

�
¯
↵k < ↵j < ↵̄k

�

where

↵̄k = min

✓
↵max, min

k<i

�i
kV

�k
i R̄

◆
,

¯
↵k = max

✓
↵min, max

i<k

�i
kV

�k
i R̄

◆
.

Furthermore, the charging rates rj chosen by each user j
is a collection of independent and identically distributed
discrete random variables each with PMF

pr(r) =

8
><

>:

P
�
¯
↵1 < ↵j < ↵̄1

�
if r = R1 ,

...
P
�
¯
↵L < ↵j < ↵̄L

�
if r = RL .

PROOF. The DSL-FP special case with total cost
functions of the form of (3) arises with F = 0 and
⇠j = 0. Simply substituting these values into the general
DSL model implies that the desired charge rate ⇢j = 1
for all users j. In practice, this means that users arrive
desiring to charge as fast as possible. In return, this
means that Corollary 2 is just the application of the
⇢j > RL case of P (gk = mini gi | ⇢j) in Proposition 1.

Corollary 2 states that, when a given service level is cho-
sen with nonzero probability, there exists an interval of
impatience factor values for which that service level min-
imizes the total cost to a user. The probability that the
given service level will be chosen is therefore computed

by integrating the distribution of ↵j on that interval.
This special case is the focus of our previous work [21].

Proposition 1 and Corollary 2 define the probability a
user will choose a particular service level under the DSL
model. As noted, this probability is equivalent to the
probability of choosing a specific charging rate. Since
choosing a charging rate is a discrete choice, an explicit
PMF is available for the rates of charge. This fact will
be used for the main result in the next section.

3.2 High-Confidence Bounds on Resource Usage

To state the high-confidence bounds on the total num-
ber of vehicles at the charging facility along with the
aggregate power consumption, we start by making some
observations about the expected charging rate and ex-
pected deadline for the di↵erent models.

In the DSL model E[r] =
PL

`=1 R
`pr(R`) and E[r2] =

PL
`=1

�
R`
�2

pr(R`). In the DSL model, computing the
probability a random user chooses a particular service
level is an integration over the distribution of the impa-
tience factor ↵j ; however, there exists a di↵erence in this
computation between the DSL-MP and DSL-FP mod-
els. Specifically, the choice of charging rate rj chosen by
a user j is only a function of the impatience factor ↵j

in the DSL-FP model. Thus in the DSL-FP model rj
is independent of xj so that E[x/r] = E[x]E[1/r] is the
expected charging time for each user j. In the DSL-MP
model, there arises a dependency between rj and xj as
a result of the ratio ⇢j = xj/⇠j appearing in the integra-
tion bounds of Proposition 1. Hence, to compute E[x/r]
one has to find the derived distribution of the ratio xj/rj
rather than simply dividing the expectations as is the
case in the DSL-FP model.

In the PD model, the distribution of rj can be found by
finding the derived distribution of the ratio xj/uj and
depends on the distributions of xj and uj . The deadline
uj is also a function of random variables, e.g., (7) in the
case when the pricing function is (6), and hence its dis-
tribution is also a derived distribution from the distri-
butions of ↵j and xj . Once the distributions of uj and rj
are computed, one can compute E[u], E[r], and E[r2] for
the PD model which are of interest in the main result of
this paper.

Next, we state the main theorem for this paper which
addresses Problem Statement 1 for both the DSL and
PD models.

Theorem 3 Consider a charging facility operating un-
der the DSL model (resp., PD model) with Assumptions
1, 2, and 3 (resp., Assumptions 1, 4, and 5) where no

8



queuing has occurred. Let

✓ =

⇢
max {⇠, x/r} if DSL model
u if PD model,

i.e., the model dependent random time spent at the charg-
ing facility for each user, and let

✓act =

⇢
x/r if DSL model
u if PD model,

i.e., the model dependent random time spent actively
charging at the charging facility for each user. Given
any M � 0 number of users and R � 0 total charging
rate, the following statements hold at steady state for any
time t:

(1) With confidence 1� �(M), where

� (M) =
8
<

:
exp

✓
�(M��E[✓])2

2
�
�E[✓]+ (M��E[✓])

3

�
◆

if M > �E[✓]

1 otherwise,

the number of users will not exceedM, i.e., P(⌘(t) <
M) � 1� �(M).

