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Abstract

Safety requirements in dynamical systems are commonly enforced with set in-

variance constraints over a safe region of the state space. Control barrier func-

tions, which are Lyapunov-like functions for guaranteeing set invariance, are an

effective tool to enforce such constraints and guarantee safety when the system

is represented as a point in the state space. In this paper, we introduce extent-

compatible control barrier functions as a tool to enforce safety for the system

explicitly accounting for its volume (extent) within an ambient workspace. In

order to implement the extent-compatible control barrier functions framework,

we first propose a sum-of-squares optimization program that is solved pointwise

in time to ensure safety. Since sum-of-squares programs can be computationally

prohibitive, we next propose an approach that instead considers a finite number

of points sampled on the extent boundary. The result is a quadratic program

for guaranteed safety that retains the computational advantage of traditional

barrier functions. While this alternative is generally more conservative than the

sum-of-squares approach, we show that conservatism is reduced by increasing

the number of sampled points. Simulation and robotic implementation results

are provided.
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1. Introduction

A controlled dynamical system is considered safe if it can be ensured that

a given set of safe states is forward invariant under the action of a controller,

i.e., the system state remains within the safe set for all time when initialized

within the safe set. For example, collision avoidance between robots, obstacle5

avoidance during waypoint navigation, or lane changing for autonomous vehicles

can be cast as invariance constraints. Techniques for enforcing safety of dynam-

ical systems via invariance constraints include level-set methods [1], methods

leveraging reachability analysis [2], and model-predictive control methods [3].

When a nominal but possibly unsafe controller is available, control barrier10

functions (CBFs), introduced in [4], act as a particularly effective tool to enforce

safety for control-affine dynamical systems. CBFs have been applied for collision

avoidance in multi-robot systems [5], adaptive cruise control [4], motion planning

[6], and safety for robotic manipulators [7]. Traditionally, CBFs are used in

conjunction with quadratic programs (QPs) to compute at each time instant a15

safe control input.

Existing CBF-based approaches focus on establishing forward invariance for

the system state, also called the system configuration. The system’s volume (or

extent) in its ambient workspace must therefore be implicitly included in defin-

ing the set of safe states via a CBF. In some cases, this is straightforward and20

can be achieved by, e.g., shrinking the safe set [8, 9]. For example, consider an

application of adaptive cruise control for a vehicle [4]. In this case, the vehicle’s

length is accounted for when defining a safe following distance, and ultimately

when defining an appropriate CBF. In other cases, incorporating the physical

extent when defining an appropriate closed-form barrier is considerably more25

challenging or not possible, even when the system’s extent and safe workspace

are geometrically simple. This is because CBF-based methods rely on charac-

terizing the safe set as a level-set of a function that is known in closed form.
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For example, consider a vehicle maneuvering in a two dimensional region such

as a parking lot. The vehicle’s state is defined by its two dimensional position30

and its heading angle, and its extent is described by its physical footprint. The

safe region of the workspace is defined as a two dimensional region excluding

obstacles. In this case, collision of the vehicle with an obstacle depends on the

geometric relationship between the vehicle’s position, heading, extent, and ob-

stacles. Even when the vehicle’s extent and the workspace are simple geometric35

shapes, as in the case study in this paper, this relationship is complex and makes

it difficult or impossible to define an appropriate classical CBF as a function of

system state that is exactly the set of safe states. At best, it may be possible

to obtain a closed-form approximate safe set, but this approximation will gen-

erally be conservative. Moreover, if the system’s extent changes—for example,40

a vehicle docks with a trailer—then the classical CBF must be redesigned.

In this paper, we propose a novel CBF-based approach for ensuring safety

constraints of a control-affine dynamical system that explicitly accounts for

extent in an ambient workspace. We then define an extent-compatible CBF that

uses a modified CBF constraint to ensure that the extent set always remains45

within the safe set of the workspace. We first propose implementing the resulting

constraint using a sum-of-squares (SOS) optimization program [10]. Since SOS

programs can be computationally difficult for high dimensional systems and are

only applicable when the safe and extent sets can be represented as polynomials,

we next prove that the guarantee on system safety can be retained by considering50

only a finite set of sampled points on the boundary of the extent set, and we

propose a QP-based controller using the sampled points. This sampling-based

approach relies on bounds of Lipschitz constants of functions appearing in the

barrier function formulation and therefore may be more conservative than an

SOS approach, however, the conservatism can be controlled by increasing the55

number of sample points. The proposed framework is demonstrated with a case

study of a vehicle navigating in a two dimensional region, as motivated above.

This paper is organized as follows: Section 2 presents background on CBFs.

