
Safety Verification for Urban Air Mobility
Scheduling ⋆

Qinshuang Wei ∗ Gustav Nilsson ∗∗ Samuel Coogan ∗

∗ Georgia Institute of Technology, Atlanta, GA 30332, USA (e-mail:
{qinshuang,sam.coogan}@gatech.edu).

∗∗ École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland, CH-1015 (e-mail: gustav.nilsson@epfl.ch)

Abstract: In Urban Air Mobility (UAM) networks, takeoff and landing sites, called vertiports,
are likely to experience intermittent closures due to, e.g., adverse weather. For safety, it will
be required that all in-transit Urban Air Vehicles (UAVs) in a UAM network have alternative
landing sites in the event of a vertiport closure. In this paper, we propose analytical conditions
for developing an efficient algorithm that, given a proposed UAM schedule, verifies whether all
UAVs are able to safely reach a back-up landing site in the event of a vertiport closure without
violating the limited landing capacity of each vertiport in the network. If safety verification is
not possible, the algorithm returns a counterexample demonstrating the violation. Our solution
allows for uncertain travel time between UAM vertiports and scales quadratically with the
number of scheduled UAVs. We demonstrate our algorithm on a UAM network with up to 1,000
UAVs.

Keywords: Urban Air Mobility, Safety Verification, Transportation Network

1. INTRODUCTION

Urban air mobility (UAM) refers to using urban airspace
for transportation of people and goods in cities and sur-
rounding regions and is being explored by both com-
mercial mobility-on-demand operators, Holden and Goel
(2016), and government-sponsored research institutes such
as NASA, Thipphavong et al. (2018). Studies such as Bal-
akrishnan et al. (2018); The MITRE Corporation (2014);
Lascara et al. (2018); INRIX (2019); Al Haddad (2018);
Ancel et al. (2017) propose various approaches to allow
urban air vehicles (UAVs) to travel safely and efficiently
through cities. These proposed ideas cover a wide range of
possibilities such as allowing UAVs to land at vertistops or
vertiports installed on roofs of existing buildings or within
cloverleaf exchanges on freeways. Meanwhile, several simu-
lation tools, e.g., Bosson and Lauderdale (2018); Xue et al.
(2018); Aiello et al. (2019), have also been developed to
study large-scale interactions of UAVs.

For any UAM solution, unforeseen disruptions such as
intermittent closure of landing sites due to, e.g., extreme
weather conditions as mentioned in Balakrishnan et al.
(2018), needs to be considered. For the sake of safety, it
must be ensured that, once the network is disrupted, there
will be enough landing spots available for all UAVs con-
forming to the emergency rerouting rules. In this paper, we
consider schedule disruptions within the model proposed
in Wei et al. (2021), which accounts for uncertain travel
time and limited landing capacity, and we develop a safety
verification algorithm for a given UAM schedule. In Wei

⋆ This work was partially supported by the NASA University Lead-
ership Initiative (ULI) under grant number 80NSSC20M0161 and by
the National Science Foundation under grant number 1749357.

et al. (2021), the schedules are obtained so that the trip de-
mands, i.e., flights, must travel through designated routes
and meet their corresponding arrival deadlines at their
destinations, while satisfying the landing-spot restrictions
at the destination and intermediate nodes upon arrival.
In this paper, we further consider the problem of verifying
the safety of a given schedule upon the closure of a node in
the network. The main contributions are as follows: First,
we add the disruption model, which considers the closure
of vertiports or vertistops, to the existing UAM network
model in Wei et al. (2021). We then provide necessary
and sufficient conditions for a given UAM schedule to be
guaranteed as safe in the disrupted scenario under worst-
case travel time realization, which leads to our proposed
safety verification algorithm. We also provide necessary
and sufficient conditions for guaranteed safety under best-
case travel time realization. Lastly, we demonstrate our
verification algorithm and its computation efficiency on a
UAM network with up to 1,000 UAVs.

Safety of UAV scheduling has been explored in several pa-
pers. In Ancel et al. (2017), a risk assessment framework is
developed to provide real-time safety evaluation and track-
ing capability for the Unmanned Aircraft System Traffic
Management. This paper assesses the risk of off-nominal
conditions to people on the ground by calculating the
potential impact area and the effects of the impact instead
of safely rerouting the UAV itself. The simulation tool
AutoResolver has the ability of continuously ensuring safe
separation between UAVs given both spatial and temporal
constraints in Bosson and Lauderdale (2018), where the
UAVs are expected to arrive at the destination as early as
possible. In contrast, under the setting considered in this
paper, we impose the separation constraint between UAVs



from another aspect, i.e., the limited landing capacities at
the vertistops or vertiports along the routes.

