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de Lausanne (EPFL), 1015 Lausanne, Switzerland.

cSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
30332, USA.

Abstract

In this paper, we consider electric vehicle charging facilities that o↵er various

levels of service, i.e., charging rates, for varying prices such that rational users

choose a level of service that minimizes the total cost to themselves including an

opportunity cost that incorporates users’ value of time. In this setting, we study

the sensitivity of the expected occupancy at the facility to mischaracterizations

of user profiles, e.g., user’s value of time, and uncharacterized heterogeneity,

e.g., user charging level possibilities, or the likelihood of early departure. For

user profile mischaracterizations, we first provide a fundamental upper bound

for the di↵erence between the expected occupancy under any two di↵erent dis-

tributions on a user’s impatience (i.e., value of time) that only depends on the

minimum and maximum charging rate o↵ered by the charging facility. Next,

we consider the case when a user’s impatience is a discrete random variable and

study the sensitivity of the expected occupancy to the probability masses and

attained values of the random variable. We show that the expected occupancy

varies linearly with respect to the probability masses and is piecewise constant

with respect to the attained values. Furthermore, we study the e↵ects on the
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expected occupancy from the occurrence of heterogeneous user populations. In

particular, we quantify the e↵ect on the expected occupancy from the existence

of sub-populations that may only select a subset of the o↵ered service levels.

Lastly, we quantify the variability of early departures on the expected occu-

pancy. These results demonstrate how the facility operator might design prices

such that the expected occupancy does not vary much under small changes in

the distribution of a user’s impatience, variable and limited user service needs,

or uncharacterized early departure, quantities which are generally di�cult to

characterize accurately from data. We further demonstrate our results via ex-

amples.

1. Introduction

Government incentives coupled with market-driven cost reductions [2] of

electric vehicles (EVs) have catalyzed EV adoption such that by 2040 it is pro-

jected that 58% of global new vehicle sales will be EVs [3]. This increase in EV

adoption calls for significant investments in commercial charging infrastructure

[4, 5]. As commercial charging facilities become more abundant, there is an

increased need to investigate EV charging facility management schemes since it

is in the interest of charging facility operators to understand the e↵ects of their

operational models on users.

There have been e↵orts to study the problem from various perspectives such

as scheduling and wholesale perspective [6, 7, 8] and including a pricing model

approach [9, 10, 11]. Additional past works have focused on studying EV charg-

ing within a utility provider framework where the utility provider and charging

facility are separate entities whose pricing engenders specific system-wide behav-

ior [12]. Furthermore, the paper [13] presents a location-based pricing scheme

and analyzes its e↵ects on system-wide congestion. The paper [14] considers

a spatiotemporal, queuing theoretic model for rapid charging facilities to pre-

dict charging demand when the user arrival rate is not known a priori. The

paper [15] models EV charging within a queuing framework to formulate an
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equilibrium assignment model. The paper [16] studies the EV charging revenue

problem by adapting capacity control mechanisms from asset revenue manage-

ment to allocate charging capacity. Lastly, the paper [11] studies the revenue

maximization problem at plug-in hybrid charging stations by studying the equi-

libria of customer subscription dynamics. Each of these previous works relies

on specific modeling assumptions; however, none of the aforementioned papers

perform a sensitivity analysis of their respective models to understand how their

models perform when the required information is not exactly known. The need

for understanding EV charging model sensitivity is the main motivator for the

present work.

In the present paper, we focus on the charging facility service level model

that is originally presented in the paper [9]. Here, users arrive at random times

with a collection of random parameters whose respective distributions are as-

sumed to be known. Specifically, the user parameters are the user’s energy

demand and their value of time. Furthermore, in this model, users are pre-

sented with a discrete and finite collection of charging rates and energy prices.

Upon arrival, users choose the charging rate and price that minimizes the total

cost to themselves which includes their opportunity cost. Each charging rate

is associated with a specific service level pricing function that defines the total

cost to the user of choosing a particular charging rate as a function of the user’s

demand parameters.

Since users present a collection of random demands and arrivals to the charg-

ing facility, we study the expected (mean) occupancy. For the pricing schemes

derived in the papers [9, 10], explicit formulas for the expected value are derived

under the assumption that the distributions of user arrivals and their param-

eters are known. Specifically, these formulas require knowing the distribution

of the user’s value of time, assuming all users have the same usage profile, and

that users will remain at the charging facility until charge completion.

In practice, given the wide availability of data on EVs and consumer habits,

it is reasonable to assume that a charging facility can obtain good estimates of

quantities that can be explicitly measured such as user arrival times and user’s
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energy demands. While recent studies attempt to quantify behavioral factors

[17], in practice, obtaining an accurate characterization of a user’s impatience

remains challenging. Furthermore, the existence of heterogeneous charging pop-

ulations, e.g., a subset of users who can only use one of the o↵ered charging

levels, and populations who depart early a↵ects the estimates of expected occu-

pancy.

We are motivated to study the sensitivity of the expected occupancy to

such mischaracterizations in the user populations. First, we derive a worst-case

error bound for the expected occupancy. Second, we derive the gradient of the

expected occupancy that describes how the expected occupancy changes with a

given characterization of the user’s value of time. Here, the user’s impatience is

considered to be a discrete random variable.

The present work extends the paper [1] by considering the sensitivity of

the expected occupancy to heterogeneous user populations. In particular, the

present work derives a gradient expression for when user populations do not

have the same charging capabilities, e.g., some user’s vehicles may only use a

specific service level, or some older EVs may not have the technology required

for high-speed charging. This extension addresses the practical cases where

certain vehicles are restricted to specific charger types [18], hence a↵ecting the

expected occupancy at a charging facility. Lastly, we consider the occurrence

of early departures at a charging facility. The service level model in the paper

[10] works under the assumptions that users remain at the charging facility until

they receive a full charge.

