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Abstract

We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems
over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given
safe region of the state space in finite-time and consider both continuous-time and discrete-time systems. A barrier certificate
condition that bounds the expected value of the barrier function over the time horizon is recast as a sum-of-squares optimization
problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent
upper bound on the evolution of the expectation, allowing for tighter probability bounds. Two examples are presented.

1 Introduction

A dynamical system is considered safe if its trajectories
do not enter an unsafe region of the statespace. A com-
mon approach to safety verification in deterministic sys-
tems is via barrier functions which provide Lyapunov-
like guarantees of system behavior [12]. Recent work has
extended this approach to allow for control inputs, re-
sulting in control barrier functions applicable to affine-
in-control systems [2, 4, 21]. Control barrier functions
have been demonstrated in cruise control applications
[3, 4] and collision avoidance in robotic swarms [20].

In the stochastic setting, continuous-time safety verifica-
tion via barrier certificates for infinite time horizons was
also introduced in [12], which provides a framework for
bounding the probability a system will exit a safe region
based on a non-negative barrier function. The barrier
function based stochastic verification framework func-
tions without performing state abstractions like in [19]
which stands in contrast to the abstraction-based tech-
niques of [15].

To obtain such guarantees, the infinitesimal generator,
which dictates the expected value evolution of a stochas-
tic process, is required to be to be non-positive; i.e., the
barrier function is required to be a supermartingale. The
paper [16] relaxes the supermartingale condition to allow
for finite-time safety verification and instead provides a
barrier certificate which only requires the infinitesimal
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generator of the barrier process to be upper bounded by
a constant. Such processes, called c-martingales, allow
the expected value of the barrier function to increase
over time.

The formulation of control barrier functions in discrete-
time is significantly distinct from the continuous-time
counterpart. Nonetheless, discrete-time control barrier
functions have been used to certify safety for bi-pedal
robots [1] and for temporal logic verification of discrete-
time systems [6, 7].

The present note studies the problem of synthesiz-
ing controllers for stochastic systems to ensure safety
on finite-time horizons for both continuous-time and
discrete-time domains. We propose a barrier certificate
constraint that imposes a state-dependent bound on the
evolution of the stochastic system. This bound was orig-
inally proposed and studied by Kushner in [8, 9, 10] in
the context of stochastic stability. The proposed barrier
certificate allows the expected value of the barrier to in-
crease and covers the c-martingale condition of [16] as a
special case. However, our formulation also accounts for
the system dynamics in the expectation constraint. This
allows for probability bounds that are no worse than
the c-martingale condition, and in many cases, provides
better probability bounds. As in [12, 16], we compute
barrier functions and feedback control strategies using
sum-of-squares (SOS) optimization. Like in [12], but
unlike [16], we utilize polynomial barrier functions. This
provides a simpler formulation of the probability of
failure on a finite time horizon when compared to the
exponential barrier function approach in [16].

Our preliminary work in the conference paper [14] fo-
cuses only on continuous-time. In this note, we extend
this approach to discrete-time and present a unified
framework for safe control synthesis.
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2 Problem Formulation

We consider an n-dimensional stochastic process x in
continuous-time or discrete-time so that x satisfies either
the stochastic differential equation

dx(t) = (f(x(t)) + g(x(t))u(x(t)))dt+ σ(x(t))dw (1)

or the stochastic difference equation

x[k + 1] = f(x[k]) + g(x[k])u(x[k]) + σ(x[k])ξ[k] (2)

where f : X → Rn, g : X → Rn×p, σ : X → Rn×m,
w is a m-dimensional Wiener process, ξ is a stochastic
process whose value is governed by some probabilistic
distribution, and u : X → Rp is a state feedback control
law. We generally use rounded brackets and the index
t to denote continuous time, while square brackets and
the index k denote discrete time. We make the following
assumption for (1)–(2).

Assumption 1 The functions f , g, and σ are polyno-
mial in x.

In this paper, we are concerned with bounding the prob-
ability that a stochastic process satisfying either (1) or
(2) enters an unsafe region during a finite-time horizon,
which is deemed a failure of the system. We will not be
concerned with solutions that exit int(X ), the interior
of X , and thus we always assume x is a stopped process
that stops evolving upon exiting int(X ); see, e.g., [12],
for a formal characterization of stopped processes.

Objective: Given the system (1) or (2), a fixed time
horizon, a set of unsafe states, and a set of possible ini-
tial conditions, synthesize a feedback control law u(x) to
achieve a desired maximum probability of failure.

One of the main theoretical tools we employ to solve
this objective is that of barrier functions, and we recall
two fundamental results that employ barrier functions
to obtain failure probability bounds for (1) and (2).

