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Abstract— Electric Vehicle (EV) charging facilities operate
under specific pricing models to mitigate the often random
demands of arriving users while balancing their self-interested
financial goals. In this paper, we study charging facilities
operating with a discrete service level model. Here, users arrive
randomly with a collection of random demands. In particular,
an arriving user selects the service level, i.e., energy price and
charging rate, that minimizes the total cost of receiving service.
Upon selection, a portion of the service level cost faced by users,
a function of the offered prices and rates, becomes revenue to
the charging facility. To that end, we consider the case when a
charging facility has a collection of charging rates to offer such
that the respective prices maximize the expected revenue. First,
we present an optimization program that yields the service level
prices that maximize the expected revenue at a charging facility
with consideration for the charging facility’s operational costs.
Then, we derive a high-confidence bound on the total revenue
expected at a charging facility operating under the service level
model. Lastly, we illustrate the application of the results via a
numerical study.

I. INTRODUCTION

Governments are pushing for, and consumers are active
participants in, the continued adoption of electric vehicles
(EVs). The rate of this adoption poses both operational
and financial challenges for EV charging facilities. From an
operational perspective, EV charging facilities can employ a
variety of operational models, e.g., bidding pricing models
[1], [2], scheduling models [3], [4], etc., to mitigate the
effects of the increased demand for their services. On the
financial side, charging facilities must carefully weigh the
effects of their pricing methodologies on users and their own
financial goals and requirements.

For example, two recent studies point to the need for
further investment in the standardization of the availability
of on-site commercial charging, estimating that $110-180
billion needs to be invested in private and commercial
charging infrastructure to satisfy global charging demand [5],
[6]. Thus, the increased demands on charging infrastructure
from the increased adoption of EVs call for further capital
expenditures from both governments and charging facility
operators. While some of the required investment for EV
charging facilities will come from government infrastructure

The authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, 30332, USA. {csantoyo,
sam.coogan}@gatech.edu. S. Coogan is also with the School of
Civil and Environmental Engineering, Georgia Institute of Technology. This
work was supported in part by the National Science Foundation under grant
1931980. C. Santoyo was supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1650044.

investments, the remainder of the investment will be shoul-
dered by EV charging facility operators and their stakehold-
ers. This fact drives the need to analyze the financial trade-
offs of operating an EV charging facility given a particular
operational model. Hence, given the estimated magnitude of
the required future investment, we are motivated to study the
revenue side of charging facilities.

In general, the EV charging problem has been addressed
from four overarching perspectives: pricing-aware EV charg-
ing models, routing and schedule-based EV charging, EV
charging station design, and data-driven EV charging [7], [8].
In this work, we focus on pricing-aware EV charging models;
specifically, we are interested in the application of specific
pricing models which provide charging facility revenue-side
insights upon their deployment.

Current EV charging literature focused on pricing takes
disparate approaches; for example, the papers [9], [10], study
the problem of optimal pricing at EV charging facilities
where the charging facility and the utility provider are sep-
arate, independent entities and users solve a path-dependent
decision problem which minimizes the cost to themselves.
These works are extended in [7] where the charging facility
operators set prices based on congestion pricing techniques.
In the papers [11], [12] it is demonstrated that it is possible to
create a pricing mechanism that can actively accept or reject
users based on system-wide parameters such as demand
while handling the inherent randomness of the EV reserva-
tion system. The paper [13] studies the EV charging revenue
problem by adapting capacity control mechanisms from asset
revenue management in order to allocate charging capacity.
Lastly, the paper [14] studies the revenue maximization
problem at plug-in hybrid charging stations by studying the
equilibria of customer subscription dynamics.