Section 3 proposes the extent-compatible control barrier function formulation
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that is the main contribution of this paper. Section 4 introduces the QP-based60

controller and presents two solution methods to guarantee safety: a method

utilizing SOS programming and a method that uses a finite number of points

sampled on the extent set boundary. Section 5 consists of a case study which

implements the proposed framework both in numerical simulations and on a

differential drive robot. Section 6 provides concluding remarks.65

2. Mathematical Background

In this section, we provide background on the traditional control barrier

function formulation. To that end, consider a control-affine dynamical system

ẋ = f(x) + g(x)u , (1)

where f and g are locally Lipschitz continuous, x ∈ D ⊂ Rn is the state of the

system, D is assumed to be open, and u ∈ Rm denotes the control input.

Associated with the system (1) is a safe set C ⊂ D, defined as the super zero

level set of a continuously differentiable function h : D → R, i.e., C = {x ∈ D |70

h(x) ≥ 0}. We call h the safe function. To ensure forward complete trajectories,

we assume throughout that the safe set C is bounded. If forward completeness

can be guaranteed in other ways, e.g., by ensuring that the control inputs are

such that the vector field in (1) is globally Lipschitz, the assumption that C is

bounded is not needed for the presented theory to hold true.75

As presented in [11, 12], one can use zeroing control barrier functions (ZCBFs)

in order to guarantee forward invariance of a safe set. In particular, a contin-

uously differentiable function h : D → R satisfying the regularity condition

∂
∂xh(x) 6= 0 for all x such that h(x) = 0 is a Zeroing Control Barrier Function

(ZCBF) if there exists a locally Lipschitz extended class K function α such that

for all x ∈ D,

sup
u∈Rm

{
∂h(x)

∂x
(f(x) + g(x)u) + α(h(x))

}
≥ 0 , (2)

where we recall that a continuous function α : R → R is extended class K if

α(0) = 0 and it is strictly increasing.
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In the instance that a safe function h defining a safe set C is also a ZCBF,

choosing a control input at each state x from the set

U(x) =

{
u ∈ Rm

∣∣∣∣ ∂h(x)

∂x
(f(x) + g(x)u) + α(h(x)) ≥ 0

}
(3)

guarantees that the safe set C is forward invariant [11]. Specifically, if x(0) ∈ C

and U(x) as in (3) is non-empty for all x ∈ D, then, as shown in [13, Theorem 4],

any continuous feedback controller u : D → Rm such that u(x) ∈ U(x) for all80

x ∈ D is such that x(t) ∈ C for all t ≥ 0.

3. Extent Compatible Control Barrier Functions

In this section, we first formalize the problem statement, followed by the

notion of extent-compatible control barrier functions for systems of the form (1).

We then prove that such functions enable guaranteed safe control of the system,85

including its extent.

3.1. Problem Statement

Given a ZCBF, [13, Theorem 4] guarantees that the system state will remain

within the safe set C when control inputs are continuous in x and chosen accord-

ing to u(x) ∈ U(x) for all x ∈ D, where U(x) is as defined in (3). This notion of90

safety, however, requires the extent of the system to be implicitly accounted for

in the characterization of the safe set within the system domain. In this section,

we define a notion of system safety that explicitly includes the physical volume

of the system within an ambient workspace that is distinct from the domain

of the statespace as described in, e.g., [14, Ch. 3]. To that end, let W ⊂ Rw95

denote this workspace and assume W is open; when the system state is x ∈ D,

the system physically occupies some subset of W that depends on x, and the

set of safe states is now characterized as a subset C ⊂ W. We encapsulate this

notion of volume with an extent function E such that E(x, y) ≤ 0 means the

point y ∈ W is within the system’s extent when the state of the system is x ∈ D.100

Additional mild technical assumptions avoid pathological cases, as formalized

in the following definition.
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Definition 1 (Extent Function). An extent function E : D × W → R is a

continuously differentiable function such that:

1. E(x) = {y ∈ W | E(x, y) ≤ 0} is nonempty for all x ∈ D,105

2. ∂
∂yE(x, y) 6= 0 for all (x, y) such that E(x, y) = 0, and

3. for all δ > 0, there exists ε > 0 such that for all x ∈ D and all y ∈ W,

if |E(x, y)| ≤ ε then inf ŷ∈∂E(x) ‖y − ŷ‖ ≤ δ where ∂E(x) = {y ∈ W |

E(x, y) = 0}.