Proposition 1 Given (1) and the sets X ⊂ Rn, Xu ⊆
X ,X0 ⊆ X \ Xu with F (x) = f(x) + g(x)u(x) and σ(x)
locally Lipschitz continuous, where u(x) is some feedback
control law. Suppose there exists a twice differentiable
function B such that

B(x) ≤ γ ∀x ∈ X0, (3)

B(x) ≥ 1 ∀x ∈ Xu, (4)

B(x) ≥ 0 ∀x ∈ X , and (5)

∂B

∂x
F (x) +

1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
≤ −αB(x) + β

∀x ∈ X \ Xu (6)

for some α ≥ 0, β ≥ 0 and γ ∈ [0, 1). Define

ρu := P{x̃(t) ∈ Xu for some 0 ≤ t ≤ T | x̃(0) ∈ X0},
(7)

ρB := P

{
sup

0≤t≤T
B
(
x̃(t)

)
≥ 1 | x̃(0) ∈ X0

}
(8)

where x̃(t) is a stopped solution of (1). Then

• If α > 0 and β
α ≤ 1,

ρu ≤ ρB ≤ 1−
(

1− γ
)
e−βT . (9)

• If α > 0 and β
α ≥ 1,

ρu ≤ ρB ≤
γ + (eβT − 1)βα

eβT
. (10)

• If α = 0,
ρu ≤ ρB ≤ γ + βT. (11)

Proposition 1 is an immediate corollary of [10, Chapter
3, Theorem 1] and recovers the supermartingale condi-
tion [12, Theorem 15] and c-martingale condition [16,
Theorem 2.4] as special cases.

An analogous result holds in discrete-time as shown
in the next proposition, an immediate corollary of [10,
Chapter 3, Theorem 3].

Proposition 2 Given (2) and the sets X ⊂ Rn, Xu ⊆
X ,X0 ⊆ X \Xu with F (x, ξ) = f(x) + g(x)u(x) + σ(x)ξ
where u(x) is some feedback control law. Suppose there
exists a function B such that

B(x) ≤ γ ∀x ∈ X0, (12)

B(x) ≥ 1 ∀x ∈ Xu, (13)

B(x) ≥ 0 ∀x ∈ X , and (14)

E[B(F (x, ξ)) | x] ≤ B(x)

α̃
+ β̃ ∀x ∈ X \ Xu (15)

for some α̃ ≥ 1, 0 ≤ β̃ < 1 and γ ∈ [0, 1). Define

ρu := P{x̃[k] ∈ Xu for some 0 ≤ k ≤ N | x̃[0] ∈ X0}

(16)

ρB := P

{
sup

0≤k≤N
B(x̃[k]) ≥ 1 | x̃[0] ∈ X0

}
(17)

where x̃[k] is a stopped solution of (2). Then

• If α̃ > 1 and β̃α̃
α̃−1 ≤ 1,

ρu ≤ ρB ≤ 1−
(

1− γ
)N−1∏

0

(
1− β̃

)
. (18)

• If α̃ > 1 and β̃α̃
α̃−1 > 1,

ρu ≤ ρB ≤ γα̃−N +
(1− α̃−N )α̃β̃

(α̃− 1)
. (19)

• If α̃ = 1,

ρu ≤ ρB ≤ γ + β̃N. (20)

IfB(x) satisfies the conditions of Proposition 1 or Propo-
sition 2, then we call B(x) a stochastic control barrier
function for a given control policy u(x).

3 SOS Formulations & Numerical Procedures

In this section we present our main result, a numerical
procedure to synthesize a feedback control strategy u(x),
along with a stochastic control barrier function B(x),
in order to obtain a controlled system that achieves a
desired maximum probability of failure over a finite time
horizon. The main tool is that of sum-of-squares (SOS)
programming.
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Definition 1 Define R[x] as the set of all polynomials
in x ∈ Rn. Then

Σ[x] ,

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

gi(x)2, gi(x) ∈ R[x]

}
is the set of sum-of-squares polynomials.

Definition 2 Given pi(x) ∈ R[x] for i = 0, . . . ,m, the
problem of finding qi(x) ∈ Σ[x] for i = 1, . . . , m̂ and
qi(x) ∈ R[x] for i = m̂+ 1, . . . ,m such that

p0(x) +

m∑
i=1

pi(x)qi(x) ∈ Σ[x]

is a sum-of-squares program (SOSP).

SOSPs can be efficiently converted to semidefinite pro-
grams using tools such as SOSTOOLS [11].