This paper is organized as follows: Section 2 presents the model formula-

tion for the pricing model. Section 3 presents the sensitivity analysis results

for mischaracterized user profiles and uncharacterized heterogeneity in the user

population. Section 4 details a numerical study and Section 5 presents the

conclusions.
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1.1. Notation

For an indexed set of variables {xk}, we let �i
jx denote the di↵erence be-

tween the variable with index i and j, i.e., �i
jx = xi � xj . When considering

a collection of independent and identically distributed (i.i.d) random variables

indexed by subscripts, we use non-subscript variables when referring to prop-

erties that hold for any of the i.i.d random variables. For example, E[x] is the

expectation of each i.i.d random variable xj , j belonging to some index set. For

some set A, define P(A) to be the power set of A minus the empty set ?, i.e,

the set of all subsets of A excluding the empty set.

2. Problem Formulation

In this section, we present a pricing model for EV charging that was initially

introduced in the papers [9, 10] and captures practical uses of charging level

equipment [18]. We consider a defined service level (DSL) model where users

directly choose from a discrete set of charging rates and prices upon arrival

at the charging facility; a user pays a higher price for a faster charge rate. A

rational user chooses a cost-minimizing charge rate depending on the amount

of charge required for their EV, the prices and rates set by the charging facility,

and their impatience factor, i.e., their value of time. The DSL model is inspired

by other discrete choice models that have been studied where users make service

choices [19, 20, 21]. This model provides a tractable approach for studying EV

charging under diverse constraints and user assumptions.

At this facility, a user j arrives at some time ⌧j (in hr.) with charging

demand xj (in kWh), and an impatience factor ↵j (in $/hr.). Throughout the

paper, we make the following assumption about the aforementioned variables.

Assumption 1 (Users). User arrivals at the charging facility is a Poisson pro-

cess with parameter � (in EVs/hr.). Individual charging demand xj and the

impatience factor ↵j for each user j are random variables which are indepen-

dent and identically distributed (i.i.d). In particular, xj is a continuous random

variable with support [xmin, xmax] for some 0 < xmin < xmax. Furthermore,
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Table 1: User Parameter Definitions

Var. Parameter Unit Range

j user index - -

⌧j arrival time hr. -

xj user demand kWh [xmin, xmax]

↵j impatience factor $/hr. {a1, . . . , aM}

rj charging rate kW (0, Rmax]

↵j is a discrete random variable with M possible values whose probability mass

function pA(↵; p, a) has a probability mass vector p = [p1, . . . , pM ]> correspond-

ing to the impatience value vector a = [a1, . . . , aM ]> such that P(↵j = ai) =

pA(ai; p, a) = pi for each i.

When using the probability operator P( · ) for ↵j it is understood that this

probability is computed with some probability mass vector p and impatience

category vector a. By assuming ↵j are i.i.d discrete random variables, we assume

the population of users is divided into a finite number of impatience categories;

for example, each user may be patient with a low value of ↵ or impatient with

a high value of ↵.

The user parameters, their respective units, and upper and lower bounds

are summarized in Table 1. The charging facility o↵ers L service levels such

that L = {1, . . . , L} is the set of o↵ered service levels. Each service level ` 2 L

corresponds to a distinct charging rate R` > 0 (in kW) and price V ` > 0 (in

$/kWh) that is the cost per unit energy for the service level. Thus, user j with

energy demand xj pays xjV ` (in $) to receive a full charge over the time horizon

xj/R` (in hr.) when choosing service level `.

The parameters related to the charging facility under a discrete pricing model

are listed in Table 2. To distinguish the parameters related to the charging

facility from those related to the users, the charging facility parameters are

upper case and indexed by a superscript, while the parameters for the users are

lower case and indexed by a subscript j.
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Table 2: Parameter Definitions for the Charging Facility

Var. Parameter Unit Range

` service level - {1, . . . , L}

V ` price per unit of energy $/kWh -

R` charging rate kW (0, Rmax]

Assumption 2 (Model Charging Rates). Among L service levels o↵ered by the

charging facility, a higher charging rate is more costly, i.e., if Ri > Rk then

V i > V k. Moreover, charging rates and prices are distinct so that Ri 6= Rk

for all i 6= k. Lastly, and without loss of generality, the charging facility’s

pricing functions are enumerated such that V 1 < V 2 < . . . < V L and therefore

R1 < R2 < . . . < RL.

A user can therefore pay less by choosing a slower charge rate but must

balance this with their impatience. In particular, the total cost faced by a user

arriving at the charging facility with impatience factor ↵j , charging demand xj ,

and who chooses service level `, is

g`(xj ,↵j) = xjV
` + ↵j

xj

R`
. (1)

Individual users choose a service level at a charging facility which minimizes

their total cost of charging factoring in their impatience. To that end, let

S(xj ,↵j) : [xmin, xmax]⇥ {a1, . . . , aM} ! {1, . . . , L} be defined by

S(xj ,↵j) = argmin
`2{1,...,L}

g`(xj ,↵j) . (2)

Then, a rational user j chooses service level S(xj ,↵j) in order to minimize their

total cost as formalized in the later stated assumption.

Assumption 3 (Impatience Ambiguity). A charging facility o↵ers L service

levels with price per unit energy V ` and charging rate R` according to Assump-

tion 2 such that �i
kV/�

k
i R̄ 6= am for all k, i for any m.

Assumption 3 holds generically and avoids the scenario where two charg-

ing levels are equally attractive to a user from the perspective of (1), i.e., the
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minimization in (2) does not have a unique minimizer.

For notational convenience, we also define the values rj to be the charging

rate and cost per unit of energy chosen by user j after solving (2), i.e., rj =

RS(xj ,↵j), as indicated in Table 1. Observe that the user charging times xj/rj ,

being uniquely determined by xj and ↵j , constitute a collection of independent

and identically distributed random variables. Furthermore, this means the time

a user spends at the charging location is xj/rj where this is the time for a user

to receive a full charge based on their chosen service level.

Assumption 4 (Users are Rational). Each user chooses a charging rate accord-

ing to (2) and leaves the charging facility once they have satisfied their charging

demand. Thus, user j occupies a charger at the facility during the time interval

[⌧j , ⌧j + xj/rj ] to receive full charge xj.

Remark 1. Note that the usage of Assumption 4 is explicit particularly in the

case where it is assumed that users remain at the charging facility to receive the

requested charge xj. In the present work, we do consider the practical scenario

of early departures which is detailed at the end of Section 3. We introduce

the possibility of early departures distinctly from the problem formulation to

distinguish the extension from the previously developed service level model.