Condition 1 is the key condition of the definition. In particular, the set110

E(x) ⊂ W above defines the system’s extent when its state is x ∈ D, and

∂E(x) = {y ∈ W | E(x, y) = 0} denotes the extent boundary. As a simple

example, if the extent contains all points within a distance d > 0 of the system

state x, then W = D and we may choose E(x, y) = ‖y− x‖2− d2. Conditions 2

and 3 are mild technical conditions. In particular, Condition 2 ensures that the115

gradient with respect to y of E does not vanish on the extent set boundary E(x),

which is entirely analogous to standard regularity assumptions on traditional

control barrier functions as is made in, e.g., [11], and Condition 3 ensures that

E(x, y) only approaches 0 at the extent boundary. For example, Condition 2

is violated for E(x, y) = (y − x)3 with D = W = R because E(x, y) as a120

function of y has zero slope when x = y, and E(x, y) = − cos(y − x) with

D = W = (−3π/2, 3π/2) violates Condition 3 when x = 0 because E(x, y)

approaches zero as y approaches the domain boundary {−3π/2, 3π/2}, which

is far from the extent set boundary ∂E(x) = {−π/2, π/2}. In our experience,

extent functions of practical use always satisfy these technical conditions.125

Given an extent function, we aim to ensure that the extent of the system is

contained within the safe set for all time, i.e., E(x(t)) ⊂ C for all t ≥ 0 along

trajectories of (1). An example of such a problem setup is shown in Fig. 1.

Problem 1. Given a control affine dynamical system as in (1) with extent

function E(x, y), synthesize a controller u which guarantees E(x(t)) ⊂ C for all130

t ≥ 0 whenever E(x(0)) ⊂ C.
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Figure 1: A motivating example, where a differential drive robot with a system volume covered

by an extent set must stay within the ellipsoidal safe set when a nominal unsafe controller tries

to drive it outside. This paper proposes controller frameworks to guarantee safety of the system

including its volume under such situations, without introducing unnecessary conservatism by

shirking the safe set, something that a classical CBF solution would have do. The image is

from a Robotarium [15] implementation of the framework introduced in this paper, which we

also describe in Section 5.

As a motivating example, consider a differential drive robot (i.e., vehicle)

with a superellipsoidal extent set and ellipsoidal safe set as shown in Fig 1. The

robot including its extent set must stay within the safe set under the action of

a controller that tries to drive it outside the set. This is the main intuition for135

Problem 1. We revisit this motivating example in Section 5.

3.2. Extent-Compatible Control Barrier Function (Ec-CBF)

We now introduce extent-compatible control barrier functions (Ec-CBFs)

which are analogous to ZCBFs but guarantee that the entire extent set remains

within the safe set under the action of a suitable control input. For a ZCBF h,140

the condition (2) ensures that, as the system state approaches the boundary of

the safe set, a control action is available that limits the rate at which h decreases.

This ensures that h(x(t)) remains nonnegative and the system remains safe. The

rate at which the barrier h is allowed to decrease is dictated by the extended

class K function α in (2). In implementations, the choice of α serves a practical145

role in restricting how quickly the system is allowed to approach the safe set

boundary. To extend this idea to systems with extent, we introduce the following
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definition, which, informally, uses two extended class K functions to ensure that

the boundary of the extent set does not approach the boundary of the safe set

too quickly, thus ensuring safety.150

Definition 2 (Extent-Compatible Control Barrier Function (Ec-CBF)). A con-

tinuously differentiable function h satisfying the regularity condition ∂
∂yh(y) 6= 0

for all y ∈ W such that h(y) = 0 is an extent-compatible control barrier func-

tion (Ec-CBF) for the system (1) with extent function E if there exists locally

Lipschitz extended class K functions α1 and α2 such that for all x ∈ D with

E(x) ⊂ C and for all y ∈ C, defining

M(x, y, u) :=
∂E(x, y)

∂x
(f(x) + g(x)u) + α1(E(x, y)) + α2(h(y)) ,

it holds that supu∈Rm{M(x, y, u)} ≥ 0.

Given an Ec-CBF h, for all x ∈ D, define the set

U(x) = {u ∈ Rm | M(x, y, u) ≥ 0 for all y ∈ C} . (4)

Assuming that the extent of the system initially begins inside the safe region,

choosing a control input u(x) ∈ U(x) at any given state x ∈ D guarantees that

E(x(t)) ⊂ C for all t ≥ 0, as formalized in the following theorem.

Theorem 1. Consider system (1) with initial state x(0), an extent function E,155

an Ec-CBF h with associated safe set C = {y ∈ W | h(y) ≥ 0} ⊂ W, and

U(x) as defined in (4). If E(x(0)) ⊂ C, then any continuous feedback controller

u : D → Rm such that u(x) ∈ U(x) for all x ∈ D guarantees that E(x(t)) ⊂ C

for all t ≥ 0.