(2) With confidence 1� �(R), where

� (R) =
8
>>>>>><

>>>>>>:

min

(
1,
P
⌅

R
E[r]

⇧

m=
⌃

R
Rmax

⌥ exp
✓

�(R�mE[r])2
2
�
mE[r2]+Rmax(R�mE[r])

3

�
◆

⇥P
�
⌘(t) = m

�
+ �act

✓�
R
E[r]

⌫◆)
, if R > �E [✓act]E [r]

1, otherwise,

and

�act (M) =
8
<

:
exp

✓
�(M��E[✓act])

2

2
�
�E[✓act]+ (M��E[✓act])

3

�
◆
, if M > �E[✓act]

1 otherwise,

the total charging rate for all active users will not
exceed R, i.e., P (Q(t) < R) � 1� �(R).

Note that �act (M) is very similar to � (M) in that like
� (M) it is used for providing a confidence interval onM;
however, note that �act (M) is used for providing con-
fidence on the number of users actively charging rather
than those solely present at the charging facility.

PROOF.

(1) We begin by proving the first statement. First, we
make use of Proposition 4 in Appendix A.2 stating
that for a Poisson random variable Z with mean
�̄ > 0, and for anyM > �̄, P

�
Z < M

�
� 1��†(M)

where

�†(M) = exp

0

@ �
�
M� �̄

�2

2
⇣
�̄+ M��̄

3

⌘

1

A .

Since the arrival and service process can be seen as
an M/G/1 queue, ⌘(t) is itself a Poisson random
variable for each t with mean �E[✓] [15, Equation
(9)] and hence letting �̄ = E[⌘(t)] = �E[✓] proves
the first case of the statement. For the second case,
observe that if M < �̄, Proposition 4 cannot be
applied and hence �(M) = 1 gives a trivial bound
for the sought probability.

(2) Introduce ⌫ as ⌫ = R � ⌘act(t)E[r]. Hence R =
⌘act(t)E[r] + ⌫. By total probability, it holds that

P
�
Q(t) � R

�

=
1X

m=0

P
�
Q(t) � R | ⌘act(t) = m

�
P
�
⌘act(t) = m

�
.

(11)

Next we observe that the probability thatQ(t) � R
is zero when m < R/Rmax. This since even if all
users choose the maximum rate, it is impossible
that Q(t) exceeds R, i.e., P

�
Q(t) � R | ⌘act(t) =

m
�
= 0 for m < R/Rmax. Using this fact and ex-

panding (11) for some  > R/Rmax gives

P
�
Q(t) � R

�
=

X

m=
⌃

R
Rmax

⌥
P
�
Q(t) � R | ⌘act(t) = m

�
P
�
⌘act(t) = m

�

+
1X

m=+1

P
�
Q(t) � R | ⌘act(t) = m

�
P
�
⌘act(t) = m

�
.

(12)

For  < m < 1, using the fact that P
�
Q(t) �

R | ⌘act(t) = m
�
 1 and that P

�
⌘act(t) > 

�
=P1

m=+1 P
�
⌘act(t) = m

�
, (12) becomes

P
�
Q(t) � R

�


X

m=
⌃

R
Rmax

⌥
P
�
Q(t) � R | ⌘act(t) = m

�
P
�
⌘act(t) = m

�

+ P (⌘act(t) > ) . (13)

In (13) for a fixedm, such that ⌫ � 0, Fact 5 (Bern-
stein’s Inequality) in Appendix A.2 can be utilized
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with b = Rmax and n = ⌘act(t). Then, each term in
the summation in (13) is bounded as

P
�
Q(t) � ⌘act(t)E[r] + ⌫ | ⌘act(t)

�

 exp

 
�⌫2

2
�
⌘act(t)E[r2] + Rmax⌫

3

�
!
.

Note that to apply Bernstein’s inequality, ⌫ � 0,
which is equivalent to R�mE [r] > 0. This implies
m < R/E [r]. Hence, we choose  =

⌅
R/E [r]

⇧
, i.e.,

the floor value of R/E [r]. Using the above facts,
(13) can be rewritten as

P
�
Q(t) � R

�



⌅
R
E[r]

⇧
X

m=
⌃

R
Rmax

⌥
exp

0

@ � (R�mE[r])2

2
⇣
mE[r2] + Rmax(R�mE[r])

3

⌘

1

A

⇥ P
�
⌘act(t) = m

�
+ P

�
⌘act(t) >

⌅
R/E [r]

⇧�
.

