
Composition of Safety Constraints For Fixed-Wing Collision
Avoidance Amidst Limited Communications

Eric Squires∗ and Pietro Pierpaoli†
Georgia Institute of Technology, Atlanta, GA 30318

Rohit Konda‡
University of California Santa Barbara, Santa Barbara, California 93106

Samuel Coogan§
Georgia Institute of Technology, Atlanta, GA 30318

Magnus Egerstedt¶
University of California, Irvine 92697

This paper considers how to ensure that a system of fixed wing Unmanned Aerial Vehicles

(UAVs) can avoid collisions. To do so we develop a novel method for creating a barrier function,

which is similar to a Lyapunov function and can be used to ensure that a system can stay safe for

all future times. After introducing the general approach, it is shown how to ensure that collision

avoidance for two vehicles can be guaranteed for all future times. The construction is then

extended to the case of arbitrarily many vehicles by addressing how to satisfy multiple safety

objectives simultaneously. We do this while ensuring output actuator commands are within

specified limits. Because this formulation requires communication of control values and may

therefore reduce throughput of other important messages, we then show how to reformulate

the solution without this significant communication overhead while still ensuring safety is

maintained and actuator limits are respected. We validate the theoretical developments of

this paper in the simulator SCRIMMAGE with a simulation of 20 UAVs that maintain safe

distances from each other even though their nominal paths would otherwise cause a collision.

I. Introduction

As low-cost, unmanned aerial vehicles (UAVs) find civilian uses, the low-altitude airspace is increasingly congested,

leading to large-scale UAV operation limitations including concerns for privacy, the environment, national

security, and safe-flight validation [1]. A key challenge for safe-flight validation in congested environments is ensuring
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collision avoidance while enabling vehicles to accomplish their designed missions. Thus, in this paper we propose an

algorithm that minimally alters a vehicle’s nominal control input while still ensuring safe operations.

A variety of approaches to fixed-wing collision avoidance have been proposed. Partially observable Markov

decision processes are used in [2, 3] to achieve safe flight distances. The dynamic window approach, originally

introduced in [4] for static obstacles and adapted to moving obstacles in [5], uses circular arcs for trajectories and

limits the set of allowable velocities to enable a quick optimization of the control input. In [6], the authors develop a

first-order look-ahead algorithm that can be applied to vehicles with unicycle dynamics in a decentralized way while

guaranteeing that collisions amongst k vehicles are avoided. Potential functions [7, 8] have also been applied to

fixed-wing collision avoidance, where it can be shown that vehicles can safely avoid each other even when their sensing

range is limited. Similarly, [9] discusses how to combine potential functions with trajectory goals into a navigation

function in order to provide criteria under which collision avoidance can be guaranteed. Navigation functions have also

been combined with Model Predictive Control (MPC) by making inter-agent distance requirements implicit in the cost

function [10]. MPC has additionally been applied to UAV collision avoidance for vehicles with limited sensing [11]

and communication constraints [12]. While MPC provides a flexible framework for distributed collision avoidance,

its limited horizon can make safety guarantees difficult. In a more general case, the optimal control formulation in

[13] allows for collision avoidance guarantees, but it is computationally intensive as it requires numerically solving the

Hamilton-Jacobi-Bellman equations over an infinite horizon.

Trajectory generation was analyzed in [14] where a nonlinear program is developed to find a safe reference trajectory

constructed from polynomials. In [15] and [16], the authors discuss trajectory generation using a RRT with dynamics

constraints provided by Dubins paths and a waypoint generation algorithm, respectively. Reference governors [17],

where the input reference signal for a nominal closed loop controller is overridden in order to ensure that safety and

performance constraints are maintained, have also been applied to collision avoidance in [18]. In [18] the authors show

how to ensure collision avoidance for a distributed set of linear systems via a sequential mixed-integer programming

optimization. The approach considers a finite horizon in the optimization because it is shown that a constant reference

can then keep the system safe after that point. Reference governors are similar to the approach of this paper in that given

a nominal controller the approach seeks a minimal adjustment in order to improve safety characteristics. However,

they differ in how the minimal adjustment occurs. A reference governors adjusts the setpoint that a nominal system is

designed to achieve. On the other hand, the approach of this paper does not require a reference input to the nominal

system and instead allows a nominal controller to calculate a control input as it normally would. The approach of this

paper then minimally adjusts the control input to ensure safety. Finally, in [19], the authors also consider a trajectory

based approach to avoid static obstacles. Similar to evasive maneuvers, traffic rules [20, 21] are a method for encoding

hybrid behaviors that can include collision avoidance trajectories. In [20], the authors show that a two vehicle system

with limited sensing range can avoid collisions while reaching position goals. While in general this may result in
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conservative behaviors, they demonstrate in simulation that the decentralized algorithm continues to allow vehicles

to reach their target configuration while avoiding collisions for as many as 70 vehicles. Reactive methods are useful

because they can often be calculated online while evasive maneuvers benefit from a lookahead into the future. In this

paper we leverage the merits of both approaches within the framework of control barrier functions.

Motivated by the importance of formal guarantees of collision avoidance that are computationally feasible and

minimally invasive we discuss in this paper how to apply barrier functions (e.g., [22], [23]) to the UAV collision

avoidance problem, where the system is subject to actuator constraints, nonlinear dynamics, and nonlinear safety

constraints. Barrier functions are similar to Lyapunov functions and allow for guarantees that a system will stay safe

(i.e., vehicles will maintain safe distances from each other) for all future times. Further, under some assumptions

detailed in Section II, a Quadratic Program (QP) can be used to calculate a safe control input implied by a barrier

function so that the calculation can be done online [23]. Given such safety guarantees, barrier functions have been

applied to a set of problems including collision avoidance for autonomous agents ([24, 25]), bipedal robots ([26, 27]),

adaptive cruise control and lane following ([23, 28–30]), and in mobile communication networks [31].

However, barrier functions rely on being able to find a function for safety set invariance to be guaranteed. For systems

like a fixed wing UAV with actuator constraints, nonlinear dynamics, and nonlinear safety constraints, generating such

a function can be difficult. In this respect they are similar to Lyapunov functions. They provide guarantees when a

system designer can find appropriate functions but they may be difficult to construct.

Nevertheless, there are a variety of approaches to finding a barrier function given a system and safety constraints.

One approach discussed for instance in ([22, 28, 32, 33]), uses a sum of squares decomposition [34]. In this approach

an initially conservative estimate for a barrier function is found and the associated safe set is iteratively enlarged.

Iterative approaches have also been developed when the system has relative degree greater than one. The conditions for

calculating a safe control input for higher order systems are given in [35]. In [27], a backstepping approach is developed

that ensures a control barrier function can be constructed and a similar approach is discussed in [36]. The approach

discussed in this paper is most similar to [37] where a barrier function is formulated by calculating the distance to a

backup set after applying a backup controller. In this paper we develop an alternative approach that does not require

the specification of a backup set.

System-specific arguments have also been applied to the development of a barrier function. For instance, geometric

insights are exploited in [26], where the authors develop a barrier function for precise foot placement by ensuring

that the foot is within the intersection of two circles. Similarly, in [24, 25], the authors develop a barrier function

that ensures a circle and ellipsoid, respectively, around each robot will not overlap in order to ensure there will be

no collisions for double integrator and quadrotor robots, respectively. Barrier functions have also been developed for

unicycle dynamics in [30], where the dynamics are simplified by considering a point slightly in front of the vehicle.

Previous work on barrier functions has shown how, given the current state, a safe control input can be selected to
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ensure the system is safe for all times. In this paper, we also ensure system safety but do so by integrating the dynamics

into the future using a known evasive maneuver that is always available to keep the system safe. In this respect the

system is more predictable since it is known that a particular control input will be safe. Further, we ensure that actuator

limits are respected which is a significant constraint in the case of UAVs where the system has non-zero minimum

velocity.