In the present work, we study the revenue problem of
EV charging facilities operating under a service level model
introduced in [15]. Specifically, this model is called the
defined service level (DSL) model where users arrive ran-
domly at the charging facility. Upon arrival, users have a
collection of random parameters which quantify their energy
demands and their value of time (opportunity cost). Using
these parameters, users choose a service level, i.e., energy
price and charging rate, from the set of offered service
choices which minimizes the total cost to themselves. A
portion of the total cost faced by users is received as revenue
by the charging facility. Previous works such as [15], [16]
have focused on the operation of charging facilities with
considerations for finite resources. In this work, we focus on



setting charging rate prices that yield revenue maximization
and on providing high-confidence bounds on the achieved
revenue levels at the charging facilities.

The contributions of this paper are three-fold: first, we
present a revenue side model for the charging facility which
augments the user-side model presented in [15]. Second,
we utilize the charging facility revenue model to construct
an optimization program that sets the service level prices
while maximizing the charging facility’s expected revenue.
Third, we derive a concentration bound that provides a
confidence interval on the likelihood of exceeding specified
revenue levels given knowledge of the random parameters of
the arriving users and the revenue-maximizing service level
prices. Throughout this paper, we consider charging facilities
whose lowest service level operating costs are subsidized
by a government authority. The presence of a subsidy is
motivated by current federal and state laws which subsidize
the development and operation of EV charging facilities [17].
To the best of our knowledge, this is the first service level
model which considers the effects of pricing subsidies on
setting the charging facility revenue-maximizing prices and
the respective revenue projections.

This paper is organized as follows: Section II formulates
the EV charging problem, Section III presents the revenue-
maximizing optimization program and the revenue confi-
dence bound, and Section IV and V present a numerical study
of the main results and the work’s conclusions, respectively.

A. Notation

For an indexed set of variables {xk}, we let ∆i
jx denote

the difference between the variable with index i and j, i.e.,
∆i
jx = xi − xj . When considering a collection of inde-

pendent and identically distributed (i.i.d) random variables
indexed by subscripts, we use non-subscript variables when
referring to properties that hold for any of the i.i.d random
variables. For example, E[x] is the expectation of each i.i.d
random variable xj .

II. PROBLEM FORMULATION

In this section, we present a pricing model for EV charging
that was initially introduced in [15], [16]. We consider
a defined service level (DSL) model where users directly
choose from a discrete set of charging rates and prices upon
arrival at the charging facility; a user pays a higher price for
a faster charge rate. Furthermore, we supplement this model
by introducing a charging facility-side revenue model that
accounts for operational costs.

A rational user chooses a charge rate depending on the
amount of charge required for their EV, the prices and rates
set by the charging facility, and their impatience factor, i.e.,
their value of time. In this paper, we assume that users
generally prefer to minimize the cost to themselves and
depart the facility immediately upon receiving a full charge.

At this facility, a user j arrives at some time τj (in hr.) with
charging demand xj (in kWh), and an impatience factor αj
(in $/hr.). Throughout the paper, we make the following
assumption about the aforementioned variables.

TABLE I
USER PARAMETER DEFINITIONS

Var. Parameter Unit Range
j user index - -
τj arrival time hr. -
xj user demand kWh [xmin, xmax]
αj impatience factor $/hr. {a1, . . . , aM}
rj charging rate kW (0, Rmax]

TABLE II
PARAMETER DEFINITIONS FOR THE CHARGING FACILITY

Var. Parameter Unit Range
` service level - {1, . . . , L}
V ` price per unit of energy $/kWh -
R` charging rate kW (0, Rmax]
W ` operating cost $/kWh -

Assumption 1 (Users): User arrivals at the charging fa-
cility are a Poisson process with parameter λ (in EVs/hr.).
Individual charging demand xj , and the impatience factor αj
for each user j are random variables which are independent
and identically distributed (i.i.d). In particular, xj and αj
are continuous random variables with support [xmin, xmax]
for some 0 < xmin < xmax and [αmin, αmax] for some
0 < αmin < αmax, respectively.