Proof. Suppose by contradiction that the assumptions of the theorem hold but160

there exists a time t′ > 0 such that E(x(t′)) 6⊂ C, that is, the system is unsafe

at time t′. By the defininition of E and C, this means there exists a point

y′ ∈ W such that E(x(t′), y′) ≤ 0 and h(y′) < 0. The first step of the proof is

to establish that, in fact, there exists a time 0 < t† ≤ t′ and a point y† ∈ W

such that E(x(t†), y†) < 0 and h(y†) = 0, i.e., y† is in the interior of the165
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extent set at time t† and on the boundary of the safe set C. To see that this is

true, first, without loss of generality, we can assume E(x(t′), y′) < 0 because, if

instead E(x(t′), y′) = 0, then since ∂
∂yE(x(t′), y′) 6= 0 by the definition of extent

function, for small enough ε, it holds that E(x(t′), y′′) < 0 and h(y′′) < 0 where

y′′ = y′ − ε ∂∂yE(x(t′), y′), and we could consider y′′ instead of y′. Next, since170

the system is assumed to be initialized in safe conditions with E(x(0)) ⊂ C, and

since trajectories are continuous, there must exist a time t† and a point y† when

the system becomes unsafe, i.e., there exists 0 < t† ≤ t′ and y† ∈ W such that

E(x(t†), y†) < 0 and h(y†) = 0, as desired.

Now, let w(t) = E(x(t), y†), i.e., w(t) is the value of the extent function at

the point y† over time. Since the system is assumed to be initially safe, it holds

that w(0) = E(x(0), y†) ≥ 0, and by construction, w(t†) = E(x(t†), y†) < 0.

But, for all t ≥ 0,

ẇ(t) =
∂E(x(t), y†)

∂x

(
f(x(t)) + g(x(t))u(x(t))

)
≥ −α1(w(t))− α2(h(y†))

= −α1(w(t)) ,

where the first inequality holds since h is an Ec-CBF and the second equality175

follows because −α2(h(y†)) = 0.

Now, consider the initial value problem η̇(t) = −α1(η(t)) with η(0) = w(0).

Note that η(0) ≥ 0 since w(0) ≥ 0. The comparison lemma [16, Lemma 3.4]

then implies w(t) ≥ η(t) ≥ 0 for all t ≥ 0. But this contradicts that w(t†) < 0.

Hence, E(x(t)) ⊂ C for all t ≥ 0.180

Observe that when x is such that a point of the boundary of the extent set

is on the boundary of the safe set, the condition (4) ensures that the control

input u makes the system stay in the extent-set and the functions α1 and α2

are used to make this control action smoother. The only feature of α2 used

in the proof of Theorem 1 is that α2(0) = 0. The additional properties on α2185

imposed in Definition 2 are useful for practical implementation and exploited in

Theorem 3.
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In contrast to traditional CBFs, Ec-CBFs are defined over the workspace

W and explicitly account for the system extent within the workspace via the

the condition supu∈Rm{M(x, y, u)} ≥ 0, which depends on the system extent190

function E. Moreover, if the system extent changes (e.g., because a different

robot is used or a vehicle docks with a trailer), then only the system extent

function E need change, and the Ec-CBF h remains the same.

Next, we propose an optimization scheme for selecting inputs from the set

U(x) to guarantee safety while minimally deviating from some prescribed nom-195

inal controller.

4. Minimally Invasive Quadratic Program Controller

In the scenario where a system designer would like to employ some possibly

unsafe nominal feedback control policy k : D → Rm on the system (1) with

extent, we propose incorporating (4) as a constraint at runtime to obtain a safe

controller as a minimally invasive quadratic program (QP) using a Ec-CBF,

similar to the technique proposed in [4] for ZCBFs. This procedure leads to a

control law which ensures that the extent set of the system is contained within

the safe set C for all t ≥ 0, given that E(x(0)) ⊂ C. In particular, we propose a

quadratic program solved for each x of the form

uQP(x) = arg min
u∈U(x)

‖u− k(x)‖22 . (5)

The above QP is minimally invasive in the sense that it guarantees safety

of the system including its extent, while following the nominal input k with

minimal deviation. However, for fixed x, U(x) is defined from (4) and requires200

a given inequality to hold for all y, leading to an infinite number of linear

constraints on u. In the remainder of this section, we present two approaches

that retain safety guarantees. The first one is an exact solution, but may not

necessarily be computationally efficient. The second one is an approximate

solution which still guarantees safety and is amenable for online implementation.205
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4.1. Optimization Over Sum-of-Squares Polynomials

In the first approach, we recast (5) as a sum-of-squares (SOS) optimization

problem in the independent variable y. Recall that x is the a priori fixed

current state of the system and y is a free variable denoting any point in the

workspace W.210

Definition 3 (Sum-of-Squares (SOS) Polynomials). A polynomial s(y) is a

sum-of-squares polynomial if it can be written as s(y) =
∑`
i=1 pi(y)2 for some

natural number ` where each pi(y) is a polynomial. Let Σ[y] denote the set of

all SOS polynomials. Note that if s(y) ∈ Σ[y], then s(y) ≥ 0 for all y ∈ Rn.

