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Abstract— Pricing models implemented at electric vehicle
(EV) charging facilities provide facility operators a means
to achieve desirable system-level behavior. Furthermore, a
charging facility must meet resource constraints with high levels
of confidence. To achieve this, a charging facility operator
can tune the pricing model parameters such that resource
constraints are met with high confidence. In this paper, we
propose an approximate chance-constrained optimization pro-
gram that enables charging facility operators to set the pricing
model parameters in an anticipatory, rather than a reactionary,
manner. We present a problem formulation based on two
previously developed pricing models and present results from
a numerical case study for setting the respective pricing model
parameters.

I. INTRODUCTION

Alternative fuel vehicles such as electric vehicles (EVs)
continue to enjoy broad adoption that is placing previ-
ously unseen demands on capacity-limited global power and
transportation infrastructure [1], [2]. EV charging facilities
are resource, i.e., space and power, constrained making it
advantageous for charging facility operators to implement
operational models to aid them in meeting such constraints.
Pricing models are an example of an operational model that
provides operators a means for meeting resource constraints.

In practice, a charging facility operator is challenged in
having exact knowledge of the arriving users (customers)
and their demands. Specifically, users arrive at random
times with a collection of random parameters, e.g., charging
demand, opportunity cost, etc. Hence, a charging facility
must make use of or obtain knowledge of the distribution of
these random parameters to effectively implement the pricing
models.

Within the EV pricing literature there exist diverse ap-
proaches to the problem that utilize knowledge of the user
arrivals and their respective parameters in various ways. For
example, in [3] the authors study the problem of optimal
pricing at an EV charging facility where the charging fa-
cility operator and utility provider are separate, independent
entities. Here, the authors study the system-wide effects of
introducing a large population of EVs with their respective
demands and parameters into the power and transportation
networks. Similarly, the paper [4] addresses the pricing
problem simultaneously from a retail and wholesale perspec-
tive where users are faced with an optimization problem
to choose their optimal charging behavior, i.e., where and
when to charge. In the papers [5], [6] the authors design an
online, reservation-based pricing mechanism for EV parking
assignments and charge scheduling. None of these papers
specifically address the problem of designing parameters

for their respective pricing models with considerations for
resource constraints.

In this paper, we focus on the design of pricing functions
as it relates to their respective parameters. We are specifically
interested in charging facilities that offer one of two pricing
models: a defined service level (DSL) that allows users to
choose a rate of charge from a collection of predefined
rates and a prescribed deadline (PD) model where users
choose a charging deadline that is constrained primarily by
the maximum allowable charge rate at the charging facility.
In these scenarios, users solve an optimization problem to
choose either a charging rate in the DSL model or a charging
deadline in the PD model which minimizes the total cost to
themselves. Both of these models are detailed in [7], [8]. In
both the DSL and PD model, the charging facility knows the
probability distribution of the user parameters and utilizes
this knowledge to compute high-confidence probabilistic
bounds that a specified resource level, e.g., number of present
users or total charging rate of active users, will not be
exceeded.

The papers [7], [8] demonstrate how a charging facility
can set the parameters of the pricing function in either the
DSL or PD model. There, we perform a reactive, manual
tuning of the pricing parameters for both the DSL and PD
models to get the desired confidence interval. This reactive
approach to setting the charging facility pricing parameters
poses a series of challenges. The most notable challenge
is that the parameters are tuned reacting to a confidence
interval not being as desired. Hence, we are motivated to
avoid manually tuning the pricing function parameters. We
propose formulating the problem as an approximate chance-
constrained optimization program that utilizes an approxima-
tion of the confidence intervals as constraints that ultimately
yields the desired pricing function parameters.

A. Notation

We denote the positive part of a real number x by [x]+ =
max(0, x). When considering a collection of independent
and identically distributed (i.i.d) random variables indexed
by subscripts, we use non-subscript variables when referring
to properties that hold for any of the i.i.d random variables.
For example, E[x] is the expectation of each i.i.d random
variable xj .