Now, by utilizing the result from Statement 1 of
Theorem 3, we obtain

P
�
Q(t) � R

�



⌅
R
E[r]

⇧
X

m=
⌃

R
Rmax

⌥
exp

0

@ � (R�mE[r])2

2
⇣
mE[r2] + Rmax(R�mE[r])

3

⌘

1

A

⇥ P
�
⌘act(t) = m

�
+ �act

✓�
R

E [r]

⌫◆

= �† (R) .

As a result of Bernstein’s inequality, the bound
�† (R) is less than 1 for some interval of R 2
(�a,1) where it attains the value of 1 if R  �a.
To find the exact interval for when �† (R) = 1
requires finding a specific value of R; however,
we know that �a must be greater than or equal
to E [⌘act(t)]E [r] as a result of using Bernstein’s
inequality on Q(t). Hence,

� (R) =

⇢
min

�
1, �† (R)

 
R > E [⌘act(t)]E [r]

1, otherwise.

Now, recalling from [15, Equation (9)] that
E [⌘act(t)] = �E[✓act] and that P (Q(t) < R) =
1� P

�
Q(t) � R

�
� 1� � (R) completes the proof.

Theorem 3 quantifies the likelihood a charging facility
under stochastic user arrivals and charging demand will
stay within (or exceed) a specified threshold of user ca-
pacity and active user rate consumption. Remarkably,

Theorem 3 is applicable to both the DSL and PDmodels
under their respective assumptions.

We derive two confidence interval expressions 1� �(M)
and 1��(R) on the likelihood of exceeding some thresh-
old on the number of present usersM or some threshold
on the total charging rate of actively charging users R.
The derived expressions are valid when a queue build-up
has not occurred. Once a queue build-up has happened,
then these expressions are no longer valid since ✓ and
✓act no longer accurately describe the amount of time
a user spends at the EV charging facility. Thus, these
expressions are most useful in regimes where there is a
low probability of a queue build-up. While this is lim-
iting, these expressions still provide a charging facility
operator guidance on the likelihood of exceeding certain
resource utilization levels. For example, in practice, a
charging facility that does not operate all chargers si-
multaneously to avoid idle overhead costs will find these
bounds useful as it will give them guidance on how many
users will be present at their facility. The thresholds on
the total power rate consumption are more flexible. For
example, the total power rate consumption limit may be
a product of surge pricing by the utility company and
does not represent a hard-stop limit as would be the case
with parking spots.

4 Numerical Studies

In this section, we present two numerical studies: a study
which illustrates the theoretical results of Theorem 3
compared toMonte Carlo simulations, and a studywhich
shows how a charging facility operator can utilize the
main theorem results to set the charging facility pric-
ing function parameters for both operational models. In
Chapter 4.3 we present a systematic approach to setting
charging facility parameters.

4.1 Monte Carlo Study of Bounds

We first study the DSL model and consider a charg-
ing facility system which broadcasts L = 4 pricing
functions. 3 Satisfying Assumption 1, we suppose uni-
form distributions for the demand x, impatience fac-
tor ↵, and time spent at the location ⇠ with support
[xmin, xmax] = [10, 100] (kWh), [↵min,↵max] = [0, 10]
($/hr.), and [⇠min, ⇠max] = [0, 3.5] ($/hr.), respectively.
Additionally, the arrival rate for the users to the charg-
ing facility is � = 20 EVs/hr. The parameters of the
random variables for the charging facility pricing func-
tion parameters in this case study are in Table 3.

To illustrate Statement 1 of Theorem 3 relating to the
number of present users at the charging facility ⌘(t), we

3 The code for this case study is available at
https://github.com/gtfactslab/automatica_charging_
facility
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Table 3
Case Study Parameters for Facility

Model Var. Value/Range Units

Defined L 4 -

Service Level R` 15, 25, 35, 45 kW

V ` 0.20, 0.22, 0.24, 0.26 $/kWh

E[x/r] 1.87 hr.