Aside fromensuring a barrier function constraint can be satisfied given actuator limitations, UAVcollision avoidance

also motivates the consideration of multiple safety constraints that must be satisfied at all times. In particular, because

collision avoidance can be viewed as a constraint for each pairwise combination of vehicles [31, 38], we briefly review

how barrier functions have been applied to systems with multiple constraints. A contract-based approach is presented

in [28]. A sum of squares decomposition is presented in [33] where additional safety constraints map to additional

constraints in the optimization problem. In [36], necessary and sufficient conditions are given for the existence of

a control input that satisfies multiple barrier function constraints. The approach generalizes to high order and time-

varying systems but requires that actuator constraints be unbounded. Barrier function composition has also been

addressed in [28, 31, 38]. In [28], the authors partition the state space into regions for which a single barrier function

is active in each component of the partition. In [31] and [38] non-smooth barrier functions are discussed, where the

result allows for combining barrier functions using boolean primitives. One drawback of the boolean composition

approaches is that it is not guaranteed that the composition of barrier functions will result in a barrier function.

The high level contribution of the paper is a method for constructing a barrier function given a safety constraint and

system dynamics. In particular, after a safety engineer specifies an evasive maneuver we then show how to construct

a barrier function. This paper makes the following technical contributions. First, it generalizes a method discussed

in [24, 25] for constructing a barrier function that can be used to make safety guarantees for a system. Second, it

examines how to ensure that multiple safety constraints can be satisfied simultaneously when using this constructive

method. Third, it presents an algorithm for ensuring safety in the context of multi-agent systems that does not require

communication of low level actuator commands. Fourth, it shows how to apply the above theory to a scenario involving

fixed wing UAVs where vehicles must ensure minimum separation distances are maintained at all times. This paper

expands on the conference version [39] which did not consider multiple constraints and did not consider limited

communications. Finally, this paper expands on the simulation study presented in [39] by considering a scenario with

20 vehicles to demonstrate that all pairwise distances between vehicles can be kept above a minimum safety distance

throughout a scenario. This paper has also appeared in a thesis [40] and in preprint [41].

This paper is organized as follows. Section II discusses background information for barrier functions. Section III

discusses a generalmethod for constructing a barrier function and shows how to apply it to fixedwing collision avoidance.

Section IVgeneralizes the results of Section III by showing how to satisfymultiple constraints simultaneously. SectionV

relaxes the amount of information required to share between vehicles while still guaranteeing safety. SectionVI presents
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a simulation verification of the approach. Section VII concludes.

II. BARRIER FUNCTIONS BACKGROUND
We summarize the necessary background for barrier functions here. See [23] for further discussion. Consider a

control affine system

Ûx = f (x) + g(x)u (1)

where f and g are locally Lipschitz functions, x ∈ Rn, u ∈ U ⊂ Rm, and solutions are forward complete, meaning the

system has a unique solution for all time t ≥ 0 given a starting condition x(0).

We expand this formulation to a set of k vehicles by considering each vehicle’s state xi and dynamics Ûxi =

fi(xi) + gi(xi)ui where xi ∈ Rni , ui ∈ Ui ⊆ Rmi and i ∈ {1, . . . , k}. The overall state for the system is described by

x =
[
xT1 xT2 · · · xT

k

]T
∈ Rn where n =

∑k
i=1 ni and u =

[
uT1 uT2 · · · uT

k

]T
∈ U1 ×U2 × · · · ×Uk = U ⊂ Rm,

where m = m1 + · · · + mk . In this case, (1) can be represented as

Ûx =



f1(x1)

f2(x2)
...

fk(xk)


+



g1(x1) 0 · · · 0

0 g2(x2) · · · 0
...

...
. . .

...

0 0 · · · gk(xk)





u1

u2
...

uk


.

We model the state and control input to the single vehicle by xi =
[
pi,x pi,y θi pi,z

]T
and ui =

[
vi ωi ζi

]T
,

respectively. Further, we assume in this paper that the vehicles experience small bank and pitch angles so that single

vehicle dynamics can be approximated by

Ûxi =



cos(θi) 0 0

sin(θi) 0 0

0 1 0

0 0 1





vi

ωi

ζi


, (2)

where the sets of bounded control inputs are vi ∈ [vmin, vmax] with vmin > 0, |ωi | ≤ ωmax , |ζi | ≤ ζmax . Similar

approaches to modeling fixed wing aircraft can be found in [6, 8–10, 20, 21]. We also assume that each vehicle can

sense the state of every other vehicle.

Suppose the set of desired configurations is described by the superlevel set of an output function h : Rn → R
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defined on an open set D ⊆ Rn. The superlevel set of h is then called the safe set and is defined as

C = {x ∈ D : h(x) ≥ 0}. (3)

The objective is now to establish the condition under which the state system belongs to C for all times.

Definition 1. [23] Given a set C ⊂ Rn defined in (3) for a continuously differentiable function h : Rn → R, the

function h is called a zeroing control barrier function (ZCBF) defined on an open set D with C ⊂ D ⊂ Rn, if there

exists a Lipschitz continuous extended class K function α such that

sup
u∈U

[L f h(x) + Lgh(x)u + α(h(x))] ≥ 0, ∀x ∈ D . (4)

In the above definition L f h(x) = ∂h(x)
∂x f (x) and Lgh(x) = ∂h(x)

∂x g(x) denote the Lie derivatives. From Definition 1,

it follows that the admissible control space is defined as

K(x) = {u ∈ U : L f h(x) + Lgh(x)u + α(h(x)) ≥ 0}. (5)

Theorem 1. [23] Given a set C ⊂ Rn defined in (3) for a continuously differentiable function h, if h is a ZCBF on D,

then any Lipschitz continuous controller u : D → U such that u(x) ∈ K(x) will render the set C forward invariant.

In [23] it is also shown how to calculate u(x) ∈ K(x) using a Quadratic Program (QP) to support fast, online

calculations. In particular, assume there is some nominal control input û ∈ Rm available that is designed to achieve

some performance goal (e.g., path-following) that has not necessarily been designed to satisfy safety constraints.

Additionally, we assume U can be expressed as the set of all u satisfying the linear inequality Au ≥ b. A safe control

input can then be calculated using the following Quadratic Program (QP)

u∗ = min
u∈Rm

1
2
∥u − û∥2 (6a)

s.t. L f h(x) + Lgh(x)u + α(h(x)) ≥ 0 (6b)

Au ≥ b. (6c)

Note that by property (4), when h is a ZCBF, (6) is guaranteed to be feasible when x ∈ D.
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III. BARRIER FUNCTION CONSTRUCTION
In general, in order to apply the barrier function framework discussed in the previous section, one needs to define

an appropriate barrier function h(x) representative of the collision avoidance constraints the UAVs must satisfy. To this

end, as shown in the following example, the design of a suitable barrier function for fixed wing vehicles is not trivial.

A. Motivating Example

In this section we discuss some difficulties with applying barrier functions to the fixed-wing collision avoidance

problem via a concrete example. Consider a candidate ZCBF, h, that encodes a collision avoidance safety constraint

in a system of two vehicles with state x =
[
xT1 xT2

]T
and

h(x) = d1,2(x) − D2
s, (7)

where

d1,2(x) = (p1,x − p2,x)2 + (p1,y − p2,y)2 + (p1,z − p2,z)2

is the squared distance between vehicles 1 and 2 and Ds is a positive minimum safety distance. To show why h defined

in (7) is not a ZCBF, we present an example where, even though the configuration of the aircraft is safe since x ∈ C,

h(x) does not satisfy constraint (4). Let x1 =
[
−Ds/2 0 0 ϵ

]T
and x2 =

[
Ds/2 0 π −ϵ

]T
for some ϵ ≥ 0.

First, we note that for x =
[
xT1 xT2

]T
∈ C, h(x) ≥ 0. Further,

sup
u∈U

[L f h(x) + Lgh(x)u + α(h(x))] = sup
u∈U

[
2(p1,x − p2,x)(v1 cos θ1 − v2 cos θ2)

+ 2(p1,y − p2,y)(v1 sin θ1 − v2 sin θ2)

+ 2(p1,z − p2,z)(ζ1 − ζ2)
]

= sup
u∈U

[−2Ds(v1 + v2) + 2ϵ(ζ1 − ζ2)]

= −4Dsvmin + 2ϵζmax .