Theorem 2. Consider system (1) with initial state x(0), an extent function

E, and an Ec-CBF h with associated safe set C = {y ∈ W | h(y) ≥ 0} ⊂ W.

Further assume E(x, y) and α1(E(x, y)) are polynomial in y for any fixed x and

that h(y) and α2(h(y)) are polynomial in y. Let k : D → R be a continuous

nominal controller and suppose E(x(0)) ⊂ C. If the set

Ũ(x) =

{
u ∈ Rm

∣∣∣∣ ∂E(x, y)

∂x
(f(x) + g(x)u) + α1(E(x, y)) + α2(h(y))−

s(y)h(y) ∈ Σ[y] for some s(y) ∈ Σ[y]

}
is non-empty for all x ∈ D, then the solution x(t) of system (1) with

u(x) = uSOS(x) := arg min
u∈Ũ(x)

‖u− k(x)‖22 (6)

is such that E(x(t)) ⊂ C for all t ≥ 0.215

Proof. For each x, the optimization problem (6) is feasible by hypothesis, and

the fact that u ∈ Ũ(x) implies

∂E(x, y)

∂x
(f(x) + g(x)u) + α1(E(x, y)) + α2(h(y))− s(y)h(y) ≥ 0 (7)

for all y ∈ Rn, since the left hand side of the inequality is required to be an

SOS polynomial. Next, observe that s(y)h(y) ≥ 0 for all y ∈ C since s(y) is a

SOS polynomial, and for all points of the safe set, i.e., y ∈ C, we have h(y) ≥ 0
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as per the definition of the safe set in Section 2. Hence the requirement that

u ∈ Ũ(x) implies

∂E(x, y)

∂x
(f(x) + g(x)u) + α1(E(x, y)) + α2(h(y)) ≥ 0 (8)

for all y ∈ C, i.e., u ∈ U(x) as defined in (4). In addition, since for all x ∈ D,

the constraint in Ũ(x) is convex in u, ‖u‖ is convex in u, and k is continuous in

x, using [13, Theorem 5], we conclude that the controller is continuous. From

Theorem 1, E(x(t)) ⊂ C for all t ≥ 0.

To implement the SOS controller in, e.g., SOSTOOLS [10], the degree of the

SOS decision polynomial s(y) in the constraint defining Ũ(x) is fixed a priori.

In addition, the quadratic cost in (6) is recast in epigraph form to obtain an

equivalent problem with linear cost and an additional semidefinite constraint via

Schur complement [17]; in particular, the initial formulation (6) is equivalent to

uSOS(x) = arg min
u∈Ũ(x)

min
δ∈∆(u,x)

δ ,

with

∆(u, x) =

δ ∈ R
∣∣∣∣
 I u

uT δ + 2k(x)Tu− k(x)T k(x)

 � 0

 .

The above SOS approach allows us to adopt a tractable method to guarantee220

safety for the system. However, this approach has two drawbacks. First, it

requires extent sets and safe sets to be defined by polynomial functions. Second,

with increasing system dimensionality, SOS programs are known to become

computationally difficult. Hence, we next propose a computationally efficient

approach that replaces the infinite number of linear constraints of (5) with a225

finite number of constraints induced by a finite number of points sampled on

the extent boundary.

4.2. A Sampling-Based Approach to Set Invariance with Extent

In this subsection, we propose an alternative relaxation of (5) which retains

the computational advantages of the original QP formulation for ZCBFs. The230
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intuition is to enforce the constraint in (4) on the boundary of the extent set,

but only for a finite number of sampled points. To obtain a finite number of

sampled points, we discretize the boundary of the extent set ∂E(x). The main

technical difficulty is ensuring that a barrier condition at each sample point

is sufficient to guarantee safety for the entire safe set. The following theorem235

formally guarantees safety of this sampling approach by supposing a constraint

on the magnitude of the control input for each sampled point and utilizing

bounds of the Lipschitz constants obtained from the Ec-CBF h and the extent

function E to guarantee that the entire extent set boundary, and hence the

entire extent set, remains within the safe set.240

Theorem 3. Consider system (1) with initial state x(0), an extent function

E, and an Ec-CBF h with associated safe set C = {y ∈ W | h(y) ≥ 0} ⊂ W.