E[r] 27.68 kW

Prescribed D 2 $/kW-hr3

Deadline B 0.25 $/kWh

! 4 hr.

E[u] 3.92 hr.

E[r] 12.60 kW

conduct a 1000 runMonte Carlo simulation which we use
as a benchmark to illustrate the value of P (⌘(t) < M).
This is shown in the top plot of Fig. 2 with error bars
that illustrate the values within two standard deviations
of the mean attained across all the Monte Carlo runs at
specified probability levels. Furthermore, we illustrate
the theoretical lower bound on P (⌘(t) < M), i.e., 1 �
�(M), as a function of M.

Although the bounds in Theorem 3 are tail bounds, in
the top plot of Fig. 2 we observe that they give a close
estimate for the number of vehicles. If we fix the num-
ber of vehicles, we notice from the top plot of Fig. 2
that when M = 55, we see that the results from The-
orem 3 indicate that P (⌘(t) < M) � 0.74. where the
Monte Carlo indicates P (⌘(t) < M) is approximately
0.94. Alternatively, consider the scenario where a facil-
ity is interested in some occupancy level M such that
P (⌘ < M) � 1 � �(M) = 0.80. At the 0.80 confidence
level, the occupancy bound predicts that a charging fa-
cility will stay below 57 while the Monte Carlo simula-
tions show that the occupancy will in fact stay below 50.
Empirically, we see the theoretical bound on the num-
ber of present users in the charging facility for the spec-
ified service levels provides operators with the ability to
quantify the likelihood ⌘(t) will exceed some threshold.

Similarly, in this paper, we consider a charging facility
that is required to adhere to total power rate constraints
from all of its actively charging users. For this, we utilize
Statement 2 of Theorem 3. The bottom plot of Fig. 2
shows the theoretical lower bound, i.e., 1� �(R) on the
probability the total power draw of the active users will
exceed some valueR. The average total power consump-
tion and the two standard deviation error bars across all
Monte Carlo runs are presented in the bottom plot of
Fig. 2. Here, we see that the theoretical bound provides a
conservative quantification of the amount of power draw
of the active users in the charging facility. This bound is
more conservative than the bound on the total number
of active users because it is also dependent on �act (M)
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Fig. 2. Top: DSL model plot of the theoretical bound, i.e.,
1 � �(M), from Theorem 3 on the total number of present
users in the charging facility versus Monte Carlo results at
various percentiles. Bottom: DSL model plot of the the-
oretical bound, i.e., 1 � �(R), from Theorem 3 on the to-
tal rate demanded by actively charging users versus Monte
Carlo results at various percentiles. The error bars represent
the values two standard deviations away from the mean in
a particular percentile for all Monte Carlo draws.
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Fig. 3. Top: PD model plot of the theoretical bound, i.e.,
1 � �(M), from Theorem 3 on the total number of present
users in the charging facility versus Monte Carlo results at
various percentiles. Bottom: PD model plot of the theoret-
ical bound, i.e., 1� �(R), from Theorem 3 on the total rate
demanded by actively charging users versus Monte Carlo re-
sults at various percentiles. The error bars represent the val-
ues two standard deviations away from the mean in a par-
ticular percentile for all Monte Carlo draws.

from Statement 2 of Theorem 3 which is itself not an ex-
act account of the number of active users in the charging
facility.

Next, we consider the PDmodel and perform an identical
analysis using both statements of Theorem 3.We assume
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the pricing function (6) from Example 1 and total cost
function (4) with parameters listed in Table 3. Like in the
DSL model, we conduct a Monte Carlo simulation and
compare the results with the bounds from Theorem 3.
These results are shown in Fig. 3. We recognize that
empirically the probability bounds for ⌘(t) and Q(t) can
be conservative since we are developing tail bounds for
the probabilities that only depend on the expected values
of users’ random parameters, i.e., E[r], E[r2], E[✓], and
E[✓act]. In practice, a charging facility may supplement
these estimates with Monte Carlo simulations; however,
ultimately, it is desirable to have theoretical guarantees
on specified resource levels.