II. PROBLEM FORMULATION

In this section we present two pricing models that are
initially introduced in [7], [8] to study the problem of how
an EV charging facility should set the pricing function



parameters to meet a particular confidence interval for space
and power constraints.

We consider two operating models: in the first model,
called the defined service level model (DSL), users directly
choose from a discrete set of charging rates. In the second
model, called the prescribed deadline model (PD), users
indirectly choose a charging rate by specifying a departure
time. In both models, a user’s choice is determined by the
amount of charge required for their EV, the preferred amount
of time they will spend at the local attraction, the prices set
by the charging facility, and their impatience factor.

At this facility, a user j arrives at some time aj (in hr.)
with charging demand xj (in kWh), an impatience factor αj
(in $/hr.), and a desired (i.e., minimum) amount of time they
will spend at the charging location ξj (hr.). Throughout the
paper we make the following assumption.

Assumption 1 (Users). User arrivals at the charging fa-
cility are a Poisson process with parameter λ (in EVs/hr.).
Individual charging demand xj , the impatience factor αj ,
and the time spent at the charging location ξj for each
user j are random variables which are independent and
identically distributed (i.i.d). Additionally, there exists finite
0 < xmin < xmax, 0 ≤ αmin < αmax, and 0 ≤ ξmin < ξmax such
that the distributions of xj , αj , and ξj are only supported
on [xmin, xmax], [αmin, αmax], and [ξmin, ξmax], respectively.
Furthermore, each xj is assumed to be a continuous random
variable, and αj may be either discrete or continuous. Lastly,
we allow for the possibility that ξmin = 0 and P(ξj =
0) > 0 to accommodate the practical special case in which,
with nonzero probability, users have no desire to remain at
the charging facility. In this case, the distribution of ξj is
understood to be a generalized probability density function.

In both models, users balance the need for electric charge
with the need for a parking spot for at least their desired
time at the local attraction. We formalize these two models
in the next two subsections.

A. Defined Service Level (DSL) Model

In the DSL model, the charging facility offers L service
levels. Each service level ` ∈ {1, . . . , L} corresponds to a
distinct charging rate R` > 0 (in kW) and price V ` > 0 (in
$/kW) that is the cost per unit energy for the service level.
Thus, user j with energy demand xj pays xjV ` (in $) to
receive a full charge over the time horizon xj/R

` (in hr.)
when choosing service level `. To distinguish the parameters
related to the charging facility from those related to the users,
the charging facility parameters are upper case and indexed
by a superscript, while the parameters for the users are lower
case and indexed by a subscript.

Assumption 2 (DSL Model Charging Rates). Among L ser-
vice levels offered by the charging facility, a higher charging
rate is more costly, i.e., if Ri > Rk then V i > V k. Moreover,
charging rates and prices are distinct so that Ri 6= Rk

for all i 6= k. Lastly, and without loss of generality, the
charging facility’s pricing functions are enumerated such that

V 1 < V 2 < . . . < V L and therefore R1 < R2 < . . . < RL.
Define the maximum offered charging rate Rmax := RL and
Rmax,† to be the absolute maximum possible charging rate
set by a utility provider.

A user j will remain at a charging facility for the amount
of time to completely fulfill their demand xj . Since user j
values their time in excess of the time they want to spend
at the charging facility at a rate αj , they may be willing to
pay for a higher service level since it delivers a full charge
faster. To this end, the total cost faced by a user arriving at
the charging facility is

g`(xj , αj) = xjV
` + αj

xj
R`

. (1)

In (1), the first term of the sum, xjV `, is the energy cost to
the user resulting from their demand at arrival. The second
term of (1), αj

( xj
R`

)
, where xj

R`
is the time to charge for

a particular service level `, is the cost associated with how
much a user values their time. Individual users choose a
service level at a charging facility which minimizes their
total cost of charging factoring in their impatience. To that
end, let S(xj , αj) : [xmin, xmax]× [αmin, αmax]→ {1, . . . , L}
be defined by

S(xj , αj) = argmin
`∈{1,...,L}

g`(xj , αj) . (2)

Then, a rational user j chooses service level S(xj , αj) in
order to minimize their total cost as formalized in the later
stated assumption. For notational convenience, we also define
the values rj to be the charging rate and cost per unit
of energy chosen by user j after solving (2), i.e., rj =
RS(xj ,αj).