We restrict our search for feedback control policies to
polynomial u(x) and for stochastic control barrier func-
tions to polynomial B(x). First, we show how the con-
ditions of Proposition 1 and Proposition 2 can be recast
as SOS constraints.

Theorem 1 Consider a system of the form of (1), with
control polynomial u(x), and the sets X , X0, and Xu
and assume these sets are described as X = {x ∈ Rn :
sX (x) ≥ 0}, X0 = {x ∈ Rn : sXo(x) ≥ 0}, Xu = {x ∈
Rn : sXu(x) ≥ 0}, and X \ Xu = {x ∈ Rn : sX\Xu

(x) ≥
0} for some polynomials sX , sXo

, sXu
, and sX\Xu

(x).
Suppose there exists a polynomialB(x), and SOS polyno-
mials λX (x), λXo(x), λXu(x), and λX\Xu

(x) that satisfy

B(x)− λX (x)sX (x) ∈ Σ[x] (21)

B(x)− λXu
(x)sXu

(x)− 1 ∈ Σ[x] (22)

−B(x)− λXo(x)sXo(x) + γ ∈ Σ[x] (23)

−∂B(x)

∂x
F (x)− 1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
− αB(x) + β

−λX\Xu
(x)sX\Xu

(x) ∈ Σ[x] (24)

where F (x) = f(x) + g(x)u(x). Then, the probability of
failure satisfies (9), (10) or (11).

The analogous result for discrete-time follows.

Theorem 2 Consider a system of the form of (2), with
control polynomial u(x), and the sets X , X0, and Xu
and assume these sets can be described as X = {x ∈
Rn : sX (x) ≥ 0}, X0 = {x ∈ Rn : sXo(x) ≥ 0}, Xu =
{x ∈ Rn : sXu(x) ≥ 0}, and X \ Xu = {x ∈ Rn :
sX\Xu

(x) ≥ 0} for some polynomials sX , sXo , sXu , and
sX\Xu

(x). Suppose there exists a polynomial B(x), and
SOS polynomials λX (x), λXo(x), λXu(x), and λX\Xu

(x)
that satisfy the following

B(x)− λX (x)sX (x) ∈ Σ[x] (25)

B(x)− λXu
(x)sXu

(x)− 1 ∈ Σ[x] (26)

−B(x)− λXo
(x)sXo

(x) + γ ∈ Σ[x] (27)

−E[B(F (x, ξ)) | x] +
B(x)

α̃
+ β̃−

λX\Xu
(x)sX\Xu

(x) ∈ Σ[x] (28)

where F (x, ξ) = f(x) + g(x)u(x) + σ(x)ξ . Then, the
probability of failure satisfies (18), (19) or (20).

We omit the proofs for Theorems 1 and 2, which follow
the general approach for relaxing set constraints to SOS
programs using the Positivstellensatz condition; see the
documentation of [11] for details.

In order to be a valid SOSP as in Definition 2, all ex-
pressions appearing in the constraints (21)–(28) must be
polynomials, and any decision polynomials or variables
must enter affinely in the SOS constraints of Theorems 1
and 2. We address the second point by alternately solv-
ing for a subset of decision polynomials and variables
as detailed subsequently, however, both points require
two further assumptions on E[B(F (x, ξ))|x] appearing
in (28), which need not a priori be polynomial, as de-
tailed next.

Assumption 2 The only possible non-polynomial ex-
pression in Theorem 2 is the term E[B(F (x, ξ))|x].
Therefore, we first assume E[B(F (x, ξ))|x] is expressible
as a closed-form polynomial in x. For example, this is the
case when ξ is a normally distributed random variable
since, in this case, the moments E[ξn] are available in
closed form and B(x) and F (x) are assumed polynomial
in x as described above. Moreover, as described below,
for control synthesis, we require the coefficients of the
polynomial expression E[B(F (x, ξ))|x] to be affine in the
coefficients of the decision polynomial u(x). Thus, we
further assume that when B(x) and F (x) are assumed
fixed and u(x) assumed to be a decision polynomial of
fixed degree, the coefficients of u(x) appear affinely in
the expression for E[B(F (x, ξ))|x]. For example, if B(x)
is affine this assumption would hold.

We highlight an important difference between the
continuous-time and discrete-time instantiations of
these algorithms. For control synthesis, in continuous-
time, the condition (24) is always affine in the decision
variables of the polynomial control u(x), however, this
is generally not true for the discrete-time counterpart
in (28).