Let the occupancy at the charging facility be defined as ⌘. Note that ⌘ is

also the number of actively charging users.

3. Main Results

At a given charging facility with pricing functions of the form of (1), users

arrive at random times with random parameters to ultimately make a service

level choice that minimizes the cost to themselves by solving (2). Knowing the

probability distribution of user arrivals and their respective parameters enables

EV charging facility operators to analyze the system-wide behavior at their

facility via the expected occupancy.

To obtain an expression for the occupancy, recall Lemma 1 below from the

paper [10], which details how a user j arriving with charging demand xj and
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impatience factor ↵j chooses a specified service level while facing pricing func-

tions of the form of (1). We consider the case where consequently, Lemma 1

also provides an analytical expression for the probability mass function (PMF)

for user’s choice of charging rate.

Lemma 1 (Corollary 1 of [10]). Under assumptions 1, 2, 3, and 4, consider

the set of L functions of two independent RVs
�
g`(xj ,↵j)

 L
`=1

where each g` is

as defined in (1). Then, for k 2 {1, . . . , L},

P
�
S(xj ,↵j) = k

�
= P

�
¯
↵k < ↵j < ↵̄k

�

where
¯
↵1 = �1 and ↵̄L = +1 otherwise

↵̄k = min
k<i

�i
kV

�k
i R̄

, (3)

¯
↵k = max

i<k

�i
kV

�k
i R̄

. (4)

Furthermore, the charging rate rj chosen by each user j is a discrete random

variable each with PMF

pr(r; p, a) =

8
>>>><

>>>>:

P
�
¯
↵1 < ↵j < ↵̄1

�
if r = R1 ,

...

P
�
¯
↵L < ↵j < ↵̄L

�
if r = RL .

(5)

Lemma 1 demonstrates that the probability of choosing a particular price

per unit of energy V k and charging rate Rk solely depends on the likelihood that

a user j’s impatience factor ↵j ⇠ pA(↵; p, a) falls within the interval (
¯
↵k, ↵̄k).

We are motivated to study the DSL model under the presence of mischarac-

terizations of arriving users and their respective parameters. To accomplish this,

a series of mathematical statements are presented that describe the behavior of

the expected occupancy under these mischaracterizations. The statements con-

tribute to obtaining a broad understanding of the system-wide behavior given

mischaracterized impatience factors, early departures, and the worst-case error

on the expected occupancy that is not constrained to one example distribution

of data. In the remainder of this section, we derive a worst-case error bound on
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the expected occupancy at charging facility. Furthermore, we focus on providing

insight on the deviation presented in Proposition 1, given some knowledge on

how the distribution of impatience factors deviates. First, we focus on devia-

tions in p, the vector of probabilities that a user will have a particular impatience

factor. Then, we characterize deviations in a, the vector of possible impatience

factors for the population of users. In addition to mischaracterized user pro-

files, we consider the possibility of uncharacterized heterogeneity in the arriving

users such that there are restrictions on which of the o↵ered service levels can

be chosen. Lastly, we discuss the e↵ects of early departures on the expected

occupancy at the charging facility.

3.1. Worst-Case Occupancy Error Bound

A charging facility with pricing functions of the form (1) experiences user

arrivals with i.i.d impatience factors that are distributed with pA(↵; p, a). Any

expected value that is dependent on pA(↵; p, a) is written as E[ · ; p, a]. Specif-

ically, we write the expected occupancy at a charging facility as E[⌘; p, a] =

�E[x/r; p, a] = �E[x]E[ 1r ; p, a]. We break up E[⌘; p, a] like this because, as is

seen in Lemma 1, the probability of choosing a particular charge rate is in-

dependent of the user demand xj . The independence of a user’s choice from

the energy demand xj does not completely discount its impact on the user. In

particular, the energy demand serves as a scaling factor for the total cost (in $)

paid by the user for receiving some charge xj . Specifically, xj scales both the

price paid for energy V ` and the opportunity cost ↵j/R` for service level `.

Since, in this paper, we are interested in studying how the expected occu-

pancy changes when users’ impatience changes, we start by stating a general

upper bound on the deviation of the expected occupancy.

Proposition 1. Consider a charging facility operating under Assumptions 1,

2, 3, and 4. Define ⌘ to be the occupancy possibly with two di↵erent probability

mass functions for the impatience factor, pA(↵; p, a) and pA(↵, p̃, ã), then

|E[⌘; p, a]� E[⌘; p̃, ã]|  �E[x]
✓

1

R1
� 1

RL

◆
.
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Moreover, there exists probability mass functions such that the bound is tight.

Proof. As observed earlier, the choice of charging rate is independent of the

user’s demand, hence

E[⌘; p, a] = �E[x]E[ 1
r
; p, a] .

Let pr(r; p, a) and pr(r; p̃, ã) denote the corresponding distributions for the

charging rates, according to Lemma 1. We then obtain

|E[⌘; p, a]� E[⌘; p̃, ã]| = �E[x]
�����

LX

`=1

pr(R`; p, a)

R`
�

LX

`=1

pr(R`; p̃, ã)

R`

����� . (6)

It can be seen that it is possible to choose distributions of ↵ such that pr(R1; p, a) =

1 or pr(RL; p, a) = 1, and pr(R1; p̃, ã) = 1 � pr(R1; p, a), pr(RL; p̃, ã) = 1 �

pr(RL; p, a), which yields the maximum di↵erence in (6).

Proposition 1 demonstrates that the di↵erence between the expected occu-

pancy computed with the true and the mischaracterized PMF of ↵j is upper

bounded. More specifically, assuming a correct characterization of � and E[x],

this worst-case upper bound is driven by the di↵erence of the inverse of the

fastest and slowest charging rate. In practice, a charging facility operator con-

cerned with minimizing the error in their estimated expected occupancy can

minimize the upper bound on the expected occupancy error irrespective of the

arriving user parameters. In particular, a charging facility operator can mini-

mize the di↵erence between R1 and RL, i.e., the slowest and fastest charging

rates. While this may prove to be favorable with respect to the expected occu-

pancy it may have downstream consequences. For example, reducing the gap

between the slowest charging rate R1 and fastest charging rate RL may cause

the trade-o↵ from (2) to push users towards choosing the fastest charging rate

at all times. Alternatively, a charging facility operator can reduce such error by

modifying their estimates of the impatience profile a. In particular, a charging

facility may have a comparative algorithmic procedure that alternates the inter-

val within which the probability masses resides, continuously comparing their

expected occupancy estimate with real-time data.
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3.2. Mischaracterized User Profiles

A charging facility knows that the expected occupancy varies with p and

a of the user impatience. Hence, in this section, we derive results that enable

a charging facility to quantify the variability of the expected occupancy with

respect to p or a.