Assumption 3 (DSL Users are Rational). Each user chooses
a charging rate according to (2) and leaves the charging
facility once they have satisfied their charging demand. Thus,
user j occupies a charger at the facility during the time
interval [aj , aj + xj/rj ].

The DSL model allows for a charging facility that of-
fers multiple discrete charging levels as is seen in existing
charging infrastructure which is currently divided into three
charging levels [9]. In some cases, it may be more convenient
for the user to provide a deadline by which they expect to
receive a full charge. Such pricing schemes have indeed been
implemented in practice [10]. We develop a deadline model
in the following subsection.

B. Prescribed Deadline (PD) Model

As in the DSL model, in the PD model a user j arrives
with charging demand xj , a desired time at the location ξj ,
and an impatience factor αj . However, in the PD model, the
user j chooses a charging deadline uj rather than a discrete
charging rate. The charging facility broadcasts a single
pricing function P (xj , uj) that constitutes the financial cost
to a user receiving charge xj over the deadline uj . Then,

C(xj , uj , αj , ξj) = P (xj , uj) + αj(uj − ξj) (3)



is the total cost faced by a user j who arrives with demand
xj , impatience factor αj , planned time at location ξj , and
who chooses a charging deadline uj ≥ ξj . Hence, (3),
includes a penalty for choosing a charging deadline uj
greater than their desired time at a location ξj at a rate αj .
We note that it is possible that P (xj , uj) also contains a
similar time penalty. A rational user j chooses their charging
deadline according to

uj ∈ argmin
u≥ξj

C(xj , u, αj , ξj) . (4)

In (3), we see that in addition to paying a price to charge as a
function of the demand and chosen deadline, a user faces an
opportunity cost which is a function of their impatience and
how much time beyond their desired time, ξj , they spend at
the charging facility.

Assumption 4 (PD Users are Rational). Each user chooses
a charging deadline according to (4) and leaves the charging
facility at the chosen deadline. Thus, user j occupies a
charger at the facility during the time interval [aj , aj + uj ].

There are physical limitations on the charging facilities
such as a maximum charging rate allowable per user since
we explore the problem of resource-constrained charging fa-
cilities. This point is formalized in the following assumption.

Assumption 5 (PD Model Charging Rates). The pricing
function P (xj , uj) is such that there exists an upper bound
Rmax,† on the charging rate for any user solving (4) under
the PD model, i.e., Rmax,† ≥ rj , where rj = xj/uj , for all
users j when uj is chosen according to (4). Moreover, the
charging facility provides electric power at the constant rate
rj over the charging time horizon uj for each user j.

Remark 1. In the PD model, note that the charging deadline
uj , and therefore also the charging rate rj = xj/uj , is a
continuous random variable. This contrasts with the DSL
model where rj is a discrete random variable.

There exist many candidate functions that can be utilized
as pricing functions. The following is such an example.

Example 1. Consider the pricing function

P (xj , uj) = xj
(
D(uj − ω)2 +B

)
, (5)

where D is the surge price (in $/kWh-hr.2), ω is the time offset
parameter (in hr.), and B is the base price (in $/kWh).Then,
from (4), a user j chooses deadline

uj ∈ argmin
u≥ξj

xj
(
D(u− ω)2 +B

)
+ αj(u− ξj) . (6)

The term (uj − ω)2 penalizes a user for choosing a deadline
less than or greater than ω at a surge price rate D.