The user parameters, their respective units, and upper and
lower bounds are summarized in Table I. The charging facil-
ity offers L service levels. Each service level ` ∈ {1, . . . , L}
corresponds to a distinct charging rate R` > 0 (in kW) and
price V ` > 0 (in $/kWh) that is the cost per unit energy for
the service level. Thus, user j with energy demand xj pays
xjV

` (in $) to receive a full charge over the time horizon
xj/R

` (in hr.) when choosing service level `.
The parameters related to the charging facility under a

discrete pricing model are listed in Table II. To distinguish
the parameters related to the charging facility from those
related to the users, the charging facility parameters are upper
case and indexed by a superscript, while the parameters for
the users are lower case and indexed by a subscript j.

Assumption 2 (Model Charging Rates): Among L ser-
vice levels offered by the charging facility, a higher charging
rate is more costly, i.e., if Ri > Rk then V i > V k. Moreover,
charging rates and prices are distinct so that Ri 6= Rk

for all i 6= k. Lastly, and without loss of generality, the
charging facility’s pricing functions are enumerated such that
V 1 < V 2 < . . . < V L and therefore R1 < R2 < . . . < RL.

A user can therefore pay less by choosing a slower charge
rate but must balance this with their impatience. In particular,
the total cost faced by a user arriving at the charging facility
with impatience factor αj , charging demand xj , and who
chooses service level `, is

g`(xj , αj) = xjV
` + αj

xj
R`

. (1)

In (1), the first term of the sum is the energy cost to the
user and the second term is the cost associated with how
much a user values their time.

Individual users choose a service level at a charging



facility which minimizes their total cost of charging factoring
in their impatience. To that end, let S(xj , αj) : [xmin, xmax]×
{a1, . . . , aM} → {1, . . . , L} be defined by

S(xj , αj) = arg min
`∈{1,...,L}

g`(xj , αj) . (2)

Then, a rational user j chooses service level S(xj , αj) in
order to minimize their total cost as formalized in the later
stated assumption.

For notational convenience, we also define the values rj
to be the charging rate and cost per unit of energy chosen by
user j after solving (2), i.e., rj = RS(xj ,αj), as indicated in
Table I. An arriving user chooses a service level according
to (2) and the probability of each choice is formulated in the
following Lemma.

Lemma 1 (Corollary 2 from [15]): Under Assumptions
1, 2, and 3, consider the set of L functions of two
independent RVs

{
g`(xj , αj)

}L
`=1

where each g` is of the
DSL model as defined in (1). Then, for k ∈ {1, . . . , L},

P
(
S(xj , αj) = k

)
= P

(
¯
αk < αj < ᾱk

)
where

ᾱk = min

(
αmax, min

k<i

∆i
kV

∆k
i R̄

)
, (3)

¯
αk = max

(
αmin, max

i<k

∆i
kV

∆k
i R̄

)
(4)

where ∆k
i V = V k−V i and ∆k

i R̄ = R̄k−R̄i = 1/Ri−1/Rk

for all i, k. Furthermore, the charging rates rj chosen by
each user j is a collection of independent and identically
distributed discrete random variables each with PMF

pr(r) =


P
(
¯
α1 < αj < ᾱ1

)
if r = R1 ,

...
P
(
¯
αL < αj < ᾱL

)
if r = RL .

(5)

Observe that the user charging times xj/rj , being uniquely
determined by xj and αj , constitute a collection of inde-
pendent and identically distributed random variables. Fur-
thermore, this means the time a user spends at the charging
location is xj/rj where this is the time for a user to receive
a full charge based on their chosen service level.

Assumption 3 (Users are Rational): Each user chooses a
charging rate according to (2) and leaves the charging facility
once they have satisfied their charging demand. Thus, user
j occupies a charger at the facility during the time interval
[τj , τj + xj/rj ].

Define ηtotal be the total number of users which pass
through a charging facility during an operation duration.

Charging facilities are interested in understanding their
financial gain from the provided energy levels. Recall that
we are considering charging facilities whose lowest service
level is subsidized by a government entity. This is formalized
in the following assumption.