The more general problem of verifying safety of schedules
is considered in Wang et al. (2019); Liu and Joseph (1999);
Yasmeen et al. (2012); Cimatti et al. (2000); Chen et al.
(2017), which provide symbolic reliability checking for
safety-critical systems including flight control. However,
these approaches provide general verification for real-time
scheduling protocols with interruption, and do not provide
an approach for the network to deal with the specific
interruption of node closures that reduce capacity, as is
the case here.

The remainder of the paper is organized as follows: In
Section 2, we first recall the UAM network model in Wei
et al. (2021), and then introduce the disruption model that
reduces capacity of the network. In Section 3, we establish
safety criteria and develop necessary and sufficient condi-
tions for the schedule to be safe under disruptions. We then
demonstrate how these constraints can be used for safety
verification on a UAM network in Section 4 and compare
the verification time for different sizes of schedules.

2. PROBLEM FORMULATION

2.1 Network Model and Nominal Scheduling

We model an urban air mobility (UAM) network with a
directed graph G = (V, E), where V is the set of nodes and
E is the set of links for the network. Nodes are physical
landing sites for the UAVs, sometimes called vertistops
or vertiports. Links are corridors of airspace connecting
nodes. Each node v ∈ V has capacity Cv ∈ N0, that is,
there are Cv landing spots at node v where each landing
spot allows at most one UAV to stay at any time. We
denote the vector of capacities C = {Cv}v∈V .

We define τ : E → V and σ : E → V so that for all
e = (v1, v2) ∈ E where v1, v2 ∈ V, τ(e) = v1 is the tail of
edge e and σ(e) = v2 is the head of edge e. Let S ⊆ V
(resp., T ⊆ V) be the set of nodes that are not the head
(resp., tail) of any edge, S = {v ∈ V | σ(e) ̸= v ∀e ∈ E}
and T = {v ∈ V | τ(e) ̸= v ∀e ∈ E}. We assume S ∩T = ∅.
A route R is a sequence of connected links. Denote the
number of links in route R by kR and enumerate the links
in the route 1R, 2R, . . . , kRR and the nodes in the route
0R, 1R, . . . , kRR . To avoid cumbersome notation, we use ℓR

to denote both a link and its head node along a route, i.e.,
ℓR = σ(ℓR) for all ℓ ∈ {1, . . . , kR}; the intended meaning
will always be clear from context. Thus the route links and
nodes are enumerated so that 0R = τ(1R) is the origin
node, kRR is the destination node, and σ(ℓR) = τ((ℓ+1)R)
for all ℓ ∈ {1, . . . , kR} ensures the sequence is connected.
Further, when the route R is clear from context, we drop
the superscript-R notation. We denote the set of nodes
that R travels through as V (R).

We assume that, due to operational reasons, the UAVs are
only allowed to travel along a set of routes R.

Since, in reality, the travel time depends on external
factors such as weather conditions, we assume that the
travel time for each link is not exact, but rather bounded
by a time interval. For each link e ∈ E , let xe and xe

with xe ≥ xe > 0 denote the maximum travel time and
minimum travel time, respectively, for the link, and let
x ∈ RE

+ and x ∈ RE
+ be the corresponding aggregated

vectors. Once a UAV has landed at any node, it is assumed
to block a landing spot for a fixed ground service time
w ∈ R+. For ease of notation, we assume the ground
service time is uniform at all nodes, but this assumption
is straightforward to relax.

Definition 1. (UAM Network). A UAM network N is a
tuple N = (G, C,R, x, x, w) where G, C,R, x, x, w are the
network graph, node capacities, routes, and minimum and
maximum link travel times as defined above.

To model the schedule of UAV flights in a UAM network
N = (G, C,R, x, x, w), we assume that every flight is
associated to a route R ∈ R and stops at intermediate
nodes along the route. Therefore, a schedule is a pair (R, δ)
where R ∈ R and δ ∈ R+ is the appointed departure time
from the first node along the route. A schedule profile for
a UAM network is a set S = {(Rj , δj)}j∈J where J is a
finite index set of flights, and hence, S, is assumed finite.