Since (3) substituted with (5) is convex in u, the minimizer
is unique and available in closed-form so that user j will
choose deadline

uj := u∗ = max

{
ξj ,
−αj
2Dxj

+ ω

}
. (7)

As previously mentioned, we operate under Assumption 5,
i.e., Rmax ≥ xj/uj must hold. Interpreting Rmax as an a
priori fixed limit, the charging facility must then choose
parameters D, B, and ω to satisfy Assumption 5. Algebraic
manipulations combined with reasoning when the maximum
is attained lead to the fact that ω > xmax/R

max and

D >

[
max

xj∈[xmin,xmax]

αminR
max,†

2ωxjRmax,† − 2x2j

]
+

. (8)

Remark 2. In the DSL model the user will remain at the
charging location for xj/rj where rj = RS(xj ,αj). In the
PD case, a user selects a deadline uj and the appropriate
rate is set that fulfills the charging demand exactly at the
deadline time.

Next, we formally introduce the problem statement for
the charging facility which lays the foundation for the main
result for both the DSL and PD models.

C. Guarantees on Charging Facility Capacity Limits

Let the set of present users at the charging facility at time
t be defined as

N(t) =

{
{i : t ∈ [ai, ai + xi/ri]} if DSL
{i : t ∈ [ai, ai + ui]} if PD

and let η(t) = |N(t)| be the cardinality of the set of present
users. Note that the set of actively charging users is the same
as the set of present users at the charging facility. Then,

Q(t) =
∑
i∈N(t)

ri

is the total charging rate at time t for all actively charging
users, i.e., the charging facility’s total power consumption.
Note that ri = xi/ui in the summation for the PD model.

Theorem 1. (Theorem 1 from [8]) Consider a charging
facility operating under the DSL model (resp., PD model)
with Assumptions 1, 2, and 3 (resp., Assumptions 1, 4, and
5). Let

θ =

{
x/r if DSL model
u if PD model,

i.e., the model dependent random time spent at the charging
facility for each user. Given any M ≥ 0 number of users
and R ≥ 0 total charging rate, the following statements hold
at steady state for any time t:

1) With confidence 1− δ(M), where

δ (M) =exp

(
−(M−λE[θ])2

2(λE[θ]+ (M−λ E[θ])
3 )

)
if M > λE[θ]

1 otherwise,

the number of users will not exceed M, i.e., P(η(t) <
M) ≥ 1− δ(M).
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Fig. 1. A charging facility operates under one of two models: a defined
service level (DSL) model where users choose a charge rate from a finite
collection of choices and a prescribed deadline (PD) model where users set
a charging deadline upon which they will receive a complete charge. Here, a
charging facility designs the pricing function parameters such that it has high
confidence level in maintaining its space and power constraints. In the DSL
and PD model, the charging facility solves one of three approximate chance-
constrained optimization program to obtain set the pricing parameters.

2) With confidence 1− γ(R), where

γ (R) =

min

{
1,
∑⌊ RE[r]⌋
m=
⌈
R
Rmax

⌉ exp( −(R−mE[r])2

2(mE[r2]+Rmax(R−m E[r])
3 )

)
×P
(
η(t) = m

)
+ δ

(⌊
R
E[r]

⌋)}
, if R > λE [θ]E [r]

1, otherwise,

the total charging rate for all active users will not
exceed R, i.e., P (Q(t) < R) ≥ 1− γ(R).

The full proof of Theorem 1 is presented in [8].

III. METHODOLOGY

In this section, we present the approximate chance-
constrained optimization programs that we solve to set the
pricing parameters for both the DSL and PD models. For
the DSL model, we consider the case where a charging
facility is interested in setting the service level charging rates
while minimizing the expected time users spend actively
charging, E[θ], and also the case when the charging facility
is interested in setting the price per unit energy, V `, of
the offered service levels while maximizing their weighted
sum, w1V

1 + · · · + wLV
L, across all service levels. For

the PD model, we consider the case where a charging
facility has a pricing function P (xj , uj) as in (5) where the
charging facility seeks to set the parameters D and ω while
maximizing E[θ]. The following numerical studies are solved
using MATLAB’s Optimization Toolbox.1

A. Setting Charging Rates and Prices for the DSL Model

Given the randomness of user arrivals and their respec-
tive parameters the guarantees on the resource constraints
are probabilistic in nature. Hence, a charging facility will
set the L service level charging rates subject to resource
utilization confidence interval constraints. We can construct

1The code for this case study is available at https://github.com/
gtfactslab/setchargingparameters

an optimization problem to set the charging rates; however,
since some constraints are probabilistic, we are specifically
solving a chance-constrained optimization program.