Since vmin > 0 and Ds > 0, if the two vehicles’ initial positions satisfy 0 ≤ ϵ < 2Dsvmin/ζmax we observe that the

quantity above does not satisfy constraint (4), i.e., supu∈U [L f h(x) + Lgh(x)u + α(h(x))] < 0. Therefore, we conclude

that h(x) defined in (7) is not a ZCBF. The problem with this candidate ZCBF is that it does not account for the fact

that by the time the vehicles are close to colliding, it may be too late to avoid each other due to the limited turning

radius and positive minimum velocity.
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B. Constructing a Barrier Function via Evading Maneuvers

In order to overcome the difficulties demonstrated in the example of Section III.A, we introduce a method to

systematically construct a ZCBF from a safety constraint. Let ρ : D → R be a safety function that represents the safety

objective we want to satisfy at all times so that ρ(x) ≥ 0 indicates that the system is safe. In the example from Section

III.A for vehicles i and j,

ρ(x) = di, j(x) − D2
s . (8)

Second, let γ : D → U be a nominal evading maneuver. Section III.C discusses specific examples of γ for the UAV

collision avoidance problem. For now, assuming γ has been selected, let

h(x; ρ, γ) = inf
τ∈[0,∞)

ρ(x̂(τ)), (9)

be a candidate ZCBF where x̂ and Û̂x are given by

x̂(τ) = x +
∫ τ

0
Û̂x(η)dη, (10)

Û̂x(τ) = f (x̂(τ)) + g(x̂(τ))γ(x̂(τ)). (11)

For ease of notation, we will omit the time dependencies whenever the time is clear from the context. We assume

in this paper that the solution (10) is well defined and contained in D for all τ ≥ 0 so that ρ(x̂(τ)) is well defined.

This choice of a candidate ZCBF h is motivated by the fact that in (9), h measures how close the state will get to the

boundary of the safe set assuming γ is used as the control input for all future time.

In Section III.A we saw that we could not use the Euclidean distance for a ZCBF because when a candidate ZCBF

h is defined as in (7), K(x) could be empty for some x ∈ D. In other words, although x ∈ D there was no control

input available to keep the system safe. With h defined in (9), this problem is alleviated.

Theorem 2. Given a dynamical system (1) and a set C ⊂ D defined in (3) for a continuously differentiable h defined

in (9) with a safety function ρ and locally Lipschitz evading maneuver γ, h satisfies (4) for all x ∈ C. If in addition,

Lgh(x) is non-zero for all x ∈ ∂C and γ maps to values in the interior ofU, then h is a ZCBF on an open set D where

C ⊂ D.

Proof. We start by assuming x ∈ C and show that h satisfies (4). Because x ∈ C, h(x) ≥ 0 so α(h(x)) ≥ 0. Further,

note that L f h(x) + Lgh(x)γ(x) is the derivative along the trajectory of x̂. In other words,

L f h(x) + Lgh(x)γ(x) = lim
a→0+

1
a

(
inf

τ∈[a,∞)
ρ(x̂(τ)) − inf

τ∈[0,∞)
ρ(x̂(τ))

)
. (12)
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Consider the term inside the parenthesis in (12), namely

inf
τ∈[a,∞)

ρ(x̂(τ)) − inf
τ∈[0,∞)

ρ(x̂(τ))

and notice that it is the subtraction of an infimum of the same function ρ evaluated on two different intervals. Further,

note that the first interval is a subset of the second interval since a approaches 0 from above. Thus, the term inside

the parenthesis on the right hand side of (12) is non-negative so L f h(x) + Lgh(x)γ(x) ≥ 0. We can then conclude that

L f h(x) + Lgh(x)γ(x) + α(h(x)) ≥ 0 so γ(x) ∈ K(x).

Now assume that Lgh(x) is non-zero for some x ∈ ∂C and γ maps to values in the interior ofU. We will show that

there is an open set D that is a strict superset of C for which (4) holds. Let x ∈ ∂C be such that Lgh(x) is non-zero

and B(x, µ) be a ball of radius µ > 0 such that for all z ∈ B(x, µ) \ C, Lgh(z) is non-zero. Such a ball exists such that

B(x, µ) \ C is nonempty because Lgh(x) is continuous. Let d(z) be a non-zero vector such that d(z) + γ(x) ∈ U where

d(z) is a non-zero vector in the direction of Lgh(z). Note that such a vector exists because γ maps to the interior of U.

Also note that Lgh(z)d(z) > 0. Further restrict µ so that Lgh(z)d(z) + α(h(z)) ≥ 0 for all z ∈ B(x; µ) \ C. Note that

for similar reasons discussed earlier in the proof, L f h(z) + Lgh(z)γ(z) ≥ 0. Then

L f h(z) + Lgh(z)(γ(z) + d(z)) + α(h(z)) ≥ Lgh(x)d(z) + α(h(z)) ≥ 0.

Remark 1. The intuitive reason why h is a ZCBF is that whenever h(x) is non-negative, we have by definition a control

input γ available to keep the system safe. A geometric view is presented in Figure 1. Note that γ is not the output of

the Quadratic Program (6). Instead, the role of γ is to allow h to be evaluated via (9).

Remark 2. Theorem 2 holds for any class K function α. When α(h(x)) = 0, (4) becomes Ûh(x) ≥ 0. In other words,

Theorem (2) can also be used to prove Lyapunov stability properties of a set by flipping the inequality.

Remark 3. We have found an error in Lemma 1 of the conference version of this paper [39] and Theorem 2 of that

paper was based on that Lemma. Therefore Theorem 2 of this paper is reformulated so as not to require that Lemma.

C. Deriving a Barrier Function for UAV Collision Avoidance

We now consider how to calculate h defined in (9) for the UAV collision avoidance problem. From Theorem 2

the only restriction on γ and ρ is that γ is locally Lipschitz and that h is continuously differentiable so there is some

flexibility in choosing γ and ρ. In this section we discuss two cases where we can choose γ and ρ so that h can be

calculated in closed form. Let the initial state for vehicle i (i = 1, 2) be given by
[
pi,x0 pi,y0 θi,0 pi,z0

]T
. For

these examples we can calculate h in (9) for arbitrary initial states in closed form. Section IV generalizes the results
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Fig. 1 h defined in (9) can be a barrier function because γ or a small offset from γ is in the intersection of U
and K(x) for x ∈ D.

from Section III.B by showing how to calculate k(k − 1)/2 barrier functions to ensure that the k(k − 1)/2 pairwise

distance constraints are always satisfied. Because the examples in this section calculate h in (9) using pairwise distance

constraints, the calculations in these examples will also apply to the case of more than two vehicles. In other words,

with the result of this section we can calculate barrier functions in closed form from arbitrary initial states and numbers

of vehicles. Note that the solutions in this section solve for h in (9) in closed form where τ approaches infinity.

We emphasize that the specification of an evasive maneuver γ is necessary to evaluate h in (9). In other words,

without a safety engineer specifying γ there cannot be a barrier function h. However, γ is never actually directly applied

to the actuators. Instead, its role is to specify h so that the final actuator command u calculated in (6) can actually be

applied to the aircraft. In this section we give two examples where for a given γ, h can be calculated in closed form

even though it is an integration over an infinite horizon. While we provide two examples of an evasive maneuver to

calculate a continuously differentiable h from (9) in closed form, we note that it is a system specific derivation and

have not identified a general method for finding a γ for an arbitrary system that allows h to be calculated in closed form.

However, we emphasize that any Lipschitz continuous γ resulting in an h such that (9) can be calculated in closed form

and where h is continuously differentiable can be used to ensure safety via Theorem 2. While for any such γ the safety

characteristics of the system are guaranteed via Theorem 2, the performance characteristics (e.g., deviation from the

nominal path) may be different for different evasive maneuvers.