The SOS constraints in Theorem 1 and Theorem 2 are
not SOSPs when all of the parameters α, β, α̃, β̃ and
polynomials u(x), B(x) are considered variables along
with the SOS polynomials λX (x), λXo

(x), λXu
(x), and

λX\Xu
(x). Therefore, in order to leverage Theorems 1

and 2 for control synthesis, we propose several algo-
rithms which consider a subset of the variables to be
fixed, solving for the remaining variables by formulating
an appropriate SOSP from the conditions of Theorems 1
and 2. By iterating among these algorithms, we obtain a
computationally tractable control synthesis procedure.

First, we consider the case when u(x) is a given, fixed
polynomial feedback control policy. Under this condi-
tion, Algorithm 1 computes a barrier function B(x) sat-
isfying the conditions in Theorem 1 (respectively, Theo-
rem 2). Therefore, Algorithm 1 is interpreted as solving
a verification problem that computes an upper bound on
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Algorithm 1 Compute B(x)

1: procedure Compute-B(lα, uα, d, σ, u(x), nB)
2: lα & uα are lower/upper α values spaced d apart
3: u(x) is the control poly. and nB is order of B(x)
4: A← Range(lα, uα, d) . Assign α values d apart
5: P ∗ ← 1
6: Initialize P , i.e., upper bound on probability
7: for α ∈ A do
8: min γ + β
9: Continuous-time:

10: subject to (21)–(24)
11: Compute P , using (9), (10) or (11)
12: Discrete-time:
13: subject to (25)–(28)
14: Compute P , using (18), (19) or (20).
15: if P < P ∗ then
16: α∗ := αi
17: β∗ := β
18: P ∗ := P
19: end if
20: end for
21: return α∗, β∗, P ∗

22: end procedure

Algorithm 2 Initialize u(x)

1: procedure Compute-u(B(x), α, β, nu)
2: u(x) = zTQz . u(x) is an nu power polynomial
3: . B(x) is fixed z is a vector of state monomials
4: min c
5: subject to c1− vec(Q) ≥ 0
6: vec(Q) + c1 ≥ 0
7: Continuous-time: (24)
8: Discrete-time: (28)
9: return u(x), c, Q

10: end procedure

the probability of failure, along with a stochastic con-
trol barrier function B(x), when the control policy u(x)
is fixed.

Next, we propose Algorithm 2 to solve for a feedback
control policy u(x) to achieve a desired probability of
failure using a fixed stochastic control barrier function
B(x). To choose among a potentially large set of sat-
isfying control policies, we propose a cost metric that
seeks to minimize the absolute value of the coefficients
of the polynomial u(x), which roughly aims to reduce
the magnitude of the control input, although other cost
metrics are easily considered, such as a metric that gives
higher penalty to higher order terms in the controller
in order to reduce controller complexity. To incorporate
such a cost, we observe that within solvers such as SOS-
TOOLS, the polynomial u(x) is represented in the form
u(x) = zTQz where z is a vector of monomials in x of a
specified order and Q is a coefficient matrix of appropri-
ate dimensions. Then, the condition that the absolute
value of each entry of Q is less than some constant c is
written as c1− vec(Q) ≥ 0 and vec(Q) + c1 ≥ 0 where
vec(Q) is the vector form of matrix Q and 1 is the vector
of ones of appropriate dimension.

Finally, we propose solving our primary control synthesis
objective using Algorithm 3 which interleaves Algorithm

Algorithm 3 Search for control polynomial u(x)

1: procedure Compute-ugoal(Pgoal, σ, α, nB , nu, ε)

2: icount = 1 . Counting var., α̃ & β̃ for discrete-time
3: while |P ∗ − Pgoal | > ε do
4: if icount = 1 then
5: β, P ← COMPUTE- B(lα, uα, d, σ, u(x), nB)
6: u(x) ≡ 0 . Since α fixed, lα = uα
7: icount := icount + 1
8: else
9: u(x), c, Q← COMPUTE-u(B(x), α, β, nu)

10: β, P ← COMPUTE-B(lα, uα, d, σ, u(x), nB)
11: end if
12: if P < Pgoal and c < c∗ then
13: β∗ := β, P ∗ := P , c∗ := c
14: . c∗ is initialized as a large number
15: end if
16: if P > Pgoal then
17: β := adecβ . ainc > 1 & adec < 1 are scalars
18: else
19: β := aincβ
20: end if
21: end while
22: return u∗(x), c∗, Q
23: end procedure

1 and Algorithm 2. First, Algorithm 3 computes a poly-
nomial barrierB(x) given a fixed nominal control policy,
namely, u(x) ≡ 0. Then, Algorithm 3 iteratively syn-
thesizes a feedback control law by adjusting the param-
eter β. While effective, Algorithm 3 is not guaranteed
to find either a control polynomial or a barrier function
which satisfy the SOSP constraints. As a result, during
implementation a designer will have to introduce algo-
rithm termination conditions. Algorithm 3 is not com-
putationally intensive for well chosen step sizes of α, i.e.,
0.01 ≤ d ≤ 1. For discrete-time, the reciprocal of these
values can be used for α̃. Coarser spacing values can lead
to trivial bounds. Notably, computational time increases
significantly with the number of system states.