Further assume that the domain D and the workspace W are bounded, E(x) is

bounded for all x ∈ D, let M > 0 be a bound on the magnitude of the control

input, and for some τ > 0 let ∂Eτ (x) ⊂ ∂E(x) be a finite set such that for all

y ∈ ∂E(x), it holds that minỹ∈∂Eτ (x) ‖ỹ − y‖ ≤ τ/2. Additionally, let

A ≥ sup
y∈W

∥∥∥∥ ∂∂yh(y)

∥∥∥∥ , (9)

B ≥ sup
x∈D,y∈W, ‖u‖<M

∥∥∥∥∂2E(x, y)

∂x∂y
(f(x) + g(x)u)

∥∥∥∥ . (10)

Consider the set

Û(x) =

{
u ∈ Rm

∣∣ ‖u‖ ≤M and

∂E(x, y∗)

∂x
(f(x) + g(x)u) + γ · h(y∗) ≥ (B + γA)τ

holds for all y∗ ∈ ∂Eτ (x)

}
(11)

where γ > 0 is a constant. Let k : D → R be a continuous nominal control

input. If for all x ∈ D the set Û(x) is non-empty and E(x(0)) ⊂ C, then the

solution x(t) to the system (1) with u = usampled(x), where

usampled(x) = arg min
u∈Û(x)

‖u− k(x)‖22 , (12)

13



is such that E(x(t)) ⊂ C for all t ≥ 0. Moreover, the controller usampled(x) is

continuous with respect to x for all x ∈ D.

Proof. Introduce the open set

B =
⋃

y∗∈∂Eτ (x)

Bo3τ
4

(y∗) ,

where Bo3τ
4

(y∗) denotes an open ball with radius 3τ
4 centered around y∗. Choose

ε > 0 such that for all x, Ē(x) = {y ∈ W | |E(x, y)| ≤ ε} ⊆ B. Such a choice of

ε is possible due to part 3 of the definition of the extent function (Definition 1).

Clearly ∂Eτ (x) ⊂ ∂E(x) ⊂ Ē(x). From the mean value theorem, for all y ∈ Ē(x)

and y∗ = arg minȳ∈∂Eτ (x) ‖ȳ − y‖, it follows that

h(y∗)− h(y) ≤ A‖y∗ − y‖ , (13)

and (
∂E(x, y∗)

∂x
− ∂E(x, y)

∂x

)
(f(x) + g(x)u) ≤ B‖y∗ − y‖ (14)

whenever ‖u‖ ≤M . Now, observe that ‖y∗ − y‖ ≤ 3τ/4. Multiplying (13) with

−γ and (14) with −1 and then adding the inequalities yields

∂E(x, y)

∂x
(f(x) + g(x)u) + γ · h(y)

≥ ∂E(x, y∗)

∂x
(f(x) + g(x)u) + γ · h(y∗)− (B + γA)3τ/4

≥ (B + γA)τ/4

for any u ∈ Û(x) where the last inequality follows from the definition of Û(x).

Choose α2(s) = γs for all s ≥ 0 and α1(s) = (B+ γA)τ/(4ε)s for all s ≤ |ε|.

Then, for any u ∈ Û(x), we have M(x, y, u) ≥ 0 whenever |E(x, y)| ≤ ε where

M is as in Definition 2. Moreover, it is straightforward to see that α1 can be

chosen to be sufficiently large for s > |ε| so that M(x, y, u) ≥ 0 for u ∈ Û(x)

also when |E(x, y)| > ε. Thus, h is a Ec-CBF and usampled(x) ∈ U(x) for all

x ∈ D. Since for all y∗ ∈ ∂Eτ (x), in the definition of Û(x), the constraint

∂E(x, y∗)

∂x
(f(x) + g(x)u) + γ · h(y∗) ≥ (B + γA)τ

14



h(y) = −y1

•

x2, y2

x1, y1

Figure 2: Example of the different discretizations in Example 1. The black dot is the system

and the solid circle its extent. The four discretion points are with circles and the distances

with dashed circles. The dashed line show how close the discretizations points can be to the

barrier and still satisfy the inequality.

is convex in u, ‖u‖ is convex in u and k is continuous in x, using [13, Theorem

5], we conclude that the controller usampled(x) is continuous. Thus, from Theo-245

rem 1, the extent set E(x) is contained within the safe set for all t ≥ 0 and for

all x ∈ D such that E(x(0)) ⊂ C; that is, E(x(t)) ⊂ C for all t ≥ 0.

The constants (9) and (10) are interpreted as upper bounds of the Lipschitz

constants for functions appearing in the definition of Ec-CBF. Whenever the

domain D and workspaceW are bounded, as is usually the case in practice, such250

constants will exist. Moreover, since the constants A and B could potentially

be large, the constant τ must be chosen small enough so that Û(x) is nonempty

and, as we show in the following example, choosing τ to be large can result in

unwanted conservatism.