Example 1. In the first case, let

γturn =

[
σv ω 0 v ω 0

]T
(13)

with 0 < σ ≤ 1, ω , 0. In other words, γturn is defined by the same turn rate for both vehicles but possibly

different translational velocities. See Fig. 4a for an example. Define r = v
ω to be the turn radius of the evasive

maneuver when traveling at speed v, b1,0 = p1,x0 − σr sin(θ1,0), b2,0 = p2,x0 − r sin(θ2,0), c1,0 = p1,y0 + σr cos(θ1,0),
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c2,0 = p2,y0 + r cos(θ2,0), ∆b0 = b1,0 − b2,0, ∆c0 = c1,0 − c2,0, and δ > 0. Let

ρ(x) = d1,2(x) − 2δ + δ sin(θ1) − δ cos(θ1) − D2
s, (14)

where the δ terms are introduced to affect the smoothness of h. See the Appendix for details. Then

h(x) = inf
τ∈[0,∞)

(
∆b0 + σr sin(ωτ + θ1,0) − r sin(ωτ + θ2,0))

)2
+
(
∆c0 − σr cos(ωτ + θ1,0) + r cos(ωτ + θ2,0)

)2
+
(
p1,z0 − p2,z0

)2 − 2δ + δ sin(ωτ + θ1,0) − δ cos(ωτ + θ1,0) − D2
s .

By expanding the square terms and applying two trigonometric identities,∗ we get

h(x) = inf
τ∈[0,∞)

∆b20 + ∆c
2
0 + (1 + σ2)r2 − 2σr2 cos(θ1,0 − θ2,0) + 2σ∆b0r sin(ωτ + θ1,0) − 2∆b0r sin(ωτ + θ2,0)

−2σ∆c0r cos(ωτ + θ1,0) + 2∆c0r cos(ωτ + θ2,0)

+
(
p1,z0 − p2,z0

)2 − 2δ + δ sin(ωτ + θ1,0) − δ cos(ωτ + θ1,0) − D2
s . (15)

Grouping constant terms and applying phasor addition yields

h(x) = inf
τ∈[0,∞)

A1 + A2 cos(ωτ + Θ) − D2
s, (16)

where A1 results from grouping constant terms, while A2 and Θ are the amplitude and phase resulting from the phasor

addition so that A1 and A2 are functions of x. By convention A1 and A2 are nonnegative with appropriate calculation

of Θ. The minimum in (16) then occurs at τ = (π − Θ + l2π)/ω for integers l resulting in nonnegative t so that

h(x) = A1 − A2 − D2
s . Note that for the case where

ρ(x) =
√
d1,2(x) − 2δ + δ sin(θ1) − δ cos(θ1) − Ds, (17)

the same reasoning yields h(x) =
√
A1 − A2 − Ds for ρ defined in (17). To ensure that the square root is well defined,

we must then require that A1 − A2 ≥ 0 which occurs when the vehicles do not get more than 2δ from each other along

the trajectory defined by (10) using γturn in (13). Since δ can be chosen to be arbitrarily small, it can be chosen so that

δ ≪ Ds so the vehicles are very far outside the safe set before this condition occurs.

Example 2. For a second case, let ρ be given in (8) and

γstraight =

[
v1 0 ζ1 v2 0 ζ2

]T
, (18)

∗The identities are sin2(α) + cos2(α) = 1 and cos(α − β) = cos(α) cos(β) + sin(α) sin(β).
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where v1 , v2. In other words, γstraight uses a 0 turn rate while allowing the vehicles to have different speeds. In this

case we have

h(x) = inf
τ∈[0,∞)

(
p1,x0 + τv1 cos(θ1,0) − p2,x0 − τv2 cos(θ2,0)

)2
+
(
p1,y0 + τv1 sin(θ1,0) − p2,y0 − τv2 sin(θ2,0)

)2
+
(
p1,z0 + τζ1 − p2,z0 − τζ2

)2 − D2
s, (19)

which is quadratic in t so the minimum can be calculated in closed form. See the Appendix for an analysis of the

differentiability of h in this case.

The evasive maneuvers in (13) and (18) (when ζ1 = ζ2 = 0 in (18)) both encode trajectories where the vehicles

maintain the same altitude for all times and therefore appear to not be exploiting an important evasive capability of the

aircraft, namely the ability to change altitudes. However, this is not actually the case. Although γturn and γstraight

(for ζ1 = ζ2 = 0) are purely planar maneuvers, they nevertheless can induce behaviors that exploit altitude changes. To

see this, note that for h in (16) and (19),
∂h(x)
∂p1,z0

= 2(p1,z0 − p2,z0 ), (20)

which is not equal to zero for p1,z0 , p2,z0 . A similar calculation also holds for ∂h(x)
∂p2,z0

. In other words, h changes as

a function of initial altitude. Specifically, this means that the QP can exploit ζ1 and ζ2 because the fourth and eighth

elements of Lgh(x(t)) are non-zero when p1,z0 , p2,z0 , i.e., the QP in (6) can exploit the altitude control input even

though γturn and γstraight do not necessarily include an altitude changing term in the evasive maneuver.

D. Simulation of Two Vehicles

We demonstrate the theoretical development of this section in simulation using SCRIMMAGE [42]. SCRIMMAGE

is a multi-agent simulator designed to scale to high numbers of vehicles and includes a plugin-interface that makes it

easy to experiment with different motion models and controllers without having to change code. This makes it simple

to swap out nominal controllers and vary the fidelity of fixed-wing UAVs from the unicycle dynamics in (2) used in

this section up to a 6-DOF model.

For the simulation, let k vehicles be positioned in a circle of radius 200 around the origin, where k = 2 in this

simulation. In other words, vehicle i has initial state xi =
[
200 cos

(
i 2πk + π

)
200 sin

(
i 2πk + π

)
i 2πk + ψ ϵi

]T
,

where ψ is an additional offset so that vehicles are not necessarily starting with orientation pointing at the origin. The

goal position for vehicle i is on the other side of the origin: xi,g =
[
200 cos

(
i 2πk

)
200 sin

(
i 2πk π

)]T
.

This setup is selected so that the vehicles are on a collision course. The nominal controller is that described in

[43] with constant λ = 1. Additionally, we let vmin = 15 meters/second, vmax = 25 meters/second, ζmax = 3.9

meters/second, ωmax = 13 degrees/second, Ds = 5 meters, and δ = 0.01 meters2. The choice of ζmax results from
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assuming a maximum pitch of 15 degrees while traveling at vmin. ωmax is chosen to be consistent with a constant rate

turn [44] with a 30 degree bank with a speed of vmax . We note that while the experiments do not consider dynamics or

sensor noise, the robustness of barrier functions to noise was previously discussed in [29]. Each vehicle evaluates (6)

at each timestep where we use OSQP [45] to evaluate the QP. We investigate the performance of the vehicles when h

defined in (9) is constructed from γturn in (13) and γstraight (18), respectively, where γturn =
[
v ω 0 v ω 0

]T
,

γstraight =

[
v 0 0 v 0 0

]T
, and v = 0.9vmin + 0.1vmax and ω = 0.9ωmax . For the scenario with γturn, we let

ψ = 0 so that the vehicles start with orientation pointing at the origin. For the scenario with γstraight , we let ψ = 2◦

because if the vehicles pointed at the origin they would not start in the safe set. Additionally, for the γturn case we use

ρ in (17). Similarly, for the γstraight case we use ρ(x) =
√
d1,2(x) − Ds . Details of the distance between the vehicles

and control signals are shown in Figure 2. Note that the resulting trajectory can be different depending on which γ

is used as shown in Figure 2d. Nevertheless, in both cases the vehicles are able to maintain safe distances from each

other and satisfy actuator constraints throughout the simulation regardless of which γ is used to construct a h.

In the second experiment, we examine the effect of altitude control on the evasive behavior of the aircraft. Because

(20) predicts that ∂h(x)
∂pi,z0

, 0 (for i = 1, 2) only when the vehicles are not at the same altitude, we start the vehicles at

an altitude of −1 and 1, respectively. This offset is small enough to ensure that the nominal path of the vehicles still

involves a collision. As was done in the previous experiment, we set ψ = 0◦ and ψ = 2◦ degrees when using γturn

and γstraight , respectively. In Figure 2 we show the output of ζ1, where overriding behavior peaks around 8.2 seconds.