4.2 Resource Aware Pricing

A charging facility operator whose facility operates un-
der the DSL model with total user cost functions as in
(1) and Assumptions 1, 2, and 3 can utilize Theorem 3 to
properly estimate a high-confidence bound on the num-
ber of active users using its facilities and their power con-
sumption and subsequently see the e↵ects on ⌘(t) and
Q(t) resulting from changing the charge rates. To illus-
trate this point we proceed with a numerical example.

For the DSL model, computing the high-confidence
bounds depends on E[x/r], E[r] and E[r2]. As an ex-
ample, consider an EV charging facility operator with
capacity for 40 simultaneously present vehicles and who
would like to ensure with high probability that a space
is available for each arriving user. Therefore, the facility
operator would like to quantify the likelihood the num-
ber of present users will exceed a specified threshold.
Here, an operator can use Statement 1 from Theorem 3
to get such a bound.

For instance, suppose the operator o↵ers L = 2 ser-
vice levels with R1 = 30, R2 = 40, V 1 = 5.2, and
V 2 = 5.4. Each arriving user chooses a service level ac-
cording to (2). The resulting theoretical bound on the
probability the number of present users is less than M
at the charging facility is illustrated in blue in the upper
plot of Fig. 4. Notice that the theoretical bound predicts
that, for M = 40 active users P (⌘(t) < M) � 0. This
of course is a trivial bound and hence provides little as-
surance that ⌘(t) will not exceed a value of 40.

If the operator wishes to achieve a higher level of
confidence that the resource utilization will not be ex-
ceeded, the operator can increase the charging rates
to (R1)+ = 50 and (R2)+ = 70 while maintaining
V 1 and V 2 the same. Notice that the new theoreti-
cal bound, 1 � �+M(M), has increased the confidence
that the number of active users will not exceed 40, i.e.,
P (⌘(t) < 40) � 0.75; however, this occurs at the ex-
pense of higher total active user charging rates. This is
seen in the bottom plot of Fig. 4 where 1 � �(R) shifts
to the right to become 1 � �+(R) after the charging
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Fig. 4. We illustrate the change in the theoretical bounds
resulting from an operator increasing the vehicle charge rates
in the charging facility in the DSL model. The top plot
illustrates the theoretical bound on the number of users,
1 � �(M), in the charging facility with a baseline charging
rate compared to the bound after increasing the charging
rates, 1 � �+(M). After the charging rate increase there is
higher confidence, at a lower number of present users, that
the number of present users is less than M; however, this
comes at the cost of a higher total charge rate at the charging
facility.

rates increase, i.e., there is lower confidence the total
active user charging rate will not exceed a given total
charging rate. Hence, a charging facility operator can
use Theorem 3 to adjust the individual service level
charging rates to manage the number of active users at
the expense of the charging facility total charging rate.
A similar exercise can be conducted for a case when
the facility total charging rate is of concern where one
would decrease the charging rates.

In the PD model we demonstrate a similar phenomenon.
Consider a charging facility operating with a total cost
function as in (4) under Assumptions 1, 4, and 5. We can
use Theorem 3 to achieve a desirable confidence bound
on the number of present users at the charging facility.

For instance, the operator o↵ers a pricing function as
in (6) where D = 2, B = 5, ! = 4, and Rmax = 50 and
where the total cost that users are trying to minimize
is (4). Note that in thismodel the charging operator deals
with deadlines and hence they will adjust the parameter
! accordingly. The resulting theoretical bound on the
number of active users for various confidence bounds is
illustrated in green in the upper plot of Fig. 5. Notice
that the theoretical bound predicts that, for M = 80
active users P (⌘(t) < 80) � 0. This is a trivial bound
and hence provides little confidence that ⌘(t) will not
exceed a value of 80.

Hence, to achieve a higher level of confidence that ⌘(t)
will be less than 80, a charging operator can adjust !
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Fig. 5. We illustrate the change in the theoretical bounds
resulting from an operator decreasing ! at the charging fa-
cility in the PD model. The top plot illustrates the theoret-
ical bound on the number of present users, i.e. 1 � �(M),
in the charging facility with a baseline ! compared to the
bound after decreasing !, 1� ��(M). After the ! decrease
there is higher confidence, at lower levels of present users,
that the number of present users is less than M; however,
this comes at the cost of a higher total charge rate at the
charging facility.

to (!)� = 2.5. Notice in Fig. 5 that the new theoret-
ical bound, 1 � ��M(M), has increased the confidence
that the number of active users will not exceed 80, i.e.,
P (⌘(t) < 80) � .95; however, this occurs at a slight ex-
pense of higher total active user charging rates. A simi-
lar exercise can be conducted for a case when the facility
total charging rate is of concern where a charging facility
operator would increase !.