Theorem 1. Consider a charging facility operating under Assumptions 1, 2, 3,

and 4 with L pricing functions of the form of (1). Then we have that,

rp E[⌘; p, a] = �E[x]

2

6664

PL
`=1

1`(a1)
R`

...
PL

`=1
1`(aM )

R`

3

7775
, (7)

where 1`(ai) = 1 if
¯
↵` < ai < ↵̄` and 1`(ai) = 0 otherwise, and we recall

that E[⌘; p, a] is the expected occupancy where user’s impatience factors are dis-

tributed with pA(↵; p, a).

Proof. Given a charging facility operating under Assumptions 1, 2, 3, and 4

with L pricing functions of the form of (1). Recalling the PMF of ↵j , we note

that the probability of choosing a specified charge rate ` has an equivalence

where

P
�
¯
↵` < ↵j < ↵̄`

�
=

MX

m=1

pm1`(am) .

Recall that E[⌘; p, a] = �E[x]E[ 1r ; p, a]. Furthermore, we expand on E[ 1r ; p, a]

such that

E

1

r
; p, a

�
=

LX

`=1

pr(R
`; p, a)

1

R`

=
LX

`=1

P
�
¯
↵` < ↵j < ↵̄`

� 1

R`

=
LX

`=1

 
MX

m=1

pm1`(am)

!
1

R`
.

Given the prior substitutions, we compute the gradient of E[⌘; p, a] with respect

to p leading to (7).
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From (7) in Theorem 1 we see that the gradient with respect to p of E[⌘; p, a]

is constant; hence, E[⌘; p, a] varies linearly with p. A direct corollary of Theorem

1 is that of the gradient of the expected occupancy with respect to the di↵er-

ence between a true and mischaracterized probability mass where the expected

occupancy also varies linearly. In addition to Theorem 1, a charging facility is

interested in how the expected occupancy varies with specific impatience values.

This is formalized in the following theorem.

Theorem 2. Consider a charging facility operating under Assumptions 1, 2,

3 ,and 4 with L pricing functions of the form of (1). Recall that E[⌘; p, a]

is the expected occupancy where user’s impatience factors are distributed with

pA(↵; p, a). Then,

1) For all p, a such that for every ai 2 (
¯
↵k, ↵̄k) for some k > 0, it holds that

ra E[⌘; p, a] = 0 .

2) For all a, for all i, and for all k < L,

lim
ãi"↵̄k

E[⌘; p, ã]� lim
ãi#↵̄k

E[⌘; p, ã] =

lim
✏!0+

�E[x]
 

LX

`=1

pi
R`

�
1`(↵̄

k � ✏)� 1`(↵̄
k + ✏)

�
!

, (8)

where ãj = aj for all j 6= i, and 1`(am) = 1 if
¯
↵` < am < ↵̄` and

1`(am) = 0 otherwise.

Proof. To prove the first part of Theorem 2, recall E[⌘; p, a] = �E[x]E[ 1r ; p, a].

Furthermore,

E

1

r
; p, a

�
=

LX

`=1

 
MX

m=1

pm1`(am)

!
1

R`

where 1`(am) = 1 if
¯
↵` < am < ↵̄` and 1`(am) = 0 otherwise for any m 2

{1, . . . ,M}. Since we have p, a such that ai 2
�
¯
↵k, ↵̄k

�
for some k for all i

then the quantity E
⇥
1
r ; p, a

⇤
is constant with respect to a. This is because
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ai 2 (
¯
↵k, ↵̄k) and since the probability mass remains in the interval there is no

change to E[⌘; p, a]. Hence, ra E[⌘; p, a] = 0.

To prove the second part of Theorem 2, we analyze the di↵erence E[⌘; p, a�]�

E[⌘; p, a+] where E[⌘; p, a�] = limãi"↵̄k E[⌘; p, ã] and E[⌘; p, a+] = limãi#↵̄k E[⌘; p, ã]

and ãj = aj for some j. From before, realize that E[⌘; p, a�] = �E[x]E[ 1r ; p, a
�]

and E[⌘; p, a+] = �E[x]E[ 1r ; p, a
+]. Substituting the summation form of E[ 1r ; p, a

�]

and E[ 1r ; p, a
+] leads to (8).

Theorem 2 first states that E[⌘; p, a] = E[⌘; p, ã] for all ã such that ai 6= ãi

and ai, ãi 2 (↵̄k,
¯
↵k) for some k, i.e., the expected occupancy does not vary when

an impatience value ai is changed within a given (↵̄k,
¯
↵k) interval. The second

statement of the theorem states what happens if the change of ai crosses the

boundary of an interval (↵̄k,
¯
↵k) , i.e., a change in the expected occupancy. From

a practical perspective, the second statement of Theorem 2 states that if a user

impatience profile is transitioned out of the interval (↵̄k,
¯
↵k) from the upper-

value side there will be a jump (or drop) in the value of the expected occupancy.

Such a jump results from the definition of expected values of discrete random

variables. In this particular case, the probability mass is no longer accounted

for in (↵̄k,
¯
↵k). Hence, to find the expected occupancy value di↵erence from this

jump or drop in value one must take the di↵erence just above and below
¯
↵k.

3.3. Heterogeneity in the User Population

In practice, it could be the case that the EV populations arriving at a charg-

ing facility have heterogeneous charging capabilities such that not all EVs ar-

riving at a charging facility are free to choose any of the L o↵ered service levels

[18]. For example, consider the scenario where L = 3 service levels are o↵ered

at a charging facility but only half of the population is able to choose service

levels ` = 1 or 2 and the other half can only choose ` = 2 or 3. Furthermore,

it is also possible and plausible that the di↵erent sub-populations of the EV

charging facility have disparate impatience profiles.
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As a result of these phenomena, a charging facility is forced to estimate the

probability an arriving user at an EV charging facility is a member of a sub-

population that may only use a subset of the available chargers. In practice,

a charging facility is at risk of incorrectly estimating the sub-population mem-

bership probabilities. Hence, we are motivated to study how the expected oc-

cupancy varies with varying sub-population estimate values. In the case where

there exist heterogeneous user sub-populations that may only choose from a

subset of the o↵ered service levels we use the following assumption.