Notice that the actuator output is within the limits of ±ζmax . Further, the vehicles maintain safe distances at all times.

This occurs even though the evading maneuver does not explicitly encode altitude changes.

IV. COMPOSITION OF MULTIPLE SAFETY CONSTRAINTS

A. Motivating Example

Although the constructive method introduced in (9) can produce a barrier function in the presence of actuator

constraints that ensures two vehicles do not collide, the formulation does not extend immediately to collision avoidance

for systems with more than two vehicles. To see this, we present a specific example where three UAVs with a collision

avoidance safety objective cannot use the results from Section III.B to ensure safety. A plot of this scenario is shown in

Figure 4. We index the vehicles by i = 1, 2, 3. To ensure collision-free trajectories, and considering the safety function

defined in (14), three pairwise constraints must be nonnegative at all times:

ρ1(x) = d1,2(x) − 2δ + δ sin(θ1) − δ cos(θ1) − D2
s,

ρ2(x) = d1,3(x) − 2δ + δ sin(θ1) − δ cos(θ1) − D2
s,

ρ3(x) = d2,3(x) − 2δ + δ sin(θ2) − δ cos(θ2) − D2
s .

13
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Fig. 2 2 vehicle scenario statistics. (a) vehicle 1 velocity, (b) vehicle 1 turn rate, (c) intervehicle distance, (d)
vehicle 1 path. Adapted with permission from [39] ©2018 IEEE.
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Fig. 4 A geometric view of the example given in Section IV.A.

(a) (b) (c)

Fig. 5 The shared evading maneuver ensures that the same safe control input satisfies each safety constraint.
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We now apply the results of Section III to these constraints and for simplicity, let δ be approximately 0. For each

constraint, define an arbitrarily chosen nominal evading maneuver

γ1(x) =
[
1 −1 0 1 −1 0 1 −1 0

]T
(20a)

γ2(x) = γ3(x) =
[
1 1 0 1 1 0 1 1 0

]T
. (20b)

In other words, γ1 encodes an evasive maneuver where all the vehicles turn right while γ2 and γ3 encode a maneuver

where all the vehicles turn left. We note that h j ( j = 1, . . . , 3) defined in (9) and constructed from ρj and γ j are ZCBFs.

In this example we let vmin = 1, vmax = 2, ωmax = 1, and Ds = 0.5 so that the vehicles follow a circular trajectory

with radius r = 1 when applying vmin and ωmax . Assume now that the vehicles have the following initial states

x1 =
[
0 0 0 0

]T
,

x2 =
[
(2r + Ds) sinψ (2r + Ds) cosψ − 2r π 0

]T
,

x3 =
[
(2r + Ds) sinψ 2r − (2r + Ds) cosψ π 0

]T
,

where ψ = arccos
(
Ds/2+2r
2r+Ds

)
. Then h1(x) = h2(x) = h3(x) = 0 and the barrier constraints in (4) for h1(x) and h2(x)

become

−0.4(v1 + ω1 + v2 + ω2) ≥ 0 (21)

0.4(−v1 + ω1 − v3 + ω3) ≥ 0. (22)

Although h1 and h2 are ZCBFs, these two constraints cannot be simultaneously satisfied for vi ∈ [vmin, vmax] and

|ωi | ≤ ωmax . In particular, after substituting the minimum velocity v1 = v2 = 1, the first equation dictates that

ω1 + ω2 ≤ −2 (i.e., vehicles 1 and 2 must turn right). Similarly, the second equation dictates that vehicle 1 and 3

must turn left. The problem with this scenario is that vehicle 1 cannot simultaneously execute both nominal evading

maneuvers (i.e., turn both left and right at the same time). To solve this problem, we will make sure that the evasive

maneuver applied by a vehicle is the same for every barrier function. A geometric view of the general problem and its

solution are shown in Figure 5.

B. Sufficient Conditions for Satisfying Multiple Safety Constraints

In order to solve the issues arising when vehicles have to simultaneously respect multiple constraints, we now

extend the use of the constructive technique introduced in (9). In this section we extend the reasoning of [23] to the
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case of q constraints. Consider a nonlinear autonomous system

Ûx = f (x) (23)

where f is locally Lipschitz. Then we have a similar definition to Definition 1 for autonomous systems.

Definition 2. [23] Given a set C ⊂ Rn defined in (3) for a continuously differentiable function h : Rn → R, the

function h is called a zeroing barrier function (ZBF) defined on an open set D with C ⊂ D ⊂ Rn, if there exists a

Lipschitz continuous extended class K function α such that

L f h(x) ≥ −α(h(x)), ∀x ∈ D . (24)

When there are q constraints, we consider the case of q barrier functions where each barrier function is denoted

h j on D j with associated safe set C j and admissible control space K j(x) for x ∈ D j for j ∈ {1, . . . , q}. We are

interested in the conditions under which all safety constraints can be satisfied for all future times. In other words, under

the assumption that x(0) ∈ C j we want to show that x(t) ∈ C j for all t ≥ 0. Hence, we are interested in the forward

invariance of the intersection of all the safe sets, which motivates the following definitions

C∩ = C1 ∩ C2 ∩ · · · ∩ Cq, (25)

K∩(x) = {u ∈ U : u ∈ K1(x) ∩ K2(x) ∩ · · · ∩ Kq(x)}. (26)

where D∩ is an open superset of C∩ and x ∈ D∩. We can now present a multiple constraint analogue of Theorem 1 by

following the same reasoning as [23].

Proposition 1. Given a dynamical system (23) and a set C∩ defined by (25) for continuously differentiable functions

h j : Rn → R where h j is a ZBF on D j with C j ⊂ D j ⊂ R and ∂h j (x)
∂x , 0 for any x ∈ ∂C∩ where h j(x) = 0, then C∩ is

forward invariant.

Proof. The proof is the same as that for Proposition 1 of [23], namely Ûh j(x) = −α(x) ≥ 0 for any j such that h j(x) = 0

so the result follows by Nagumo’s Theorem [46]. We add the assumption that ∂h j (x)
∂x is non-zero for all x ∈ ∂C∩ such

that h j(x) = 0 to ensure that the tangent cone in Nagumo’s Theorem is non-empty.

Then for autonomous systems with dynamics (1), we have the following corollary of Theorem 1.

Corollary 1. Given a dynamical system (1) and a set C∩ defined by (25) for continuously differentiable functions
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h j : Rn → R where h j is a ZCBF on D j and ∂h j (x)
∂x , 0 for any x ∈ ∂C∩ where h j(x) = 0, then any Lipschitz

continuous controller u : D∩ → U such that u(x) ∈ K∩(x) will render the set C∩ forward invariant.

C. The Shared Nominal Evading Maneuver Assumption

Suppose there are q constraints ρj : D j → R ( j = 1, . . . , q) that must be greater than or equal to 0 at all times.

For the k agents with pairwise constraints q = k(k − 1)/2. We assume that for each constraint j = 1, . . . , q, a locally

Lipschitz nominal evading maneuver γ j has been selected using the framework in (9). An example for fixed-wing

UAVs with collision avoidance safety constraints is given in (13). Given q safety functions ρj and evading maneuvers

γ j for j ∈ {1, . . . , q}, we construct q output functions h j defined on D j similarly to (9) where

h j(x; ρ, γ) = inf
τ∈[0,∞)

ρj(x̂ j(τ)), (27)

x̂ j(τ) = x +
∫ τ

0
Û̂x j(η)dη, (28)

Û̂x j(τ) = f (x̂ j(τ)) + g(x̂ j(τ))γ j(x̂ j(τ)). (29)

Section IV.A showed an example where K∩ could be empty for some x ∈ C∩. As a result, the assumptions of

Corollary 1 could not be satisfied. In order to address the issue discussed in Section IV.A, we introduce an additional

constraint on γ j ( j = 1, . . . , q) that all h j are constructed from the same nominal evading maneuver.