In general, chance-constrained optimization problems are
difficult to solve because there often is not a readily available,
closed form expression for probabilistic constraints such
as P (η(t) <M) and P (Q(t) < R) [11]. To address this
problem we formulate an approximate chance-constrained
optimization problem. Instead of finding a direct closed
form expression of P (η(t) <M) and P (Q(t) < R) we
find an approximation for these values that is used as a
constraint in the optimization program, and hence, leading
to an approximate chance-constrained optimization program.
Finding approximations of these probabilities can be difficult
depending on the nature of the problem. Fortunately, we
can make use of the expressions of Theorem 1 as approx-
imations. Noting the results of Theorem 1, we realize that
P (η(t) <M) ≥ 1 − δ(M) and P (Q(t) < R) ≥ 1 − γ(R)
and we utilize the respective lower bounds as constraints in
the chance-constrained optimization program.

Here, we are specifically interested in a charging facility
operating under the DSL model and interested in setting the
service level charge rates while minimizing the expected time
users are actively charging, E[θ]. For the DSL model, by def-
inition, E[θ] = E[x/r] = E[x]E[1/r] = E[x]

∑L
i=1 p(ri)

1
Ri

where p(ri) in the summation is the PMF of rj , i.e., the
rate choice of user j. The expression p(ri) is defined in the
papers [7], [8] for the special case when there is no parking
fee and ξj = 0 for all j. The PMF of rj is difficult to solve
in general and is challenging to include in the objective of
the approximate chance-constrained optimization program.
However, note that each 0 ≤ p(ri) ≤ 1 in the summation
when considered in the context of an optimization objective
is essentially a weighting on each 1/Ri. Given the difficulties
of using the p(ri) and noting the E[x] is simply a constant
when the charge rates are the decision variable, we choose
an alternative objective that is an unweighted version of the
original objective. This leads to the following optimization
program.

Program 1 (Optimization to Set DSL Charge Rates).

min
Rm

L∑
m=1

1

Rm

s.t. Ri > Rk + εRik for all i > k

0 < Ri < Rmax,† for i ∈ {1, . . . , L}
1− δ (M) ≥ εδ
1− γ (R) ≥ εγ

Program 1 formalizes the prior statements regarding a
charging facility operator setting the service level charge
rates. In Program 1, εRik represents a user set parameter of
the minimum spacing between charge rate i and k, 0 ≤ εδ ≤
1 is the confidence value an operator seeks for the number
of present or actively charging users, and 0 ≤ εγ ≤ 1 is the
confidence value an operator seeks for the total charge rate
of actively charging users.



Given δ(M) and γ(R) in Theorem 1 we realize Program 1
is non-convex. However, since we are addressing the problem
in the context of EV charging there are real-world limitations
on the service level charge rates, and hence, the domain
for each Ri for i ∈ {1, . . . , L} is bounded. This allows a
charging facility operator to solve this optimization program
by using generalized nonlinear solvers such as MATLAB’s
FMINCON() along with sampling techniques on the initial
conditions. This is detailed in Section IV when discussing
the numerical study.

A charging facility may also be interested in setting the
prices V ` < V max for all ` where V max is the maximum
price at the charging facility. To achieve this a charging
facility operator can set prices according to the following
optimization program.

Program 2 (Optimization to Set DSL Prices).

max
Vm

L∑
m=1

wmV
m

s.t. V i > V k + εVik for all i > k

0 < V i < V max for i ∈ {1, . . . , L}
1− δ (M) ≥ εδ
1− γ (R) ≥ εγ

Program 2 formalizes a charging facility operator setting
the service level prices according to series of constraints.
In Program 2, similar to Program 1, εVik represents a user
set parameter of the minimum spacing between pricing of
service level i and k, 0 ≤ εδ ≤ 1 is the confidence value an
operator imposes on the number of actively charging users,
and 0 ≤ εγ ≤ 1 is the confidence value an operator imposes
for the total charge rate of actively charging users. Next, we
present the scenario when a charging facility operating under
the PD model is interested in setting its pricing parameters.