Assumption 4 (Operational Subsidy): The charging facil-
ity operation is subsidized such that the fixed cost to the
charging facility for operating the lowest service level is
zero and the price of the lowest service level is fixed where

the price value for the first service level V 1 is not at the
discretion of the charging facility. However, the charging
facility may set the service level prices V 2, . . . , V L at their
discretion.

In practice, the presence of the subsidy outlined in As-
sumption 4 means that an external entity, e.g., a government
entity, fixes the lowest price offered at a charging facility
in exchange for covering the first service levels operational
costs. The existence of this subsidy creates an interesting
dynamic for the charging facility as it seeks to maximize its
charging revenue when setting the prices V 2, . . . , V L.

When an arriving user makes a choice of service level at
the charging facility part of the total cost to themselves is
seen as revenue to the charging facility. Let the revenue per
user be the random variable z such that the revenue received
by a charging facility is

z(xj , αj) =


xj(V

1 −W 1) if S(xj , αj) = 1

xj(V
2 −W 2) if S(xj , αj) = 2

...
xj(V

L −WL) if S(xj , αj) = L

where W ` (in $/kWh) is a fixed cost for operating the service
level ` at the charging facility. Furthermore, define fZ(z)
is the distribution of revenue per service level. Note that in
z(xj , αj) that W 1 = 0 due to a subsidy to the lowest service
level detailed in Assumption 4. While a charging facility
is motivated to maximize their revenue, the existence of a
subsidy and anchoring of the lowest service level pricing
creates a scenario of competing priorities when charging
facilities set their service level prices.

Note that since xj is a bounded random variable and V `

and W ` for ` ∈ {1, . . . , L} are bounded values, there exists
a Zmax such that z(xj , αj) < Zmax for all S(xj , αj) = i
where i ∈ {1, . . . , L}.

Given that z(xj , αj) is dependent on S(xj , αj) one can
break down the expected revenue conditioned on S(xj , αj).
Then, from the law of total expectation we know that

E[z] =

L∑
i=0

E[z | S(xj , αj) = i]P(S(xj , αj) = i).

Lastly, define

Y =

ηtotal∑
i=1

zi

to be the total revenue received by the charging facility. Note
that Y is a compound Poisson process [18].

III. MAIN RESULTS

In this section, we present two results that enable a
charging facility to understand the financial dynamics of
their operation and the subsequent effects on users from such
pricing policies. We utilize the service model from Section
II where a charging facility receives revenue from arriving
users who choose a service level, i.e, price and charging
rate, according to (2). Here, we present an optimization
program that maximizes the facility’s revenue. Furthermore,



given a set of revenue-maximizing service level prices, a
charging facility is interested in the likelihood of achieving
specific revenue levels. Hence, we derive a high-confidence
concentration bound which gives a confidence interval on
the likelihood of a charging facility achieving a particular
revenue level.

At the moment a user chooses a service level dependent
on their random parameters, the charging facility receives
some revenue from the user’s choice. A charging facility
sets prices to maximize this revenue; however, since the
revenue received from each user is a random variable we
utilize the expected revenue per user E[z] as the objective
for the optimization program and maximize its value. Then,
the optimization program to set the service level prices at a
charging facility is as follows.

Program 1 (Optimize Service Level Prices):

max
Vm,m∈{2,...,L}

E[z]

subject to

V i <V k for i < m where i, k ∈ {1, . . . , L}

Program 1 formalizes a charging facility setting the service
level prices while maximizing the expected revenue. In
addition, Program 1 maintains the price ordering of service
levels from Assumption 2. Moreover, we study this problem
in the context with the presence of a subsidy for service level
` = 1 as formalized in Assumption 4 such that V 1 is fixed
and W 1 = 0.

Program 1 yields the per user revenue-maximizing service
level prices; however, in practice, a charging facility is also
interested in the total revenue received during a time period
of operation such that it enables facility operators to better
forecast their investment capabilities. Specifically, since users
arrive randomly with random demands the charging facility
must make probabilistic estimates on what revenue levels it
will attain.