Assumption 1. Given a dynamical system (1) and q output functions h j defined in (27) for given safety functions ρj

and evading maneuvers γ j for j ∈ {1, . . . , q}, the shared evading maneuver assumption holds if γ1(x) = · · · = γq(x)

for all x ∈ D∩. The shared evading maneuver is denoted γs so that

γs(x) = γ1(x) = · · · = γq(x) (30)

for all x ∈ D∩.

Remark 4. This assumption requires that each h j ( j = 1, . . . , q) be constructed from the same nominal evading

maneuver. Note, however, that this does not imply that each h j must be constructed from the same safety function.

The example in Section IV.A does not satisfy Assumption 1 because γ1(x) and γ2(x) defined in (21) are not the

same. To enforce that the shared evasive maneuver assumption holds, one option is to change γ1 so that

γ1(x) =
[
1 1 0 1 1 0 1 1 0

]T
. (31)

In other words, using γ1 defined in (31) and γ2 and γ3 in (20b) implies an evasive maneuver where all vehicles turn
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left for each constraint. Another example where the shared nominal evading maneuver assumption holds is as follows:

γs(x) = γ1(x) = γ2(x) = γ3(x) =[
1 1 0 1.5 0 0 2 −1 0

]T
.

In this case, γs(x) encodes an evasive maneuver where vehicle 1 turns left with a linear velocity of 1, vehicle 2 stays

straight with a linear velocity of 1.5, and vehicle 3 turns right with a linear velocity of 2. These three nominal evading

maneuvers satisfy the shared evasive maneuver assumption because for all x ∈ D∩, γ1(x) = γ2(x) = γ3(x).

To see the purpose of Assumption 1, we first examine the case of a single constraint. In particular, let h be defined

in (9) and consider the role of γ in establishing that h is a ZCBF. From Definition 1, for h to be used for a barrier

function, K(x) must be nonempty for all x ∈ D. With h defined as in (9), this property is satisfied by γ(x) or a

perturbation of γ(x) for all x ∈ D (see Theorem 2). The analogue condition for multiple constraints is that K∩(x) is

non-empty for all x ∈ D∩. If each h j defined in (9) is a ZCBF and is constructed from γ j then by similar reasoning

to Theorem 2, γ j(x) or a perturbation of γ(x) is in K j(x) for all x ∈ D∩. This allows us to state a multiple constraint

analogue to Theorem 2. In the following, we denote the inner product as ⟨Lgh j1 (x), Lgh j2 (x)⟩ for j1, j2 ∈ {1, . . . , q}.

Theorem 3. Given a dynamical system (1) and a set C∩ ⊂ D∩ defined in (25) for q continuously differentiable

functions h j defined in (27) with safety functions ρj and evading maneuvers γ j where k ∈ {1, . . . , q}, if h j is a ZCBF

for k ∈ {1, . . . , q} and Assumption 1 holds then K∩(x) is non-empty for all x ∈ C∩. If in addition, γs defined in (30)

maps to the interior of U and for all x ∈ ∂C∩, ⟨Lgh j1 (x), Lgh j2 (x)⟩ > 0 for j1 , j2 and j1, j2 ∈ {1, . . . , q}, then there

is an open set that is a superset of C∩ for which K∩(x) is non-empty for all x in the open set.

Proof. To prove the first statement, note that it was shown in the proof of Theorem 2 that γs is in K j(x) for j = 1, . . . , q

and x ∈ C∩. To prove the second statement, note that we can use the same method as was used in the proof of

Theorem 2 to find a vector d(z) such that h j(z) satisfies (4) for all z ∈ B(x, µ) given x ∈ ∂C∩. In particular, because

⟨Lgh j1 (x), Lgh j2 (x)⟩ > 0, Lgh j(x) , 0 for j = 1, . . . , q there exists a vector dall(x) such that ⟨dall(x), Lgh j(x)⟩ > 0.

We choose dall(x) with sufficiently small norm. Using the notation of the proof of Theorem 2, for sufficiently small µ,

the projection of dall(x) onto Lgh(z)will be in the direction of Lgh(z) for z ∈ B(x, µ) because Lgh(x) is continuous.

Remark 5. A geometric view of the problem introduced in Section IV.A and its resolution via the shared evading

maneuver assumption is shown in Figure 5.

Similar to the QP in (6), we write a QP with q constraints and let û =
[
ûT1 ûT2 · · · ûT

k

]T
where ûi is the nominal

input of vehicle i for i = 1, . . . , k. To emphasize that all h j are constructed from γs , we write h j,s for each j = 1, . . . , q
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as follows:

u∗ = min
u∈Rm

1
2
∥u − û∥2 (32)

s.t. Au ≥ b.

L f h j,s(x) + Lgh j,s(x)u + α(h j,s(x)) ≥ 0 j ∈ {1, . . . , q}.

V. CONTROL CALCULATIONWITH LIMITED COMMUNICATION
The QP in (32) is a centralized calculation. In particular, it requires that each vehicle’s nominal control input ûi be

communicated. Frequently communicating this signal when there are many vehicles may reduce throughput for other

important messages or introduce communication delays because a network can only support a limited number of bits

per second through a network. Thus, we show how to ensure safety constraints can be satisfied by reformulating the QP

so that the vehicles can calculate a safe control signal without requiring each other’s nominal control input. However,

we continue to assume that each vehicle can sense the state of every other vehicle.

We start by considering the two vehicle case and then generalize to the k vehicle case. Let γs =
[
γs

T

1 γs
T

2

]T
be the shared evading maneuver where γsT1 is the part of γs that is applied to vehicle 1 and therefore has the same

size as u1. Define γs2 similarly for vehicle 2. Similarly decompose b in (6c) as b =
[
bT1 bT2

]T
and Lgh j,s(x) as

Lgh j,s(x) =
[
[Lgh j,s(x)]T1 [Lgh j,s(x)]T2

]T
. Further, let A in (6c) be block diagonal with block entries A1 and A2 so

that Aiuu ≥ bi represents the actuator constraint for vehicle i for i = 1, 2.

We want to find a way of calculating u1 and u2 such that u =
[
uT1 uT2

]T
satisfies Au ≥ b and u ∈ K j(x) for all

x ∈ D where the calculation for u1 does not require knowledge of û2 or the final value for u2. Similarly, we want to

calculate u2 without knowledge of û1 or u1. This is a trivial requirement for actuator constraints since Aiui ≥ bi for

i = 1, 2 if and only if Au ≥ b. However, the constraint that u ∈ K∩(x) involves both u1 and u2 so we reformulate it as

follows:

0 ≤ L f h j,s(x) + Lgh j,s(x)u + α(h j,s(x))

= κ1(x, u1) + κ2(x, u2)

where

κ1(x, u1) = L f h j,s(x) + [Lgh j,s(x)]1u1 + α(h j,s(x)) + [Lgh j,s(x)]2γs2 −
1
2
(L f h j,s(x) + Lgh j,s(x)γs + α(h j,s(x)))
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and

κ2(x, u2) = L f h j,s(x) + [Lgh j,s(x)]2u2 + α(h j,s(x)) + [Lgh j,s(x)]1γs1 −
1
2
(L f h j,s(x) + Lgh j,s(x)γs + α(h j,s(x))).

Notice that κ1 is not a function of u2 and κ2 is not a function of u1. In other words, if we can select u1 and u2 such

that κ1(x, u1) ≥ 0 and κ2(x, u2) ≥ 0 then u =
[
uT1 uT2

]T
∈ K∩(x) ∀x ∈ C. For x ∈ C∩, this can be done by letting

u1 = γs1(x) and u2 = γ
s
2(x) and noting that this implies

κ1(x, γs1) + κ2(x, γ
s
2) = L f h j,s(x) + Lgh j,s(x)γs + α(h j,s(x)) ≥ 0.

For x < C∩, a pertubation of γs1(x) and γ
s
2(x) using a similar method as shown in the proof of Theorem 3 suffices. In

other words, we can find u without vehicle 1 needing to know û2 or u2 and similarly for vehicle 2. Each vehicle i

(i = 1, 2) could then calculate the following QP:

u∗ = min
u∈Rmi

1
2
∥u − ûi ∥2 (33)

s.t. Aiui ≥ bi

κi(x, ui) ≥ 0.