B. Setting Pricing Parameters for the PD Model

Consider the case when a charging facility is operating
under the PD model and P (xj , uj) is as in Example 1. The
two pricing parameters of interest are the surge price D and
the time offset parameter ω whose domains are restricted
as detailed in Example 1. In addition to the lower bound
on D detailed in Example 1 a charging facility imposes a
maximum surge price Dmax. Note that Dmax is driven by
a desire to limit the surge price users can face rather than
physical charging facility limitations as is the case for the
lower bound of the surge price D as is detailed in Example
1. Thus, we utilize the fact that P (η(t) <M) ≥ 1− δ(M)
and P (Q(t) < R) ≥ 1−γ(R) from Theorem 1 to formulate
an approximate chance-constrained optimization program.

The objective of this program is to maximize the expected
time users spend actively charging at the charging facility.
In the PD model a charging facility particularly sensitive to
the total charge rate of actively charging users may use this
objective, as opposed to the minimization in Program 1.

Specifically, the objective would be max E[uj ] where
uj is as defined in (7). However, using this expression as

the objective of the optimization program is challenging.
As a result, after some algebraic reasoning, we create an
alternative objective max 1

D + ω to attempt to mimic the
behavior of (7). While admittedly it is not an exact account,
we attempt to maintain the inverse relationship between the
surge price D and the deadline uj while also maintaining
the positive correlation between ω and uj .

Taking into consideration the domain restrictions of the
pricing function (5) and the approximate confidence inter-
val formulas, we can formulate the following optimization
program for the PD model.

Program 3 (Optimization to Set PD Model Surge Price &
Time Offset Parameter).

max
D,ω

1

D
+ ω

s.t. ω > xmax/R
max

Dmax > D >

[
max

xj∈[xmin,xmax]

αminR
max

2ωxjRmax − 2x2j

]
+

1− δ (M) ≥ εδ
1− γ (R) ≥ εγ

Program 3 formalizes the prior statements regarding the
approximate probability constraints and the constraints on
the pricing function parameters D and ω. In the next section
we present the results of solving the 3 aforementioned
optimization programs.

IV. NUMERICAL STUDY DISCUSSION

In this section we present the implementations of Program
1–3 and discuss the numerical results from each optimization
program implementation.

First, we construct a charging facility operating under the
DSL pricing model. We specifically consider the case where
a charging facility is attempting to set L = 3 service level
charge rates with pricing functions of the form of (1). Each
service level has its own prices per unit energy where V 1 =
0.20 $/kWh, V 2 = 0.25 $/kWh, and V 3 = 0.30 $/kWh.
We consider the EV charging problem within the context of
physical constraints, and hence, the maximum charge rate of
the facility is Rmax = 40kW. Furthermore, a charging facility
desires a minimum charge rate spacing of εR21

= 4kW and
εR32

= 5kW. The imposed approximate chance constraints
for the resource levels M = 60 and R = 1000 kW are
εδ = 0.85 and εγ = 0.85, respectively. Lastly, we assume
xj ∼ U(5, 60) where U(·) denotes a uniform distribution
and αj is a discrete random variable taking the values 5, 10,
and 15 with equal probability of 1/3 each.