For safety reasons, it is assumed that a UAV must be able
to land immediately upon arrival at any node along its
route. We let ℓ ≥ 1, the latest arrival time at the node
σ(ℓ) along the route is denoted ajℓ and given by

ajℓ = δj +

ℓ∑
k=1

xk + (ℓ− 1)w , (1)

i.e., ajℓ is the departure time from node 0 plus the upper
bound of the time interval it takes to travel through the
links {1, 2, . . . , ℓ} with the time spent at each intermedi-
ate node. Further, the time interval that the flight will
potentially block a landing spot at node ℓ is given by

Mj
ℓ =

[
δj +

ℓ∑
k=1

xk + (ℓ− 1)w, ajℓ + w

]
. (2)

We let Mj
v = Mj

ℓ and ajv = ajℓ if v ∈ V (Rj) and v = ℓRj .

Definition 2. (Realization). A realization of a schedule
(R, δ) refers to a set of realizations for the travel times
on each link along route R that obeys the minimum
and maximum travel time limits. We do not assume
any probability distribution on realizations, but we will
consider certain conditions that hold in the worst-case,
i.e., for all realizations, or in the best-case, i.e., there exists
some realization satisfying the condition.

Definition 3. (Feasible Schedule Profile). A schedule pro-
file S = {(Rj , δj)}j∈J where δj ∈ R+ for all j ∈ J is a
feasible schedule profile if, for all realizations (that is, in
worst-case), the number of vehicles at a node never exceeds
capacity, i.e., for all v ∈ V and all t ≥ 0,∑

j:v∈V (Rj)

1
(
t;Mj

v

)
≤ Cv (3)

where the notation 1(·; ·) is an indicator such that
1(t; [a, b]) = 1 if t ∈ [a, b] and 1(t; [a, b]) = 0 otherwise.

While every feasible schedule will by definition ensure
proper operation of the UAM network under normal
circumstances, our objective is to ensure the schedule is
resilient to interruptions in the network.



2.2 Disruption Model

In actual operation, it is expected that unforeseen dis-
ruptions that disable one or more nodes, such as adverse
weather conditions, will be common. The arrangement for
the flights affected by the disabled nodes needs to be
considered in advance to ensure safety, that is, when a
node is disabled, each flight passing through the disabled
node must have a rerouting plan that ensures availability
of a landing spot. In this paper, we postulate the existence
of a set of backup nodes for the network so that when any
node is disabled, the flights can be redirected to the backup
nodes. To which backup node a flight will be directed
to will depend upon which like the flight is currently
travelling on.

In this subsection, we introduce the assignment of the
backup nodes and the operating mechanism once a node is
disabled. We assume that only one node may be disabled
in the rest of the paper. In order to guarantee that each
disrupted flight will be able to be assigned to a node after
the disruption, we assign a backup node to each link in
the network. Naturally, we let the backup node of the
link be its head if the head node is not disabled, and let
the backup node be the tail if the head node is disabled.
Under this assignment of backup node, a flight whose route
is potentially being blocked and is traveling on a link e
will continue to the head node σ(e) on its route if it is
functioning, or return to the previous node τ(e) if the head
node is disabled.

We say the j’th flight is affected by some disabled node
vc ∈ V at time tc if vc ∈ V (Rj), i.e., the route of the flight
travels through node vc, and the flight has not yet reached
vc by time tc in real time. The flight is not affected when
the node vc is disabled at time tc otherwise.

Below is a set of rules that all flights need to follow once
a node vc is disabled at time tc:

(1) flights not affected will continue normal operation;
(2) any affected flight that has not yet departed (δj > tc)

will be canceled (no longer depart);
(3) an affected flight j with δj ≤ tc traveling on a link

e ∈ E with σ(e) ̸= vc will continue to the head node
σ(e) and stop there indefinitely (block a landing spot
indefinitely);

(4) an affected flight j with δj ≤ tc that is landed at a
node at time tc will remain there indefinitely;

(5) an affected flight j with δj ≤ tc traveling on a link
e ∈ E with σ(e) = vc will return to the tail of the link
τ(e) and stop there indefinitely.

Note that we do not consider the problem of recovering
a new schedule after a disabled node becomes operational
again, as our focus is on safety. Further, we postulate the
above rules to provide a well-defined problem formulation;
alternative rules might be also plausible.