Assumption 5. Users arriving at a charging facility are constrained to choose

only from a subset of the o↵ered service levels at the charging facility. Recall

that P (L) is the power set of the o↵ered service levels minus the empty set and

C = 2L � 1 is the cardinality of this set. Furthermore, define Bi 2 P (L) to be

user service-level subset i where i 2 {1, . . . , C}. Let pB = [pB1 , . . . , pBC ]
T such

that pBi is the sub-population probability and
PC

i=1 pBi = 1.

Remark 2. We consider the possibility that a user sub-population may have

a di↵erent impatience profile define pBi = [pBi
1 , . . . pBi

M ] and aBi = [aBi
1 , . . . aBi

M ]

to be the probability mass vector and impatience profile vector of subset Bi,

respectively. Any quantity which is being computed with respect to a subset will be

defined conditioned on some Bi, e.g., given B1 = {1} then E[⌘; pB1 , aB1 | B1] is

the expected occupancy conditioned on the user sub-population only being able to

choose the slowest charging rate. If there is no conditioning on a sub-population,

a quantity is for the case when all service levels are possible choices.

Assumption 5 formally defines the occurrence of population subsets related

to the possible charging choices for EV charging facility users. Next, we present

Proposition 2 which proves the variability of the expected occupancy with re-

spect to di↵erent estimate of the user sub-population probability.

Proposition 2. Consider a charging facility that o↵ers L service levels and is

operating under Assumptions 1, 2, 3, 4, and 5. Let pB = [pB1 , . . . , pBC ]
T where
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pBi is the sub-population probability of Bi 2 P (L) and
PC

i=1 pBi = 1. Then,

rpBE[⌘] =

2

6664

PL
`=1

PM
m=1 p

B1
m

1`(a
B1
m )

R`

...
PL

`=1

PM
m=1 p

BC
m

1`(a
BC
m )

R` .

3

7775

where 1`(aBi
m ) = 1 if

¯
↵` < aBi

m < ↵̄` and 1`(aBi
m ) = 0 otherwise.

Proof. From the law of total probability, we have that

E[⌘] =
CX

i=1

E[⌘ | Bi]pBi .

Realizing that E[⌘ | Bi] =
PL

`=1

PM
m pBi

m
1`(a

Bi
m )

R` we can further simplify to

E[⌘] =
CX

i=1

 
LX

`=1

MX

m

pBi
m
1`(aBi

m )

R`

!
pBi .

Lastly, take the gradient of E[⌘] with respect to pB .

Example 1. Consider a scenario where L = 2 such that a charging facil-

ity o↵ers only a slow and fast charging rate, and therefore there are C = 3

possible user sub-populations and P (L} = {B1, B2, B3} = {{1}, {2}, {1, 2}} is

the set of the sub-populations. Furthermore, from Assumption 5 recall pB =

[pB1 , pB2 , pB3 ], and we suppose that pB2 = 0 , i.e., no users are restricted to

choosing only service level 2, and we remove this entry from pB.

Suppose that the impatience profile of all the user sub-populations are the

same such that there are M = 2 impatience profiles where p = pB1 = pB3 =

[0.5, 0.5] and a = aB1 = aB3 . Additionally, suppose
¯
↵1 < a1 < ↵̄1 and let

¯
↵2 < a2 < ↵̄2.

Then, using Proposition 2, we compute the gradient of the expected occupancy

as

rpBE[⌘] =
h
0.5
R1 ,

0.5
R2

i>
. (9)

In (9) we see that the expected occupancy varies linearly with pB. Now

consider the case where pB3 ! 0 and pB1 ! 1, i.e., the sub-population of users
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that use both charging levels disappears and the facility exclusively services users

who can only choose the slowest service level. From (9) we see the expected

occupancy will increase since the gradient for sub-population B1 is greater than

the gradient for B3.

Users arriving at an EV charging facility make the choice of service level by

solving (2) which is a function of the user’s energy demand xj and impatience

factor ↵j as detailed in Section 2. Note that while both xj and ↵j are arguments

in (2) the choice service level is driven by the impatience factor of user j. The

paper [10] analyzes the EV charging problem with the assumption that users

always remain until they receive a full charge. Consider the possibility that

users are able to depart from the charging facility before the completion of their

charging demand. In this scenario, arriving users make their service level choice,

i.e., choice of charging rate and energy price, as before by solving (2). However,

users now exhibit a new random behavior in the form of an early departure.

This is formalized in the following assumption

Assumption 6. Define  j to be an i.i.d. random variable which defines the

proportion of the desired charge xj that is received by user j. In particular,

define the PDF of  j to be f ( ) which has support on [0, 1]. Note that xj

is independent of  j. Furthermore, define  jxj to be the amount of charge

received by arriving user j. Then, user j occupies a charger at the charging

facility during the time interval [⌧j , ⌧j +  jxj/rj ].

Note that we introduce an early departure factor  j to explicitly consider the

occurrence of early departures. However, it is possible to make considerations for

early departures by considering and alternative distribution for xj that captures

the lower energy demands from early departures.

The assumption that  j and xj are independent variables can sometimes

not be a reasonable assumption. In particular one can envision scenarios where

user’s requiring hiring energy demand may be more likely to depart early due to

a longer time being required to receive a full charge. However, this assumption

may hold in practical scenarios such as when a user is on a long-distance road
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trip and each charging stop is meant to maximize the distance traveled after a

charging stop. Moreover, it is reasonable to assume that a charging facility can

estimate the probability distribution of early departures  j and energy demand

data xj from historical usage data at such a charging facility. This assumption

will be the study of future work.

Proposition 3. Consider an EV charging facility operating under Assumptions

1, 2, 3, and 6 such that users choose a service level according to (2) with the

possibility of a user only fulfilling  jxj of charging demand at arrival. Then,

we have that
dE[⌘; p, a]
dE[ ] = �E[x]E[ 1

r
; p, a].