Recall from Section II that Y is the total revenue received
from ηtotal arrivals at the charging facility over a time
period of length T . Note that Y is a random sum whose
distribution is not easily obtained. Hence, quantifying the
confidence with which a charging facility will attain specific
revenue levels is challenging. As a result, we resort to
utilizing concentration inequalities to derive a confidence
bound on achieving specific revenue levels. We formalize the
confidence bound on achieving specific revenue levels given
a specific set of user parameters in the following theorem.

Theorem 1: Consider a charging facility operating under
the DSL model with Assumptions 1, 2, and 3. Given any
S ≥ 0 total revenue, the following statement holds:

With confidence 1− φ(S), where

φ (S) =

min

{
1,
∑∞
m=
⌈
S

E[z]

⌉ exp

(
−(mE[z]−S)2

2(mE[z2]+Zmax(m E[z]−S)
3 )

)
×P
(
η = m

)}
, if S < E [ηtotal]E [z]

1, otherwise,

the total revenue for all users will exceed S, i.e.,
P (Y > S) ≥ 1− φ(S).
Proof: Introduce ν = ηtotal E[z] − S . Hence, S =

ηtotal E[z]− ν. From total probability we know that,

P(Y ≤ S) =
∞∑
m=0

P
(
Y ≤ S | ηtotal = m

)
P
(
ηtotal = m

)
.

Using Bernstein’s inequality from Fact 1 for the lower tail
of a distribution we can bound the conditional probability as
follows.

P
(
Y ≤ S | ηtotal

)
≤ exp

 −(ηtotal E[z]− S)2

2
(
ηtotal E[z2] + Zmax(ηtotal E[z]−S)

3

)


Then, utilizing this fact within the summation which leads
to the following.

P(Y ≤ ηtotal E[z]− ν | ηtotal) ≤
∞∑
m=0

exp

 −(mE[z]− S)2

2
(
mE[z2] + Zmax(mE[z]−S)

3

)
P

(
ηtotal = m

)
.

where mE[z] − S > 0. This implies that m > S /E[z].
Using this fact leads to

P(Y ≤ S) ≤
∞∑

m=
⌈
S

E[z]

⌉ exp

 −(mE[z]− S)2

2
(
mE[z2] + Zmax(mE[z]−S)

3

)
×

P
(
ηtotal = m

)
= φ†(S) .

Given the use of Bernstein’s inequality we know that the
upper bound on P(Y ≤ S) will be less than 1 on some
domain S ∈ (−∞,ΓS). To find the exact interval for when
this occurs requires finding a specific value of S; however,
we know that ΓS must be less than or equal to E [ηtotal]E [z]
as a result of using Bernstein’s inequality on Y . Hence, we
can define

φ(S) =

{
min

{
1, φ†(S)

}
if S < E[ηtotal]E[z]

1 else.

Recalling that P (Y > S) = 1 − P (Y ≤ S) > 1 − φ(S)
completes the proof.



IV. NUMERICAL STUDY

In this paper, we study how a charging facility can
set prices that maximize revenue and how the revenue-
maximizing prices can be utilized to provide high-confidence
revenue projections at a charging facility whose user param-
eter and arrival distributions are known. In particular, for
a given charging facility we solve Program 1 to set prices
and illustrate Theorem 1 to provide high-confidence revenue
projections.

Consider an EV charging facility offering L = 3 service
levels where the charging facility operator knows that they
will offer the charging rates R1 = 5 kW., R2 = 45 kW, and
R3 = 115 kW. Each of the offered charging rates carries
a cost of operation that is converted to a monetary rate per
kWh. of charge; specifically, W1 = 0.0 $/kWh., W2 = 0.40
$/kWh., and W3 = 0.60 $/kWh. Note that since W1 = 0
$/kWh. due to the subsidy, i.e., no cost is incurred for
offering the lowest service level, as detailed in Assumption
4.