4.3 Optimization for Parameter Design

While manually adjusting the operating model parame-
ters in the previous sections provides some insights into
their influence, a more systematic approach determines
the parameters through an optimization program. Such
an optimization program could optimize for a variety of
parameters such as revenue, time spent at the charging
facility, among others.

We present one such candidate optimization program.
In this program a charging facility is interested in set-
ting the prices V ` < V max for all ` where V max is the
maximum price at the charging facility. To achieve this
a charging facility operator can set prices according to
the following optimization program where the objective
is a proxy objective in the form of a weighted price sum.

Program 1 (Optimization to Set DSL Prices)

maximize
V 1,V 2,...,V L

LX

m=1

wmV m

subject to V i > V k + ✏Vik for all i > k

0 < V i < V max for i 2 {1, . . . , L}
1� � (M) � ✏�
1� � (R) � ✏�

Program 1 formalizes a charging facility operator setting
the service level prices according to series of constraints.
In Program 1, ✏Vik represents a user set parameter of the
minimum spacing between pricing of service level i and
k, 0  ✏�  1 is the confidence value an operator imposes
on the number of actively charging users, and 0  ✏�  1
is the confidence value an operator imposes for the total
charge rate of actively charging users. The results of this
type of approach are explored in detail in [20].

5 Conclusion

We study the problem of providing probabilistic bounds
on an EV charging facility’s likelihood of exceeding a
specified number of present users and the total active
user power draw. Specifically, we focus on charging fa-
cilities which can deploy either a defined service level
(DSL) model, i.e., where users choose from finitely many
charging rates, or a prescribed deadline (PD) model, i.e.,
where users choose a charging deadline. In both models,
we leverage knowledge on the probability distributions
of the user parameters to provide probabilistic guaran-
tees. We illustrate these derived probabilistic bounds in
a case study and ultimately demonstrate how a charging
facility operator can utilize these results to set charging
facility parameters in order to achieve desired behavior.
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A Proofs and Additional Propositions

A.1 Proof of Proposition 1

PROOF. Under Assumptions 1, 2, and 3, consider the

set of L pricing functions
�
g`(xj ,↵j , ⇠j)

 L
`=1

of the form

g`(xj ,↵j , ⇠j) = xjV `+↵j

⇥ xj

R` � ⇠j
⇤
+
+F

⇥
⇠j � xj

R`

⇤
+
as

specified in (1). From (2), and the law of total probabil-
ity, we have that

P(S(xj ,↵j , ⇠j) = k) =

Z

⇢j

P
�
gk = min

i
gi | ⇢j

�
fP(⇢j)dP

= EP

h
P
⇣
gk = min

i
gi | ⇢j

⌘i
,

where we recall the random variable ⇢j = xj/⇠j , and, for
convenience, we sometimes omit the arguments of the
pricing functions. In the remainder of the proof, we es-
tablish closed form expressions for P

�
gk = mini gi | ⇢j

�

by considering the cases corresponding to the interval
partitions introduced in Section 3.1, namely, the inter-
vals ⇢j < R1, ⇢j 2 [Rm, Rm+1) for m 2 [1, . . . , L � 1],
and RL < ⇢j .

For future use, define �k
i V = V k � V i and �k

i R̄ =
R̄k � R̄i = 1/Ri � 1/Rk for all i, k. Through-
out the proof, we will use the observation that
gk(xj ,↵j , ⇠j) = mini gi(xj ,↵j , ⇠j) if and only if
gk(xj ,↵j , ⇠j)  gi(xj ,↵j , ⇠j) for all i.