3. NECESSARY AND SUFFICIENT CONDITIONS
FOR SAFE SCHEDULE

In this section, we formally define safety and present
necessary and sufficient conditions for safety. Given a
network N = (G, C,R, x, x, w) where G = (V, E) and a
feasible schedule S = {(Rj , δj)}j∈J , we regard the j’th

v1 v2

v3

v4

v5

v6

v7

[8, 10] [3, 5]

[2, 6]

[4, 8]

[5, 6]

[1, 5]
[3, 6]

Fig. 1. (Bold partial graph) The sub-graph consisted of the
bold lined 4 nodes and 3 links is used to illustrate the
simple network in Example 1.
(Entire graph) The entire graph is used to illustrate
the network with 7 nodes and 7 links in the case study.

flight as possibly affected by disabling node vc at time tc if
vc ∈ V (Rj) and tc < supMj

vc , i.e., the flight may have to
travel through the disabled node later than tc, depending
on realized travel times. The closure of a node can affect
the set of schedules in different ways. In particular, the set
of schedules is:

(1) worst-case (resp., best-case) time-node conditionally
safe for node vc and time tc if, supposing that vc is
disabled at time tc, then all possibly affected flights
are able to land at their designated backup nodes
while not interfering with any unaffected flights, for
all (resp., for some) realization of link travel times.

(2) worst-case (resp. best-case) node conditionally safe
for node vc if it is worst-case (resp. best-case) time-
node conditionally safe for node vc for all time tc ≥ 0.

(3) worst-case (resp. best-case) 1-closure safe if it is
worst-case (resp. best-case) node conditionally safe
for any node vc ∈ V.

Note that worst-case safety implies best-case safety.

Example 1. We illustrate the model and the safe crite-
ria through the simple network shown in Fig. 1 with 4
nodes and 3 links (the bold lined sub-graph). For this
example, the set of nodes V = {v1, v2, v3, v4} and E =
{(v1, v2), (v2, v3), (v2, v4)}. We assume that the origin v1
does not have a capacity constraint, while Cv2 = 2, Cv3 =
1 and Cv4 = 1. The links are indicated in the figure and the
corresponding travel time intervals are labeled beside the
links, e.g., the interval [8, 10] above the link (v1, v2) means
that the shortest (resp., longest) possible time for traveling
through the link is 8 min (resp., 10 min). We consider
two possible routes R1 = {(v1, v2), (v2, v3)} and R2 =
{(v1, v2), (v2, v4)}. Each flight remains at the intermediate
nodes or destination along its path for w = 1 time unit
after landing. Given a feasible schedule S = {S1, S2, S3},
where S1 = (R2, 1), S2 = (R2, 8) and S3 = (R1, δ3),
where we consider several δ3. Assume v4 is disabled at time
tc = 15 min. Under worst-case travel time realizations,
flight S1 will be traveling on (v2, v4) at tc = 15 and needs
to be rerouted to v2; Flight S2 will be traveling on (v1, v2)
and needs to stay at v2 upon arrival. If δ3 = 0, flight S3

is not affected, and should continue its journey; however,
if δ3 = 10, then v2 will be short of landing spots upon
the arrival of S3. Therefore, S is worst-case time-node
conditionally safe for node v4 at time 15 if δ3 ≤ 4 and
is not if δ3 > 4. In contrast, it is always best-case time-
node conditionally safe for node v4 at time 15 regardless
of the choice of δ3. Meanwhile, suppose Cv2 = 3, and we
let δ3 = 10, then obviously, the network will be able to



handle the flights after closure no matter when the node
v4 is closed. Therefore, we see that S is worst-case node
conditionally safe for node v4 in this case. We further check
that this is true for all nodes in the network, and thus S
is also worst-case 1-closure safe. 2

To obtain conditions for 1-closure safety, we start by ob-
serving that a feasible schedule is trivially node condition-
ally safe for node v ∈ S, where we recall S the set of source
nodes that are not the head of any link.

We next explore safety of a disabled node not in S. Before
we study the sufficient and necessary conditions for 1-
closure safety when disabling a node vc ∈ V\S, we first
define several special sets that are used in the conditions.
If vc = ℓRj , we let ℓvc,Rj

= ℓ, and ℓvc,Rj
= 0 if vc /∈ V (Rj).