Furthermore, a charging facility has estimated the users
to arriving with Poisson process parameter λ = 20 EVs/hr.
The arriving users have a continuous impatience distribution
that is a truncated Rayleigh distribution fA(αj) ∼ D(5, 20)
and the energy demand is a uniform distribution fX(xj) ∼
U(10, 100).

We first consider the scenario where a charging facility
operator is setting the prices according to Program 1. Here,
a charging facility is setting the prices V 1, V 2, V 3 such that
the expected revenue E[z] is maximized. Note that we study
this problem in the context where subsidies are present such
that V1 = 1.0 $/kW. is fixed. Given the aforementioned pa-
rameters on the user and the charging facility the maximizing
service level prices are V2 = 2.426 $/hr. and V3 = 2.659 $/hr.
and P (S(xj , αj) = 1) = 0.36, P (S(xj , αj) = 2) = 0.45,
P (S(xj , αj) = 3) = 0.19. Hence, a charging facility is able
to maximize its revenue and maintain usage of all the offered
service levels given the profile of arriving users.

After setting the prices at the charging facility using
Program 1 a charging facility operator is also interested in
computing a confidence level on the likelihood the charging
facility will exceed a specific revenue level, i.e., P(Y > S).
However, since finding a closed-form expression for the
distribution of Y is difficult we utilize a lower bound on
this probability such that P(Y > S) ≥ 1− φ(S).

We consider the scenario where the charging facility is
operating for a time period of T = 10 hrs. Using V ` and W `,
we compute the confidence bound on achieving increasing
revenue levels in Fig. 1. In Fig. 1 we see that the theoretical
bound from Theorem 1 lower bounds the Monte Carlo value
which is taken to be P (Y > S). Specifically, note that the
larger the total revenue value the looser the confidence bound
becomes. In other words, as the total revenue value increases
a charging facility becomes less and less confident that such
a value will be exceeded. This follows the intuition that
achieving value further from the mean gets less and less
likely. While the bound is conservative, it does allow charg-
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Fig. 1. A charging facility operating under the defined service level (DSL)
model offers L = 3 service levels with charging rates R1 = 5 kW., R2 =
45 kW., and R3 = 115 kW. Given these charging rates, a charging facility
maximizes their revenue per user charge by solving Program 1. Ultimately,
the charging facility operates with prices V 1 = 1.0, V2 = 2.426 and
V3 = 2.659 $/kWh. Moreover, a charging facility also needs to have a high-
confidence of achieving specific revenue levels. We present the confidence
bounds along with a Monte Carlo simulation of a charging facility operating
under these parameters.

ing facilities to appropriately forecast the revenue they will
receive from the arriving user revenues when the distribution
of Y is not known.

V. CONCLUSION

In this paper, we study the revenue problem for a charging
facility operating under a defined service level (DSL) model
where users arrive at a charging facility randomly with
random parameters. A charging facility is interested in two
aspects of its operation: 1) a charging facility must set the
prices of the collection of charging rates offered to users
while maximizing their revenue and 2) given a collection
of prices and charging rates a charging facility makes high
confidence projections on achieving specific revenue levels.
Upon arrival, users choose the service level, i.e., energy
price and charging rate, which minimizes the total cost to
themselves. Each user choice presents a revenue stream to
the charging facility, and hence, a charging facility operator
must carefully select the service level prices. Upon selecting
the prices, a charging facility can utilize a derived concen-
tration bound along with knowledge of the statistics of the
user parameters to compute confidence levels on achieving
specific revenue thresholds. We illustrate both contributions
via a numerical study.
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VI. APPENDIX

Fact 1 (Bernstein’s Inequality, [19]): Given n indepen-
dent, zero-mean random variables Xi such that, for some
b > 0, ν > 0, 0 ≤ Xi ≤ b almost surely for all 1 ≤ i ≤ n.

Then, it holds that

P

(
n∑
i=1

(Xi − E[Xi]
)
≤ −ν

)

≤ exp

(
−ν2

2
(∑n

i=1 E[X2
i ] + bν

3

)) . (6)