Proof. The proof follows immediately from the definition of the expected occu-

pancy E[⌘; p, a] = �E[x]E[ ]E[ 1r ; p, a].

From Proposition 3, a charging facility operator sees that the expected occu-

pancy varies linearly with changes in the expected proportion of charge received

by users at the charging facility. Furthermore, irrespective of the distribution of

 j , the expected occupancy will vary when the mean of the distribution varies.

4. Numerical Study

In this section, we present a numerical study that illustrates di↵erent phe-

nomena of which a charging facility operator must be mindful when choosing to

provide a set of prices and charging rates. Specifically, we demonstrate practical

occurrences of the results of Proposition 1 and 2, and Theorem 1 and 2.2. We

first present the charging facility and user parameters in Section 4.1. Then in

Section 4.2 we consider the case when a charging facility is deciding between

two pricing schemes such that the estimated expected occupancy is robust to

mischaracterizations of the user impatience profiles. In this first case, no user

2The Python code for this case study is available at https://github.com/gtfactslab/

evcharging_sensitivity
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Table 3: Pricing and Charging Rates for Pricing Schemes

Pricing Scheme A Pricing Scheme B

Charging Rates (kW.) 15, 30, 35 15, 30, 35

Prices ($/kWh.) 0.15, 0.25, 0.32 0.05, 0.25, 0.33

sub-populations are considered, i.e., all arriving users can choose any of the

o↵ered service levels. Lastly in Section 4.3 we add the notion of user sub-

populations and study the e↵ect of user choice limitations on their service level

choice probabilities; similar to the first part, we identify the robust pricing

scheme to uncharacterized homogeneity.

4.1. Charging Facility and User Parameters

Consider a charging facility o↵ering L = 3 service levels that is deciding

between o↵ering two sets of prices and charging rates to meet this constraint.

Specifically, this charging facility can either operate under the pricing scheme

A or B whose parameters are detailed in Table 3.

The charging facility operator desires to choose between the two charging

schemes such that the estimated occupancy is robust to mischaracterizations

in the user parameters. Practically, a charging facility operator can utilize the

results from Proposition 1 to upper bound the worst-case error in the estimated

occupancy. To reduce the error bound, each o↵ered pricing scheme, e.g., A or

B, can reduce the charging rate di↵erence between R1 and RL. Reducing the

di↵erence between charging rates R1 and RL reduces the maximum error in

the estimated occupancy but may not be desirable from a practical perspective,

e.g., user’s may end up choosing only either the fastest or slowest charging rate.

In this numerical study, a charging facility has a fixed set of charging rates to

o↵er at each service level but is deciding what prices to charge for energy at each

service level. At this charging facility user arrivals are a Poisson process with

� = 30 EVs/hr. Furthermore, user’s energy demands (in kWh.) are distributed

with xj ⇠ fX(xj) where fX(xj) = U(5, 100) where U(·) denotes a uniform
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distribution.

The charging facility operator estimates user’s impatience factor to be a

PMF that is defined to be pA(↵; p̃, ã). We consider the case when there are

M = 4 impatience profiles that describe the user population and suppose that

the charging facility is correctly estimating that M = 4 profiles also exist such

that ã = [ã1, ã2, ã3, ã4]>.

While a charging facility may estimate the user impatience profiles to be

discrete random variables with PMF parameters p̃ and ã this may not be an

accurate assessment. Given the aforementioned prices and charging rates for

pricing schemes A and B we consider the following two potential cases a charg-

ing facility may experience: first, a case when the true distribution of the im-

patience of users is in fact a discrete random variable with p = p̃ and a 6= ã

and secondly when the true distribution is not a discrete random variable but in

fact a bounded multi-modal normal distribution. In considering these cases, we

are able to illustrate which of the two pricing schemes is robust to these types

of errors by quantifying the error in the expected occupancy from the PMF

estimate the facility has made and the two scenarios for the true distributions

of the user impatience.

First consider the case when a charging facility has estimated the user impa-

tience PMF to have parameters p̃ = [0.25, 0.25, 0.25, 0.25]> and ã = [2, 10, 20, 25]>

but in reality the users impatience distributions are p = p̃ but a = [2, 5.5, 20, 25]>.

The discrepancy between a and ã will result in di↵ering values for E[⌘; p, a] and

E[⌘; p̃, ã], respectively.

We present Figure 1 which illustrates pA(↵j ; p̃, ã) and pA(↵j ; p, a) in the

top and bottom plots, respectively. Furthermore, the respective values (
¯
↵k, ↵̄k)

computed for these two scenarios for both pricing schemes are displayed. Recall

from Lemma 1 that the probability mass of pA(↵j ; p̃, ã) or pA(↵j ; p, a) which

falls in the non-empty intervals (
¯
↵k, ↵̄k) determines the probability of users

choosing service level k. As a result a discrepancy between a and ã can lead

to di↵erent expected occupancy between what the charging facility estimates

and what actually occurs in practice. While problematic, a charging facility
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can mitigate such a discrepancy by ultimately choosing a pricing scheme that

is resilient to such mischaracterizations.

4.2. Occupancy Error from Mischaracterized User Impatience

Given the pricing schemes A and B with ã we illustrate the intervals (
¯
↵k, ↵̄k)

in the plots of Figure 1. Recall S(xj ,↵j) from (2), then the choices made by

user j in pricing schemes A and B are SA(xj ,↵j) and SB(xj ,↵j), respectively.

Then, a charging facility with estimate ã concludes that P(SA(xj ,↵j) = 1) =

P(SA(xj ,↵j) = 2) = 0.25 and P(SA(xj ,↵j) = 3) = 0.50, and P(SB(xj ,↵j) =

1) = P(SB(xj ,↵j) = 2) = 0.25 and P(SB(xj ,↵j) = 3) = 0.50.