Case 1: ⇢j < R
1

When ⇢j < R1 this implies that ⇢j is less than all charg-
ing rates as a result of the ordering of the service lev-
els, and as a result with k = 1 we get g1(xj ,↵j , ⇠j) �
gi(xj ,↵j , ⇠j) = xj(�1

iV �F�1
i R̄). Note that due to the

ordering delineated in Assumption 2, this quantity is al-
ways less than zero since �1

iV < 0, �1
i R̄ > 0, F > 0,

and xj > 0. For any other choice of k 2 {2, . . . , L}, there
exists i 6= k such that gk(xj ,↵j , ⇠j) � gi(xj ,↵j , ⇠j) =
xj(�k

i V � F�k
i R̄) > 0, and hence such a choice of k

can not be the minimum. Hence, we obtain the condi-
tional probability in the case when ⇢j < R1 that P(gk =
mini gi | ⇢j) = 1 if k = 1 and P(gk = mini gi | ⇢j) = 0 if
k 6= 1.
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Case 2: ⇢j 2 [Rm,Rm+1)
First, consider the case when the minimizing index k 
m for some m 2 {1, . . . , L� 1}. Then

gk(xj ,↵j , ⇠j)� gi(xj ,↵j , ⇠j) =

xj�
k
i V+↵j

✓
xj

Rk
� ⇠j �

h xj

Ri
� ⇠j

i

+

◆
�F

✓h
⇠j �

xj

Ri

i

+

◆
.

Hence, we consider several cases for i. When i < k,
gk(xj ,↵j , ⇠j)� gi(xj ,↵j , ⇠j) = xj(�k

i V + ↵j�k
i R̄). No-

tice that, since xj > 0, the sign of this di↵erence depends
only on the random variable ↵j . Since k is assumed to
be the minimizing index, this di↵erence must be non-
positive for all i. Rearranging, we see that gk being the
minimizer for some k  m implies ↵j > (�i

kV )/(�k
i R̄)

for all i < k  m.

Similarly, for k < i  m, the di↵erence gk(xj ,↵j , ⇠j) �
gi(xj ,↵j , ⇠j) = xj(�k

i V + ↵j�k
i R̄). This di↵erence is

negative when ↵j < (�i
kV )/(�k

i R̄). Lastly, when m +
1  i,

gk(xj ,↵j , ⇠j)� gi(xj ,↵j , ⇠j) =

xj�
k
i V + ↵j

⇣ xj

Rk
� ⇠j

⌘
� F

⇣
⇠j �

xj

Ri

⌘
.

Similarly as before, after algebraic manipulation this
quantity is negative when

↵j <
F
⇣

1
⇢j

� 1
Ri

⌘
��k

i V

1
Rk � 1

⇢j

.

Combining the above inequalities on ↵j , and defining
fA(↵j) to be the probability distribution of ↵j , this es-
tablishes that, when ⇢j 2 [Rm, Rm+1) and k  m,

P
✓
gk = min

i
gi | ⇢j

◆
=

"Z ↵̄k
1

¯
↵k

1

fA(↵j)dA

#

+

= P
�
¯
↵k
1 < ↵j < ↵̄k

1

�
,

where ↵̄k
1 and

¯
↵k
1 are as defined in the statement of

Proposition 1. Now consider the case when k = m + 1.
Then

gk(xj ,↵j , ⇠j)� gi(xj ,↵j , ⇠j) =

xj�
k
i V�↵j

h xj

Ri
� ⇠j

i

+
+F

✓
⇠j �

xj

Rk
�
h
⇠j �

xj

Ri

i

+

◆
.

for all i. Consider first the case when i < m + 1. Then
the di↵erence becomes

gk(xj ,↵j , ⇠j)� gi(xj ,↵j , ⇠j) =

xj�
k
i V � ↵j

⇣ xj

Ri
� ⇠j

⌘
+ F

⇣
⇠j �

xj

Rk

⌘
,

which is negative when

↵j >
F
⇣

1
Rk � 1

⇢j

⌘
��k

i V

1
⇢j

� 1
Ri

.

Similarly, still considering the case where k = m + 1,
when m+ 1 < i, the di↵erence becomes gk(xj ,↵j , ⇠j)�
gi(xj ,↵j , ⇠j) = xj

�
�k

i V � F�k
i R̄
�
, which is always neg-

ative when i > m + 1. Hence, when ⇢j 2 [Rm, Rm+1)
and k = m+ 1, the quantity

P
⇣
gk = min

i
gi | ⇢j

⌘
=

"Z ↵max

¯
↵k

2

fA(↵j)dA

#

+

= P
�
¯
↵k
2 < ↵j < ↵max

�
,

where
¯
↵k
2 is as defined in the statement of Proposition 1.