We let the set of links with head v ∈ V be

Ev := {e ∈ E | σ(e) = v} , (4)

and let be,vc be the node that any flight traveling on link e
will proceed to if vc is disabled:

be,vc
=

{
σ(e) if σ(e) ̸= vc ,

τ(e) if σ(e) = vc .
(5)

We denote the set of links on which flights will be rerouted
to node v when vc is disabled as

Bv,vc := {e ∈ E | be,vc = v} . (6)

We define the set Jv as the index set of the flights with
routes passing through the node v,

Jv := {j ∈ J | v ∈ V (Rj)} , (7)

and we further define the index set of the flights that might
possibly be landed at v after time t as

J ∗
v (t) := {j ∈ Jv | ajv + w > t} . (8)

Therefore, the index set of the possibly affected flights
when node vc is closed at time tc is J ∗

vc(tc), while the
index set for the flights passing through the node v that
are not possibly affected when the node vc is closed at tc
is Jp(v, tc, vc) = Jv\J ∗

vc(tc).

We use Jc(tc) to represent the set of indices for canceled
flights with departure time greater than the closing time tc:

Jc,vc(tc) := {j ∈ Jvc | δj > tc} . (9)

We letNR(v, tc, vc) be the maximum number of flights that
might possibly be landed at node v at the same time once
the node vc is closed at time tc, which can be computed
as

NR(v, tc, vc) = sup
t≥tc

∑
j∈Jp(v,tc,vc)

1(t;Mj
v) . (10)

In the rest of the paper, we sometimes drop the notations
in the parentheses, t, tc, v, vc, when they are clear from the
context.

Theorem 1. Consider a network N = (G, C,R, x, x, w),
where G = (V, E). Assume given a feasible schedule S =
{(Rj , δj)}j∈J . Define Ne(tc, vc) as the number of flights
on link e that stay at be,vc if node vc is disabled at time tc
for all e ∈ E , i.e.,

Ne(tc, vc) =
∑

j∈J ∗\c
vc (tc)

1(tc; [L
j
e, U

j
e ]\O) (11)

where

O =

{
∅ if e /∈ Evc
[Lj

(ℓvc,Rj
−1)Rj

, U j

(ℓvc,Rj
−1)Rj

] if e ∈ Evc
(12)

and we define the lower and upper bounds of the time
interval as

Lj
e =

{
inf{Mj

τ(e)}+ w if τ(e) ̸= 0Rj

δj if τ(e) = 0Rj
(13)

and

U j
e =

{
sup{Mj

σ(e)} if σ(e) ̸= vc

sup{Mj
σ(e)} − w if σ(e) = vc.

(14)

Further define Nv(tc, vc) as the number of possibly af-
fected flights that may block the node v indefinitely, i.e.,
Nv(tc, vc) =

∑
e∈Bv,vc

Ne(tc, vc).

Then S is worst-case time-node conditionally safe for node
vc and time tc if and only if, for all v ∈ V,

Cv −Nv(tc, vc) ≥ NR(v, tc, vc) . (15)

Further, S is worst-case node conditionally safe for node
vc if and only if (15) holds for the finite number of times
tc where the values of Nv(tc, vc) and NR(v, tc, vc) possibly
change, i.e., at both endpoints of the interval Mj

v for all
v ∈ V and at times Lj

e, U
j
e for all e ∈ Bv,vc .

Proof. To guarantee the schedule is time-node condition-
ally safe for node vc and time tc, for any possibly affected
flight that is not canceled and may be rerouted to some
node v ∈ V at time tc, a landing spot needs to be reserved.
Then the problem becomes to ensure the flights surely not
affected will have no capacity conflict with any possibly
rerouted flights. We then consider the maximum (worst-
case) occupation of the node v.

The interval defined as [Lj
e, U

j
e ] is the time interval during

which flight j possibly be rerouted to be,vc
if vc is closed

since the lower bound Lj
e is the earliest time that the

flight may leave the previous node τ(e), and, if σ(e) is
not disabled, the upper bound U j

e is the latest time that
the flight may leave the head node while, in the case that
σ(e) is disabled, the upper bound U j

e for the time interval
that the flight may be rerouted to the backup node τ(e)
will be the latest time that the corresponding flight may
arrive at the node vc, since otherwise it will continue its
journey without rerouting.