Note that κi(x, ui) is linear in ui .

We now generalize the above discussion to k vehicles. Let γs =
[
γs

T

1 · · · γs
T

k

]T
, where γsi maps to vectors

of the same size as ui for i = 1, . . . , k with similar decomposition for b =
[
bT1 · · · bT

k

]T
and Lgh j,s(x) =[

[Lgh j,s(x)]T1 · · · [Lgh j,s(x)]T
k

]T
. Further, assume A in (6c) is block diagonal with block entries Ai for i = 1, . . . , k

where Ai is a mi × mi matrix. This assumption means that actuator constraints are not coupled between vehicles. For

constraint j for j = 1, . . . , q, let

V j = {i ∈ {1, . . . , k} : ∃x ∈ D s.t. [Lgh j,s(x)]i , 0mi }

where 0mi is the zero vector in Rmi . V j represents the set of vehicles whose control input affects the time derivative of

h j for some x ∈ D. We let |V j | denote the cardinality ofV j , and note that for the case of pairwise collision avoidance,

|V j | = 2 for all j = 1, . . . , q. In the example with three vehicles in Section IV, V1 = {1, 2}, V2 = {1, 3}, V3 = {2, 3}.

Finally, we denote u\i =
[
uT1 · · · uT

i−1 uT
i+1 · · · uT

k

]T
, with similar definitions for γs\i , û\i , and [Lgh

j,s(x)]\i .

With the above definitions, we can now state a limited communication analogue for the admissible control space

in (5). The limited communication admissible control space for constraint j ( j = 1, . . . , q) and vehicle i (i ∈ V j) is
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defined as

K j
i (x) =

{
ui ∈ Ui : 0 ≤ L f h j,s(x) + [Lgh j,s(x)]iui + α(h j,s(x)) + [Lgh j,s(x)]\iγs\i(x)

− |V j | − 1
|V j |

(
L f h j,s(x) + Lgh j,s(x)γs(x) + α(h j,s(x))

)}
.

Let Si = { j ∈ {1, . . . , q} : i ∈ V j} so that Si is the set of safety constraint indices where ui has an effect on

the time derivative of the associated barrier function for some x ∈ D. For the three vehicle example of Section IV,

S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3}. The limited communication admissible control space for vehicle i is then

Ki(x) =
∩

l∈Si
K l

i (x) and the overall limited communication admissible control space is

K(x) =
{
u =

[
uT1 · · · uT

k

]T
∈ U : ui ∈ Ki(x) ∀i ∈ {1, . . . , k}

}
.

Theorem 4. Given a dynamical system (1) and a set C∩ ⊂ D∩ defined in (25) for q continuously differentiable

functions h j defined in (27) with safety functions ρj and evading maneuvers γ j where k ∈ {1, . . . , q}, if h j is a ZCBF

for k ∈ {1, . . . , q} and Assumption 1 holds then ∀x ∈ D∩, K(x) ⊆ K∩(x). Further, K(x) is non-empty for all x ∈ C∩.

If in addition, γs maps to the interior of U and for all x ∈ ∂C∩, ⟨[Lgh j1 (x)]i, [Lgh j2 (x)]i⟩ > 0 for j = 1, . . . , q and

i = 1, . . . , k and j1 , j2 and j1, j2 ∈ {1, . . . , q}, then there is an open set that is a superset of C∩ for which K(x) is

non-empty for all x in the open set.

Proof. For the first statement, assume u ∈ K(x) so that ui ∈ Ki(x) ∀i ∈ {1, . . . , k}. This means that Aiui ≥ bi so that,

because A is block diagonal, Au ≥ b. Further, it means that for any constraint j = 1, . . . , q and any i ∈ V j ,

0 ≤ L f h j,s(x)+ [Lgh j,s(x)]iui +α(h j,s(x))+ [Lgh j,s(x)]\iγs\i(x) −
|V j | − 1
|V j |

(
L f h j,s(x)+ Lgh j,s(x)γs(x)+α(h j,s(x))

)
.

(34)

To simplify (34), note that by definition, [Lgh j,s(x)]i = 0mi for i , V j so that

∑
i∈V j

[Lgh j,s(x)]iui =
∑

i∈{1,...,k }
[Lgh j,s(x)]iui

= Lgh j,s(x)u. (35)
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Using (35) in the following then yields

∑
i∈V j

[Lgh j,s(x)]\iγs\i(x) =
∑
i∈V j

(
Lgh j,s(x)γs(x) − [Lgh j,s(x)]iγsi (x)

)
= |V j |Lgh j,s(x)γs(x) −

∑
i∈V j

[Lgh j,s(x)]iγsi (x)

= |V j |Lgh j,s(x)γs(x) − Lgh j,s(x)γs(x)

= (|V j | − 1)Lgh j,s(x)γs(x). (36)

Summing (34) over i ∈ V j and using (35) and (36) yields

0 ≤ |V j |L f h j,s(x) + Lgh j,s(x)u + |V j |α(h j,s(x)) + (|V j | − 1)Lgh j,s(x)γs(x)

−(|V j | − 1)
(
L f h j,s(x) + Lgh j,s(x)γs(x) + α(h j,s(x))

)
= L f h j,s(x) + Lgh j,s(x)u + α(h j,s(x)).

Since this is true for all j = 1, . . . , q, u ∈ K∩(x). Then K(x) ⊆ K∩(x) for all x ∈ C∩.

Consider now the second statement, namely that γs ∈ K(x). For j = 1, . . . , q, consider any i ∈ V j and let ui = γsi .

Then

L f h j,s(x) + [Lgh j,s(x)]iui + α(h j,s(x)) + [Lgh j,s(x)]\iγs\i(x) −
|V j | − 1
|V j |

(
L f h j,s(x) + Lgh j,s(x)γs(x) + α(h j,s(x))

)
=

1
|V j |

(
L f h j(x) + Lgh j(x)γs(x) + α(h j(x))

)
≥ 0.

The inequality is true because x ∈ C∩ implies α(h j,s(x)) ≥ 0. See the proof for Theorem 2 for why L f h j,s(x) +

Lgh j,s(x)γs(x) ≥ 0. Then γsi ∈ K j
i for any j = 1, . . . , q and i ∈ V j . Then γsi ∈ Ki . Then γs(x) ∈ K(x).

Finally, the last statement whereK(x) is nonempty for all x in an open set that is a superset of C∩ follows similarly

to the proof of Theorem 3.

We now write a QP similar to (32) but without requiring knowledge of other agents’ low level control values as
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follows:

u∗i = min
ui ∈Rmi

1
2
∥ui − ûi ∥2 (37)

s.t. Aiui ≥ bi

L f h j,s(x) + [Lgh j,s(x)]iui + α(h j,s(x)) + [Lgh j,s(x)]\iγs\i(x)

− |V j | − 1
|V j |

(
L f h j,s(x) + Lgh j,s(x)γs(x) + α(h j,s(x))

)
≥ 0 j ∈ Si .

.

We note that the solution from the centralized QP (32) may be different than the solution from the limited

communication QPs (37) because K(x) may be a strict subset of K∩(x). To see this, let k = 2, q = 1, L f h(x) = 0,

α(h(x)) = 0, m1 = m2 = 1, [Lgh(x)]2γs2(x) = −1, and [Lgh(x)]1γs1(x) = 1. Then the barrier function constraint in (37)

becomes [Lgh(x)]1u1 ≥ 1, while the barrier function constraint in (32) becomes Lgh(x)u ≥ 0. Since u1 = 0 is feasible

for the latter but not the former equation, we do not have thatK(x) = K∩(x). BecauseK(x) ⊂ K∩(x), it may be that the

total cost of each vehicle calculating (37) is higher than the centralized calculation (32). In other words, the calculated

safe control may not be as close to the nominal control signal in a least squares sense when using (37) as opposed to

(32). Nevertheless, in either case of (32) or (37), a solution exists to the corresponding QP such that u ∈ K∩.