Given these parameters, a charging facility operator sets
the L = 3 charging rates by solving Program 1. Since
Program 1 is non-convex the locally optimal feasible solu-
tion, if there is one, will sometimes vary depending on the
initial condition of the solver. To handle this issue we resort
to a sampling of initial conditions to find the optimal set
of charging rates amongst a collection of feasible charging



rates. We first restrict the sampling technique to integer-
valued initial conditions greater than some value Rmin

0 and
less than the maximum allowable charge rate at the charging
facility Rmax,†. To initialize Program 1, the charging facility
chooses 3 initial values from a range of [Rmin

0 , Rmax,†] where
Rmin

0 > 0. Then, a charging facility orders these values such
that Assumption 2 is respected in the initial conditions. This
means that at most there are

(
n
3

)
initial conditions where n =

Rmax,†−Rmin
0 +1. Note that Rmin

0 is the minimum threshold on
the initial conditions of the optimization program and is not
an imposed minimum on the allowable rate at the charging
facility while Rmax is a maximum on the allowable rate for
both the DSL and PD model. The value Rmin

0 is considered
to reduce the number of initial conditions sampled. Given
these observations, we solve Program 1 and present the top
3 results in Table I.

TABLE I
NUMERICAL RESULTS OF PROGRAM 1

Initial Condition (kW) Final Rates Cost
38,39,40 24.72,33.22,39.85 0.0956
35, 38, 39 24.76, 32.91, 39.75 0.0959
35, 39, 40 24.57, 32.58, 39.93 0.0964

The second part of the DSL numerical study addresses
the problem of setting the service level prices V ` by solving
Program 2. We consider the case where L = 3, and the
respective charge rates are R1 = 20kW, R2 = 25kW, and
R3 = 30kW, and we use the weights wi = 1 for i =
1, . . . , L. Furthermore, we take εV21

= .05, and εV32
= .04

as the minimum spacing between the respective service level
prices. Additionally, M = 30, εδ = 0.30, R = 800kW,
and εγ = 0.75. Lastly, xj ∼ U(5, 60) and αj is a discrete
random variable taking the values 5, 15, and 20 with equal
probability. As in the Program 1 case, we sample a series
of initial conditions to find the optimal set of service level
prices amongst the collection of feasible prices. Given these
parameters, we solve Program 2 and present the results in
Table II.

TABLE II
NUMERICAL RESULTS OF PROGRAM 2

Initial Condition ($/kWh) Final Prices Objective Value
0.41,0.45,0.49 0.3963,0.4463,0.4932 1.3358
0.43, 0.45, 0.49 0.3935, 0.4435, 0.4973 1.3344
0.42, 0.45, 0.49 0.3944, 0.4444, 0.4952 1.3339

The last part of the numerical study addresses the problem
of a charging facility operating under the PD model with a
pricing function of the form of (5). Here, a charging facility
sets the surge price D and the desired time offset parameter ω
subject to the approximate probabilistic resource constraints
for specified values of M and R. Specifically, we consider
the case where M = 100, R = 1400, εδ = 0.30, and εγ =
0.75. Lastly, we take xj ∼ U(10, 100), ξj ∼ U(0, 2.5) and
αj ∼ U(2, 10). To set the parameters D and ω, the charging
facility must solve Program 3. These results are presented in
Table III.

TABLE III
NUMERICAL RESULTS OF PROGRAM 3

Init. Cond. ($/kWh-hr.2, hr.) Final Param. Objective Val.
2.00,3.00 0.4542,4.9759 7.1778
2.00, 2.50 0.5976, 4.8174 6.4907
2.25, 2.50 1.0606, 4.6371 5.5800

V. CONCLUSION

In this paper, we study the problem of setting the pricing
function parameters at a charging facility that operates on
either the DSL model where users choose a charge rate that
minimizes the cost to themselves from a finite collection of
charge rates or the PD model where users choose a charging
deadline that minimizes the total cost to themselves. In the
DSL model, we focus on a charging facility setting the
appropriate service level charge rates and prices. In the PD
model, we consider a particular pricing function example
and focus on setting the two respective pricing function
parameters. For both models, we construct approximate
chance-constrained optimization programs that make use of
a closed-form expression of the confidence level for both
space and power constraints at the EV charging facility.
While the optimization problems are non-convex and difficult
to solve in general, we address the non-convexities of the
optimization problems by utilizing sampling methods that
take advantage of the bounded domain to find a solution to
the problem. We present a numerical study that illustrates
the efficacy of the numerical techniques.
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