Lastly, consider the case when k > m+ 1. For some i �
m+1, gk(xj ,↵j , ⇠j)�gi(xj ,↵j , ⇠j) = �k

i V �F�k
i R̄ > 0,

and thus k cannot be the minimizing index. As a result,
we have that if ⇢j 2 [Rm, Rm+1) and k > m+1, P(gk =
mini gi | ⇢j) = 0.

Case 3: R
L < ⇢j

When RL < ⇢j this implies that ⇢j is greater than all
charging rates as a result of the ordering of the ser-
vice levels. Moreover, for all k and i, gk(xj ,↵j , ⇠j) �
gi(xj ,↵j , ⇠j) = xj(�k

i V +↵j�k
i R̄). Again, since xj > 0,

the sign of this di↵erence depends only on the random
variable ↵j . In particular, the di↵erence is negative when
↵j < (�i

kV )/(�k
i R̄). Combining these inequalities for

all i, It follows that when RL < ⇢j ,

P(gk = min
i

gi | ⇢j) =
"Z ↵̄k

3

¯
↵k

3

fA {↵j} dA
#

+

= P
�
¯
↵k
3 < ↵j < ↵̄k

3

�
,

where ↵̄k
3 and

¯
↵k
3 are as defined in the statement of

Proposition 1. This completes the proof.

A.2 Theorem 3 Auxiliary Results

Proposition 4 LetZ be a Poisson random variable with
mean �̄. Then, for any M > �̄ > 0, it holds that P

�
Z <

M
�
� 1� �(M), where

�(M) = exp

0

@ �
�
M� �̄

�2

2
⇣
�̄+ M��̄

3

⌘

1

A .
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Before proving Proposition 4, we recall Bernstein’s in-
equality which gives a probabilistic upper bound on the
sum of the deviation from themean of a bounded random
variable which is the basis for the proof of the proposi-
tion.

Fact 5 (Bernstein’s Inequality, [23]) Given n inde-
pendent, zero-mean random variables Xi such that, for
some b > 0, ⌫ > 0, 0  Xi  b almost surely for all
1  i  n. Then, it holds that

P
 

nX

i=1

(Xi � E[Xi]
�
� ⌫

!

 exp

 
�⌫2

2
�Pn

i=1 E[X2
i ] +

b⌫
3

�
!
.

We will now apply the Fact 5 to prove Proposition 4.

PROOF. [Proof of Proposition 4.] We seek to prove a
bound on the likelihood a Poisson RV will exceed some
valueM. Recall from the Poisson limit theorem [6, The-
orem 3.6.1] that a Poisson RV Z with mean �̄ can be
seen as a sum of n Bernoulli RVs Xi  1 with mean p,
where p is such that np ! �̄ when n ! +1. In other
words,

Pn
i=1 Xi ! Z as n ! +1. Here, we see that we

can now apply Fact 5 to find a bound on the value of a
Poisson random variable which is approximated as the
sum of Bernoulli RVs.

Let X =
Pn

i=1 Xi and E[X] = E [
Pn

i=1 Xi] =Pn
i=1 E [Xi] = np. Since Fact 5 applies to zero-

mean random variables, let X0 = X � E[X] =Pn
i=1 Xi�

Pn
i=1 E [Xi] be a zero-mean sum of Bernoulli

random variables where E[X0] = 0. Then, applying
Fact 5 with b = 1 and letting M = ⌫ + E [X] = ⌫ + np,

P
�
X0 � ⌫

�
= P

 
nX

i=1

Xi �
nX

i=1

E [Xi] � ⌫

!

= P (X � E[X] � ⌫) = P (X � ⌫ + E[X])

= P (X � M)  exp

0

@ � (M� np)2

2
⇣
np+ M�np

3

⌘

1

A .

The last inequality uses the fact that
Pn

i=1 E
⇥
X2

i

⇤
= np.

Since we can approximate a Poisson random variable Z
via the Poisson limit theorem, by letting n ! +1, we
get

P (Z � M)  exp

0

@ �
�
M� �̄

�2

2
⇣
�̄+ M��̄

3

⌘

1

A .

This proves the proposition.
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