Another difference between the limited communication (37) and the centralized (32) QPs is how the size of the

optimization variable and number of constraints vary with the number of vehicles k. In the centralized approach (32)

the size of the optimization variable grows linearly with k while the number of constraints grows quadratically. On the

other hand, in the limited communication QP (37), the size of the optimization variable and number of constraints are

constant and linear, respectively.

VI. SIMULATION
In this section we repeat the scenario discussed in Section III.D but consider k = 20 vehicles. For the scenario

where h is constructed from γturn, we use
[
v ω 0 v ω 0

]T
where v = 0.9vmin + 0.1vmax and ω = 0.9ωmax .

For the scenario where h is constructed from γstraight , we let γi =
[
(1 + 0.01i)v 0 0

]T
so that each vehicle uses a

different translational velocity as is required to ensure differentiability of h (see Section III.C). Note that this does not

violate the shared evading maneuver assumption because γs =
[
(γ1)T · · · (γk)T

]T
. Additionally, we let ψ = 0 and

ψ = 25◦ in the scenario where h is constructed from γturn and γstraight , respectively. Offsetting the initial orientation

25◦ from pointing at the origin is required so that the vehicles can start in the safe set when using γstraight . A video of

the resulting behavior is available in [47]. Quantitative results for both scenarios are shown in Figure 6 which shows

similar outputs to the results for the two vehicle simulation shown in Figure 2. Small random perturbations, e.g. adding
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a uniformly sampled angle within ±5◦ to the initial heading, does not appear to change qualitative results. We also

compare the approach of this paper to a navigation function from [9] in Figure 6. Note that when using a navigation

function the vehicles begin the evasive maneuver earlier than when the collision avoidance algorithm is based on a

barrier function constructed from γturn. Using a less aggressive α function, such as a linear function with a small

coefficient instead of a cubic function, may have caused the behavior from the barrier function override to similarly

override earlier. A comparison of potential and barrier functions can also be found in [48]. Also note that the pairwise

distance between all vehicles are kept above the minimum safety distance Ds while satisfying actuator constraints.

VII. CONCLUSION
In this paper we have examined method for ensuring a systemwith constrained inputs can be safe for all future times.

The main result is a general method for constructing a barrier function given a safety constraint, system dynamics

with actuator limits, and an evasive function specified by a safety engineer. We then apply this method to show how

collision avoidance for two UAVs can be ensured for all future times. The result is then extended to the case of

collision avoidance for arbitrarily many UAVs by considering how to ensure that arbitrarily many safety objectives

can be satisfied simultaneously. In the case of arbitrarily many UAVs, network constraints may limit the message

throughput so we provide a reformulation of the algorithm that requires less message passing while still ensuring that

vehicles will stay safe. The final result is demonstrated in a simulation of 20 UAVs where the vehicles are on a collision

course. However, due to the role of the barrier function in ensuring safety, all twenty vehicles nevertheless maintain

safe distances from each other and then able to reach their assigned waypoints.

Appendix

An Analysis of The Role of δ in The Continuous Differentiability of hturn
Note that (16) is not necessarily differentiable when A2 = 0 since A2 results from a square root performed in phasor

addition. Thus, in this section, we consider how to ensure A2 is continuously differentiable to ensure h in (16) is

continuously differentiable. Consider (16) in phasor form

A1 − D2
s + A2e jΘ = A1 − D2

s + σA3e j(θ1,0−π/2) + A3e j(θ2,0+π/2) + δe j(θ1,0−π/2)

+σA4e j(θ1,0−π) + A4e jθ2,0 + δe j(θ1,0−π)

= A1 − D2
s + A5e jΘ5 + A6e jΘ6 (38)

where A3 = 2∆b0r , A4 = 2∆c0r , A5e jΘ5 = σA3e j(θ1,0−π/2) + A3e j(θ2,0+π/2) + δe j(θ1,0−π/2), and A6e jΘ6 = σA4e j(θ1,0−π) +

A4e jθ2,0 + δe j(θ1,0−π). Notice that Θ5 − Θ6 = π/2. In other words, A2 is zero only when both A5 and A6 are zero. For
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Fig. 6 20 vehicle scenario statistics. (a) vehicle 1 velocity, (b) vehicle 1 turn rate, (c) intervehicle distance, (d)
vehicle 1 path.
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δ = 0, A5 and A6 are both zero on the set Z1 ⊆ D where θ1,0 = θ2,0 or θ1,0 = θ2,0 + π. Although Z1 is a zero measure

set, we note that for δ > 0 that A2 is zero on a set Z2 ⊂ Z1 where Z2 is the restriction of Z1 to a specific set of positions

which we now specify.

Case 1. Vehicles Start in Opposite Directions. Suppose θ1,0 = θ2,0 + π. Then A5 = 0 when δ = −(1 + σ)A3 =

−2(1 + σ)∆b0r . Similarly, A6 = 0 when δ = −(1 + σ)A4 = −2(1 + σ)∆c0r . Suppose δ is fixed. Then A2 = 0 when

− δ
2(1+σ)r = ∆b0 = p1,x0 − p2,x0 + r(1 + σ) sin θ2,0 and − δ

2(1+σ)r = ∆c0 = p1,y0 − p2,y0 − r(1 + σ) cos θ2,0.

Case 2. Vehicles Start in the Same Direction. Suppose θ1,0 = θ2,0. Then A5 = 0 when δ = (1 − σ)A3. Similarly,

A6 = 0 when δ = (1 − σ)A4. For σ = 1, let δ > 0 to ensure A5 and A6 are not simultaneously 0. For 0 < σ < 1, a

similar analysis to the previous case implies A2 = 0 when when − δ
2(1−σ)r = ∆b0 = p1,x0 + p2,x0 − r(1 − σ) sin θ2,0 and

− δ
2(1+σ)r = ∆c0 = p1,y0 − p2,y0 − r(1 + σ) cos θ2,0.

An Analysis of the Continuous Differentiability of hstraight
From (19) we expand terms to get

h(x) = inf
τ∈[0,∞)

c(x) + b(x)τ + a(x)τ2 (39)

where c(x) = ∆x2+∆y2+∆z2−D2
s , b(x) = 2(∆x∆C+∆y∆S), a(x) = ∆C2+∆S2, ∆x = p1,x0 − p2,x0 , ∆y = p1,y0 − p2,y0 ,

∆z = p1,z0 − p2,z0 , ∆C = v1 cos θ1 − v2 cos θ2, ∆S = v1 sin θ1 − v2 sin θ2. We also note that a(x) > 0 since

a(x) = (v1 cos θ1 − v2 cos θ2)2 + (v1 sin θ1 − v2 sin θ2)2

= v21 + v
2
2 − 2v1v2 cos(θ1 − θ2)

= v21 + v
2
2 − 2v1v2 + 2v1v2 − 2v1v2 cos(θ1 − θ2)

= (v1 − v2)2 + 2v1v2(1 − cos(θ1 − θ2))

> 0

since v1 , v2 and v1 and v2 are positive. Then τmin(x) = −b(x)/2a(x) is well defined. Then h has a minimum at

τnonneg,min = max(0, τmin(x)).

For τnonneg,min(x) > 0, h is continuously differentiable because c, b, τmin, and a are continuously differentiable.

Consider now when τnonneg,min(x) = 0. We verify that ∂h(x)
∂x =

∂c(x)
∂x for either the case of τmin = 0 or τmin =

−b(x)/2a(x). In the first case, h(x) = c(x) and ∂h(x)
∂x =

∂c(x)
∂x . In the second case, h(x) = c(x) + b(x)τmin + a(x)τ2min
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and

∂h(x)
∂x

=
∂c(x)
∂x

+
∂b(x)
∂x

τmin(x) + b(x)∂τmin(x)
∂x

+
∂a(x)
∂x

τmin(x) + 2a(x)τmin
∂τmin(x)
∂x

=
∂c(x)
∂x

because in this case b(x) and τmin(x) are 0.
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