4 Case Studies

In this section, we utilize SOSTOOLS [11] and the
semidefinite program solver SDPT3 [17, 18] to solve
SOSPs for several case studies conducted on a 2.3 GHz
Intel Core i5 computer with 8GB of memory. 2

4.1 Continuous-time Control Synthesis

Consider the stochastic nonlinear dynamics

dx1 = x2dt (29)

dx2 =

(
− x1 − x2 − x31 + u(x)

)
dt+ σdw (30)

with constant σ. This system is studied in [13] without
the input term u(x).

We define the state space as X = {(x1, x2) | − 3 ≤ x1 ≤
2,−2 ≤ x2 ≤ 3}, Xu = {x2 | x2 ≥ 2.25}, and X0 =

2 The MATLAB source code for the case stud-
ies is contained at https://github.com/gtfactslab/
stochasticbarrierfunctions
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Fig. 1. Given the initial conditions x0 = [−2, 0], the sin-
gle trajectory dynamics of (29)–(30) for a time horizon of
T = 2 and a σ = 1.0 are illustrated. The unsafe region is
Xu = {x2 | x2 ≥ 2.25} with the level sets of B(x) and their
respective values given as dashed blue lines.

σ Pu(x)≡0 α min c

0.6 0.860 1.4 2.1821
0.9 0.919 1.3 0.5251
1.0 0.912 1.3 0.6396
1.3 0.949 1.5 1.1488

Table 1
The resulting control polynomial u(x) which reduces the
probability of failure to Pgoal = 0.10 for (29)–(30). The
upper-bound on the probability of failure without a given
control input is given for comparison.

{(x1, x2)|(x1 + 2)2 + x22 ≤ 0.12}. A sample trajectory of
(29)–(30) is illustrated in Fig. 1. Additionally, level sets
ofB(x), computed from Algorithm 1 assuming u(x) ≡ 0,
are projected onto the state space.

In this particular trajectory illustration, the evolution of
system noise is enough for the system to enter the prede-
fined unsafe set. For values of σ ranging from 0.5 to 1.5,
Monte Carlo simulations indicate that the probability of
failure over a finite-time horizon ranges from about 0.3
to 0.8. Our objective is to compute a feedback control
law to reduce the probability of failure to Pgoal = 0.10,
where we consider several values for σ. We restrict the
search to a second order polynomial controller u(x) and
tenth order B(x), and the results of Algorithm 3 are
highlighted in Table 1 for select values of σ and specific
α values.

4.2 Discrete-Time Population Model

Consider the discrete-time population growth model
adapted from [5]

x1[k + 1] = m3x2[k] + u(x[k]) (31)

x2[k + 1] = m1x1[k] +m2x2[k] + σξ[k] (32)

where m1 = 0.5, m2 = 0.95, and m3 = 0.5. Here, ξ is a
stochastic disturbance with a standard normal distribu-
tion. For (31)–(32), we perform control synthesis using
1st order barrier functions as a result of the observation
made in Section 3 regarding the term E[B (F (x, ξ))].

We define X = {x1, x2 | 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4}, Xu =
{x1 | 2 ≤ x1 ≤ 4} and X0 = {x1, x2 | x21 + x22 ≤ 1.5},

σ Pu(x)≡0 α̃ min c

1.0 0.499 2 1.44
1.5 0.512 2.05 2.074
2.0 0.523 2.10 2.488
2.5 0.544 2.20 2.986

Table 2
The c values from implementing Algorithm 3 for (31)–(32)
using a 1st order barrier function for Pgoal = 0.10. The last
column gives the value of c which encourages a low-energy
control effort for a 2nd order u(x).

and we consider affine barrier functions B(x). We take
N = 3 and Pgoal = 0.10. The results of control synthesis
are presented in Table 2.

5 Conclusion

We consider both continuous-time and discrete-time
stochastic control barrier functions whose existence
provides a means of quantifying an upper bound on a
system’s probability of failure. Having found a barrier
function for a particular system, we propose a numerical
method which relies on such a barrier function to com-
pute control polynomials that reduce the bound on a
system’s probability of failure. As a result, this reduces
a system’s probability of failure. Furthermore, we build
upon techniques developed for continuous-time systems
in the discrete-time domain. We present two case stud-
ies which illustrate the control synthesis techniques over
a finite-time horizon.
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