Example 1. Consider the system ẋ = u, where x =
[
x1 x2

]T
∈ R2 is the255

system state and u ∈ R2 is a bounded control input such that ‖u‖2 ≤M where

M = 1. We take D = W = R2 and E(x, y) = (x1 − y1)2 + (x2 − y2)2 − 1 and

encode the safety constraint with the safe function h(y) = −y1. As noted earlier,

although the safe set is not bounded in this example, forward completeness can

still be guaranteed due to bounded control input, and hence the presented results260

still hold true in this setting. This problem setting is depicted in Fig. 2. We take

the upper bound of the Lipschitz constants as A = 1 and B = 2 satisfying (9)
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and (10). Observe that for this specific choice of extent function, the constants

can be determined although the domain and workspace are unbounded. In

practice, systems operate in a compact domain, and hence, the constants A and265

B exist and can be computed.

To demonstrate the conservatism with few sampled points, we consider a

sampling-based controller which uses four samples; that is, we take ∂Eτ (x) =

{(x1 ± 1/
√

2, x2 ± 1/
√

2), (x1 ± 1/
√

2, x2 ∓ 1/
√

2)}, such that τ = 2
√

2−
√

2.

The controller (12) then has four constraints,

√
2(−u1 ± u2)− γ

(
x1 −

√
2
)
≥ (B + γA)τ , (15)

√
2(u1 ± u2)− γ

(
x1 +

√
2
)
≥ (B + γA)τ . (16)

In the instance that x1 = −(Bγ + A)τ , the only feasible solution is (u1, u2) =

(−γ, 0) with γ ≤ M , which will effectively steer the system away from the

barrier. Observe that γ plays a key role in the behavior of the system. A higher

value of γ will allow for the system to get closer to the barrier, but once the270

system is close to the boundary, a more aggressive control action, i.e., u1 = γ is

applied.

Intuitively, the sampling-based technique essentially covers the boundary of

the extent set with balls around the discretized points, and ensures that the

balls do not ever cross over into the unsafe set, as is visualized in Fig 2.275

5. Experimental Results

In this section, we present a case study2 of the proposed framework im-

plemented in the Robotarium testbed [15] on a differential drive robot with

dynamics

ẋ1 = v · cos(φ) , ẋ2 = v · sin(φ) , φ̇ = ω ,

2Source code for the implementation is available at

https://github.com/gtfactslab/ExtentCBF
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where x1 ∈ R, x2 ∈ R are the position coordinates of the robot, φ ∈ [−π, π)

is the orientation, and v ∈ R and ω ∈ R are the linear velocity input and

angular velocity input. Define the system state by x =
[
x1 x2 φ

]T
. The

Robotarium workspace is taken to be W = [−1.6, 1.6] × [−1, 1] ⊆ R2 and the

system domain D is defined by x1 ∈ [−1.6, 1.6], x2 ∈ [−1, 1], and φ ∈ [−π, π),

that is, the domain D consists of the workspace W augmented with the robot’s

orientation. We consider an ellipsoidal safe set C = {y ∈ R2 | h(y) ≥ 0} where

h(y) = 1− yTPsafey with Psafe = diag(1−2, 0.8−2) ∈ R2×2, and the extent set as

a fourth-order superellipse described by the extent function

E(x, y) = (5)4(∆1 cos (φ) + ∆2 sin (φ))4+

(10)4(−∆1 sin (φ) + ∆2 cos (φ))4 − 1 , (17)

where ∆i = (xi − yi) for i = 1, 2.

We take the nominal control as unom =
[
1 0.4

]T
, with a simulation hori-

zon of 1000 iterations. To highlight the benefit of the proposed method, we

also implement a classical CBF solution, where the controller uses a shrunken280

safe set to account for the extent of the system. In implementation, the CBF

controller enforced the forward invariance of h̃(y) = 1− yT P̃safey, where P̃safe =

diag(0.8−2, 0.6−2), which is a subset of the true safe set C. We compare the tra-

jectories generated from the sampling-based approach, SOS approach and the

classical approach in Fig 3. For this particular choice of nominal control input,285

the SOS controller makes slower progress along the desired trajectory; this is

because, once the robot gets closer to the safe set boundary, the safe input ve-

locities become small. For the sampling based controller, we take γ = 0.06 and

considered τ = 0.001, τ = 0.0005, τ = 0.0002, and τ = 0.0001. The sampled

points along the boundary were then generated by parameterizing the boundary290

and constructively finding the angle that gives a new sample point τ away from

the previous one. The average time required to compute the control law for the

controllers is shown in Table 1.