In reality, the true impatience values a demonstrated in the bottom plot

of Figure 1 show that P(SA(xj ,↵j) = 1) = P(SA(xj ,↵j) = 2) = 0.25 and

P(SA(xj ,↵j) = 3) = 0.50 and that P(SB(xj ,↵j) = 1) = 0.50, P(SB(xj ,↵j) =

2) = 0 and P(SB(xj ,↵j) = 3) = 0.50. In practice, for pricing scheme B this

states that even though a charging facility is o↵ering 3 service levels, only 2 of

them will be chosen by users. Numerically, this leads to an over 20% error be-

tween E[⌘; p, a] and E[⌘; p̃, ã] when a charging facility chooses pricing scheme B

due to the charging facility underestimating the expected occupancy. However,

in this case, no error arises when using pricing scheme A.

While this is illustrative, this represents the considerations a charging facility

must make when setting energy prices or charging rates to make their pricing

scheme resilient to mischaracterizations of users’ impatience. In analyzing the

variability of the expected occupancy when utilizing ã or a we see an illustration

of Statement 1 of Theorem 2. Specifically, if a1 > ↵̄1 for pricing scheme B

then Statement 1 of Theorem 2 would predict that the expectation would have

remained the same. However, since a1 < ↵̄1 for pricing scheme B the di↵erence

in the expectation is as predicted in Statement 2 of Theorem 2. We illustrate

the variation of the expected occupancy with varying ã for both pricing schemes

in Figure 2 when both the estimated and true impatience are discrete random

variables. Lastly, consider the hypothetical scenario where ã = a but p̃ 6= p,

then we see from analyzing Figure 1 that E[⌘; p, a] will vary linearly with p.
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Figure 1: A charging facility decides between pricing scheme A or B when it has estimated the

user impatience as in the top plot of this figure. In reality, we suppose the user impatience is

as shown in the bottom plot of this figure. The discrepancy between the estimated impatience

values ã and the true impatience values a leads to the charging facility having an incorrect

estimate of the expected occupancy. To mitigate this, a charging facility can choose its prices

and charging rates such that their estimate of the expected occupancy is resilient to impatience

mischaracterizations. As described in Section 4, pricing scheme A leads to the same expected

occupancy under both the true and estimated impatience, while pricing scheme B leads to

expected occupancy that is over 20% larger for the true impatience distribution compared to

the estimated impatience distribution.
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Figure 2: An EV charging facility where users arrive according to a Poisson process with

random demand and impatience decides between a Pricing Scheme A and B. At arrival,

users choose a charging rate from a collection of service levels that minimizes the total cost to

themselves that includes their impatience. A charging facility has estimated the impatience

PMF for the arriving users and uses this estimate to compute the expected occupancy for

both pricing schemes. In this plot, we illustrate the variation in the expected occupancy

when ã = [2, ã2, 20, 25]>. As a charging facility’s estimate of ã2 varies so does the expected

occupancy under each pricing scheme.
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Secondly, we consider the case when a charging facility has estimated the

impatience to be a discrete random variable as before but in reality the true

user impatience distribution is a truncated multi-modal normal distribution

fA(↵j). Given the multi-modal normal distribution illustrated in Figure 3 we

have that P(SA(xj ,↵j) = 1) = 0.221, P(SA(xj ,↵j) = 2) = 0.281 P(SA(xj ,↵j) =

3) = 0.498 and that P(SB(xj ,↵j) = 1) = 0.431, P(SB(xj ,↵j) = 2) = 0.070

and P(SB(xj ,↵j) = 3) = 0.499. Numerically, this leads to an over 15% error

in the expected occupancy between the estimated and true user impatience

when a charging facility chooses pricing scheme B due to the charging facility

underestimating the expected occupancy. Furthermore, pricing scheme A now

has an approximately 3% error from the true value where the charging facility

has overestimated the expected occupancy. The increase in error in pricing

scheme A in this scenario is due to the portion from the first mode of fA(↵j)

that is in (
¯
↵2, ↵̄2), i.e., (↵̄1, ↵̄2), of pricing scheme A and the portion of the

second mode of fA(↵j) from the first mode that is in (
¯
↵2, ↵̄2), i.e., (↵̄1, ↵̄2), of

pricing scheme B.

We present the numerical values from this part of the numerical study in

Table 4. In both the scenarios where the true PMF is a discrete random vari-

able and the one where the true distribution of the impatience is a probability

density function we see that pricing scheme A is more resilient to mischarac-

terizations of pA(↵j ; p̃, ã) (or fA(↵j)) than pricing scheme B. In fact, pricing

scheme B leads the charging facility operator to estimate a lower occupancy

when in reality the value is higher. This potentially overburdens the facility’s

space resources. In practice, an operator gains insightful information from the

operation of a charging facility on users’ impatience that will guide them in

choosing mischaracterization-resilient prices and charging rates.

4.3. Heterogeneous Charging Populations

Similar to Section 4.2 we study the sensitivity of the expected occupancy

at the charging facility to the arrival of heterogeneous charging populations

when the impatience profiles are and are not mischaracterized. Specifically, the
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charging facility evaluates the robustness of pricing schemes A and B defined

in Table 3 to the presence of heterogeneous populations.

Recall Assumption 5, then given L = 3, C = 7 is the total number of

possible choice subset combinations for the o↵ered service levels and P (L) =

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Define p̃B = [0, 0, 0, 0, 0, 0, 1] to be

the P (L) sub-population probability vector estimated by the charging facility.

In practice, this means that the charging facility is expecting all of the arriving

users at the charging facility to be able to use all of the o↵ered charging levels;

however, this may not be the case due to the technological limitations of specific

EVs [18].

In reality, any of the arriving users at this charging facility may only be able

to charge with any of the charging level combinations Bi 2 P(L). Consider the

case where not all users may choose all of the o↵ered charging levels; specifically,

define the true sub-population probabilities to be pB = [0.25, 0, 0, 0.25, 0, 0, 0.50],

i.e., one fourth of the population can select B1 = {1}, one fourth can select

B4 = {1, 2} and the remaining half can select B7 = {1, 2, 3}.