Therefore, Ne(tc, vc) in (12) is the number of parking spots
needs to be reserved at be,vc

for the possibly affected flights
and will not be canceled. Notice that, if e ∈ Evc , we only
need to reserve an extra space at node τ(e) for a flight if it
is not possibly traveling on the previous link along its route
at time tc. Nv(tc, vc) is the number of landing spots needed
to be reserved for the rerouted flights. Finally, NR(v, tc, vc)
is the maximum number of flights not possibly affected
that may park at the node v at any time once vc is closed
at tc. Therefore, if (15) is satisfied if and only if capacity
conflict does not exist for any realizations at any node
in the network. Hence (15) is a necessary and sufficient
condition for the time-node conditional safety. 2

Theorem 1 provides a finite number of conditions to
verify a schedule is worst-case node conditionally safe for
node vc. Furthermore, by checking that a schedule is node
conditionally safe for all vc ∈ V, we can conclude the worst-
case 1-closure safety. The same checking technique will



be applied to the necessary condition below for best-case
safety in Theorem 2, which is obtained by observing the
best scenario case where we assume that all flights possible
to have arrived at or passed the closed node vc has already
arrived or left by the time of failure. We denote the index
set of the possibly affected flights that may have arrived
at or passed the node vc disabled at tc as J ′′

vc , and

J ′′
vc(tc) = {j ∈ J ∗

vc
| inf{Mj

vc} ≤ tc} . (16)

Theorem 2. Consider a network N = (G, C,R, x, x, w),
where G = (V, E). A feasible schedule S = {(Rj , δj)}j∈J
is best-case time-node conditionally safe for node vc and
time tc only if there exists a set of non-negative inte-
gers {Nv}v∈V that satisfies∑

v∈V
Nv = |J ∗

vc(tc)\{Jc,vc
(tc) ∪ J ′′

vc(tc)}| (17)

Cv −Nv ≥ sup
t≥tc

∑
j∈Jv\J ∗

vc
(tc)

1
(
t;Mj

v

)
∀v ∈ V . (18)

Further, S is best-case node conditionally safe for node vc
only if, for the finite number of times tc where the time-
varying index sets J ∗

vc(tc), Jc(tc) and J ′′
vc(tc), and the

endpoints of the interval Mj
v for all v ∈ V and j ∈

J possibly change, there exists a set of non-negative
integers {Nv}v∈V that satisfies the constraints (17)–(18).

Proof. The proof of Theorem 2 applies the similar logic
as in Theorem 1 to the best-case scenario. First of all,
the set of all rerouted flights has to be the same as
the possibly affected flights J ∗

vc except for the canceled
flights, Jc(tc), or the flights that are possibly not affected,
J ′′
vc
, as depicted in (17). If we are not able to find a

sequence of non-negative integers {Nv}v∈V that satisfies
(17)–(18), then there must exist a conflict of occupation
at one or more nodes once vc is closed at time tc for
some realizations, and hence (17) and (18) are necessary
conditions for the set of schedules to be best-case time-
node conditionally safe for node vc and time tc. 2

Theorem 1 is both sufficient and necessary for worst-case
1-closure safety, while Theorem 2 is necessary for best-case
1-closure safety. Since worst-case safety implies best-case
safety, satisfaction of the conditions in Theorem 1 implies
satisfaction of the conditions in Theorem 2.

4. CASE STUDY

In the case study, we first demonstrate an algorithm for
safety verification derived from the conditions in Theo-
rem 1 on a UAM network with 7 nodes and 7 links as shown
in Fig. 1 with a feasible schedule of size 20. Notice that the
algorithm is also able to deal with other general directed
graphs. We then show the relation between the verification
time and the size of the schedules being examined through
various sets of schedules with different sizes.

To ensure the safety for all realizations of link travel time,
we check whether the condition of worst-case time-node
conditional safety for node vc and tc is satisfied or not over
the time interval tc ∈ [0,+∞). As stated in Theorem 1,
we only need to verify (15) at each point of time that any
value may change, i.e., Lj

e, U
j
e and both ends of Mj

v for
any counted flight j ∈ J and link e ∈ E for some fixed
node v, since the inequality (15) will not change between
these points.

0 20 40 60
0

5

10

Nv2
NR
Cv2

tc (minute)

N
u
m
b
er

o
f
U
A
V
s

Fig. 2. The number of flights rerouted to v2, Nv2(tc, v5)
(simplified as Nv2), represented by the upper blue
rectangles and the maximum unaffected occupation
at v2 when the node v5 is disabled at time tc,
NR(v2, tc, v5) (simplified as NR), represented by the
lower white rectangles. The dotted line corresponds
to the capacity at node v2.