In Fig. 4, we plot the minimum value of the Ec-CBF evaluated over all

sampled points for cases in Table 1. Observe that all the values are strictly295
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Sample-based τ = 0.001 Sample-based τ = 0.0001

SOS controller Classical CBF

Safe set
Smaller safe set for the traditional CBF
Robot’s trajectory

Figure 3: Trajectories for the sample-based controller with τ = 0.001 and τ = 0.0001, as

well as the SOS controller and the traditional CBF controller. The boundary of the safe set

in the workspace is shown in solid blue. The traditional CBF controller must use a smaller

safe set in the statespace to accommodate the system’s extent; the boundary of this smaller

set is shown in dotted red. The plots demonstrate that conservatism of the sampling-based

approach decreases as τ decreases and the number of samples increases. Moreover, due to

the non-circular shape of the extent set, the traditional CBF controller is more conservate

compared to both the sample-based controller with τ = 0.0001 and the SOS controller.
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Table 1: Average computation time for the controllers in the case study

τ No. of Average Run Time

Samples (in milliseconds)

0.001 1044 18

0.0005 2088 35

0.0002 5252 83

0.0001 9436 110

SOS controller – 2200

Classical CBF – 3.9

positive, thus implying that none of the sampled points have violated the safe

set. Also, observe that for τ = 0.0005 or less, the value of h(y) is lower compared

to the classical CBF solution, which implies that the robot will be closer to the

boundary of the safe set.

The robot’s safe trajectory is influenced by the choice of τ , where a smaller300

τ requires more samples, as show in Table 1. In Fig. 3, we show how the

trajectories for the robot differ with τ = 0.001 and τ = 0.0001. As expected

and per the discussion in Example 1, we observe that there is larger conservatism

when lower number of samples are considered. In this case, the robot does not

venture close to the boundary of the safe set. However, with large number of305

samples, we observer that the robot gets close to the boundary. Fig. 3 also

shows that both the sample based controller with τ = 0.0001 and the SOS

controller allows the robot to get closer to the safe set’s boundary compared to

the classical CBF solution.

From the above discussion, we observe that using the sampling-based con-310

troller results in a computationally efficient controller which guarantees safety,

albeit it can sometimes require a conservative amount of samples. To showcase

both of these facts, we implemented3 the sampling-based technique on the Rob-

3Video of the experiment available at https://youtu.be/WH99Fknxc8o
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τ = 0.001 τ = 0.0005
τ = 0.0002 τ = 0.0001

Classical CBF

Figure 4: Minimum value of the Ec-CBF h(y) evaluated for τ = 0.001, τ = 0.0005, τ = 0.0002,

and τ = 0.0001 at the sampled points (i.e. for all y ∈ ∂Eτ (x)) on the boundary of the extent

set. Observe that all values for each case are strictly positive, thus implying that none of the

sampled points cross into the unsafe region. For comparison, the classical CBF solution is

included that uses a smaller safe set. The classical solution is more conservative than almost

all of the sample-based solutions.
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(a) (b)

Figure 5: Overhead images from the implementation on the Robotarium test-bed. Each of

the sub-figures indicate the trajectory of the robot generated over the course of the imple-

mentation. Observe that although the nominal controller tries to push the robot outside the

safe set, the sampling-based controller (12) ensures that the robot state and its extent stay

within the safe set.

otarium testbed. Snapshots of the experiment are shown in Fig 5. In particular,

we considered a setting where the τ -value in eq. (11) was 10 times smaller than315

what it should be according to Theorem 3. As can be seen, the trajectory of

the robot is such that safety of the system volume is guaranteed over the period

of the entire experiment. It can also be seen in Fig 5, that robot is allowed to

get closer to the boundary of the safe set, compared to a classical CBF solution

that would have required the robot to stay inside the set bounded by the inner320

circle.

6. Concluding Remarks

This paper presents a barrier function-based method for ensuring the safe

control of a control-affine dynamical system that incorporates its physical vol-

ume, i.e., its extent. The first proposed controller design relies on a sum-of-325

squares optimization program. The sum-of-squares approach is conceptually ap-

pealing and does not require knowledge of, e.g., explicit bounds of the Lipschitz

constants, however, sum-of-squares programs can be computationally difficult.

Therefore, a sampling method is proposed as an alternative. This alternative

controller is shown to retain the guarantee on safety of the system but can be330

more conservative than the sum-of-squares approach. Simulation and robotic
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implementation results are also provided. As part of future work, for systems

with high relative degree, an interesting direction is to extend our framework

using a methodology similar to that used to extend barrier functions to high

relative degree systems [18].335
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