A charging facility can determine the robustness of one set of charging rates

to variability in the expected occupancy with heterogeneous charging popula-

tions and mischaracterized impatience profiles. Since the charging facility has

estimated that all users can make use of all of the o↵ered charging rates Fig-

ure 1 illustrates the regions of choice for both pricing scheme A and B along

with the estimated impatience p̃, ã and estimated sub-population probabilities

p̃B . Specifically, a charging facility computes that P(SA(xj ,↵j) = 1 | B7) =

P(SA(xj ,↵j) = 2 | B7) = 0.25 and P(SA(xj ,↵j) = 3 | B7) = 0.50, and

P(SB(xj ,↵j) = 1 | B7) = P(SB(xj ,↵j) = 2 | B7) = 0.25 and P(SB(xj ,↵j) =

3 | B7) = 0.50. Note that since the charging facility is operating under the per-

ception that all of the arriving users can choose from any of the o↵ered service

levels the conditioning on B7 can be dropped.

In Figure 4 we see the service level choice regions for the true impatience

profile p, a and true sub-population probabilities pB . Notice in Figure 4 that

the choice region for service level 2 has disappeared in the left plot. For pric-
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Table 4: Expected Occupancy for Di↵erent Probability Distributions and Pricing Schemes

Expected Occupancy Expected Occupancy

Probability Distribution Pricing Scheme A Pricing Scheme B

Estimated Impatience 61.875 61.875

True Discrete Impatience 61.875 75.0

True Multi-Modal Impat. 60.38 71.40

ing scheme A, we have P (SA(xj ,↵j) = 1 | B1) = 1.0, P (SA(xj ,↵j) = 1 | B4) =

0.25, P (SA(xj ,↵j) = 2 | B4) = 0.75, P (SA(xj ,↵j) = 1 | B7) = P (SA(xj ,↵j) = 2 | B7) =

0.25 and P (SA(xj ,↵j) = 3 | B7) = 0.50. Then, using the law of total probabil-

ity one computes that P (SA(xj ,↵j) = 1) = 0.4375, P (SA(xj ,↵j) = 2) = 0.3125,

and P (SA(xj ,↵j) = 3) = 0.25.

For pricing scheme B, we have that P(SB(xj ,↵j) = 1 | B1) = 1.0, P(SB(xj ,↵j) =

1 | B4) = 0.50, P (SB(xj ,↵j) = 2 | B4) = 0.50, P(SB(xj ,↵j) = 1 | B7) = 0.50,

P (SB(xj ,↵j) = 2 | B7) = 0 and P (SB(xj ,↵j) = 3 | B7) = 0.50. Then, for pric-

ing scheme B using the law of total probability we have that P (SB(xj ,↵j) = 1) =

0.625, P (SB(xj ,↵j) = 2) = 0.125, and P (SB(xj ,↵j) = 3) = 0.25.

Given these parameters and probabilities, a charging facility studies how

each pricing scheme performs in terms of leading to a correct estimate of the

expected occupancy. Specifically, pricing scheme A has an approximate error of

approximately 15% while pricing scheme B has an under-approximation error

of approximately 25%. In this particular scenario we see that the prices and

rates o↵ered by pricing scheme A are more robust to mischaracterizations for

both the users impatience and sub-population probabilities.

In a similar fashion, one can study the a scenario where a charging facility

operates with correct knowledge of the user impatience p and a while having

p̃B 6= pB . In this scenario, pricing scheme A has an expected value error of

approximately 15% which pricing scheme B has an approximate error of 10%. In

this case, pricing scheme B is more robust to this particular mischaracterization

of the user sub-populations.
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Figure 3: A charging facility decides between implementing pricing scheme A or B when it has

estimated the user impatience as in the top plot of Figure 1. In reality, we suppose the user

impatience is a truncated multi-modal normal distribution as is shown in this plot. Hence,

a charging facility has a mischaracterized value of the expected occupancy at the charging

facility. The discrepancy between the estimated impatience values ã and the true impatience

value a leads to the charging facility having an incorrect estimate of the expected occupancy

at a charging facility. Similar to the case in Figure 1, Pricing Scheme A leads to true expected

occupancy that is within 3% of the estimated expected occupancy, while Pricing Scheme B

leads to true expected occupancy that is over 15% higher than estimated.
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User Service Level Choice Regions with True Impatience and

Heterogeneous User Populations
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Figure 4: A charging facility o↵ering L = 3 charging levels to arriving users who may not

be able to choose from the L o↵ered service levels and whose impatience values may be

incorrectly approximated must choose prices and charging rates in a way that the estimated

expected occupancy at the charging facility is near the true expected occupancy. In practice,

a charging facility must estimate the arriving user’s impatience p̃ and the probability the

arriving users which can use a subset of the o↵ered service level charging rates p̃B . In Section

3.3, we study the e↵ects of the presence of heterogeneous charging populations in addition to

mischaracterized user impatience profiles. In this plot, when pB = [0.25, 0, 0, 0.25, 0, 0, 0.5] we

see the how the placement of the impatience mass couples with the user charging population

heterogeneity. We see that pricing scheme A leads to an expected occupancy error of around

15% while pricing scheme B has an expected occupancy error of around 25%.
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5. Conclusion

In this paper, we studied the problem of a charging facility operating with

a defined service level model where users arrive randomly with a collection of

random parameters. We specifically focus on the case where a charging facility

is primarily interested in characterizing the expected occupancy at the charging

facility. To compute the expected occupancy, a charging facility uses its knowl-

edge on the distributions of the user arrivals and the respective parameters

(energy demand and impatience factor). While useful, these computations are

vulnerable to incorrect assessments by the charging facilities of the distribution

of user parameters. Specifically, within the model, computing the expected oc-

cupancy is highly dependent on having the correct knowledge of the distribution

of the user’s impatience. As a result, we study the variability in the expected

occupancy when the distribution and values of the impatience factor are mis-

characterized. Furthermore, we also compute a worst-case error bound for the

expected occupancy when the impatience factor is mischaracterized. Lastly, we

consider the e↵ects of user population heterogeneity, e.g., not all users being able

to use all available charging levels, on the expected occupancy. We study the

analytical results via a numerical study that illustrates how a charging facility

operator can intelligently set prices and charging rates. While this paper studies

the application of an opportunity cost-based user choice model to analyze elec-

tric vehicle charging facilities the results are applicable in many settings, where

users arrive with demands and perform a personal trade-o↵ between service rate

and cost. Cloud computing [22] and ride-sharing services [23] among others are

examples of when users can face similar trade-o↵ decisions when paying for a

service [24].
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