In the network in Fig. 1 (the entire graph), the set of all
possible origins (resp., destinations) is S = {v1} (resp.,
T = {v6, v7}). We assume the origin v1 does not have
capacity constraint, while Cv2

= 8, Cv3 = 4, Cv4 = 2,
Cv5 = 4, Cv6 = 3 and Cv7 = 5. The links are indicated
in the figure and the corresponding travel time intervals
are labeled beside the links. We consider three routes R =
{R1, R2, R3} with R1 = {(v1, v2), (v2, v3), (v3, v6)}, R2 =
{(v1, v2), (v2, v3), (v3, v5), (v5, v7)} and R3 = {(v1, v2),
(v2, v4), (v4, v5), (v5, v7)}. Each flight remains at the verti-
stops along its path for w = 1 time unit after landing.
We randomly generate a particular feasible schedule pro-
file with 20 flights and consider the inequality (15) in
Theorem 1 for worst-case time-node conditionally safe for
node vc = v5 and any time tc > 0. The verification is
implemented in MATLAB 1 .

In Fig. 2, the white rectangles show the flights being
rerouted to the node v2 if the node v5 is closed at time tc,
which is Nv2(tc, v5) in (15); the blue rectangles represent
the number of flights not affected and continue to v2 if
the node v5 is closed at time tc, which is NR(v2, tc, v5). As
a reference, the capacity Cv2 = 8 is shown as the dotted,
horizontal line so that if the height of the entire bar exceeds
the capacity, then Theorem 1 is not satisfied at time tc. For
example, the schedule in this case study is not worst-case
node conditionally safe for node v5, as the node v2 is not
able to accommodate to the failure of v5 in certain time
intervals, e.g., tc ∈ [30, 35]. Similarly, we can check if the
other nodes are able to accommodate the failure of node
v5 for any tc with the same technique. If for time tc > 0, all
the nodes are able to accommodate the failure of v5, then
we would conclude that the schedule profile is worst-case
time-node conditionally safe for node v5 and time tc. We
can also observe the performance of the network and the
schedules with the failure of any other node at any time.

The computation for NR(v, tc, vc) in (15) implies O(n2)
computational complexity of this verification process.
Therefore, we are also able to efficiently verify worst-case
safety large schedule profiles. As an example, consider

1 The related MATLAB code and pseudo code of the algorithm can
be found in https://github.com/gtfactslab/Wei_NecSys22.



0 200 400 600 800 1,000
0

10

20

Schedule Size

C
o
m
p
u
ta
ti
o
n
T
im

e
(s
ec
on

d
)

Fig. 3. The computation time for verifying the worst-
case safety of schedules with different sizes. The data
points constitute a parabola, which demonstrates the
O(n2) computational complexity.

increasing the capacity for each node of the network in Fig.
1 by 10 (this does not change the verification time). We
generate 10 more sets of random feasible schedules with
sizes 100, 200, 300, . . . , 1000 and verify their safety using
the same algorithm. Fig. 3 confirms the quadratic relation
between the size of the set of schedules and the time it
takes to check the safety and shows that we are able to
verify safety or provide a counterexample for a schedule
profile with 1,000 flights in under 30 seconds.

5. CONCLUSION

In this paper, we explored the safety verification problem
for a UAM schedule in a disruption scenario in which
a node must close and inbound flights are immediately
rerouted. We provide a reasonable link-related backup-
node assignment for the UAM network and rules for the
flights after a node is disabled. The main impediment to
safety is that each flight needs to be provided an available
landing spot upon arrival of any intermediate, destina-
tion, or backup node. We therefore derived sufficient and
necessary conditions for worst-case and best-case safety
of a given schedule. These theoretical results provide an
efficient safety verification algorithm. We have also demon-
strated through case study that the computational time for
the algorithm grows quadratically with schedule size. As
a result, the safety verification algorithm is applicable to
large-scale UAM scheduling problems.

We focus on the case where only one node is disabled in
this paper, while future work could consider the case where
more than one node is disabled. This problem is more
challenging because safety verification depends on whether
the disabled nodes are adjacent or not and whether they
are disabled concurrently or not. Another direction is to
consider multiple possible backup nodes.

REFERENCES

Aiello, M.A., Dross, C., Rogers, P., Humphrey, L., and
Hamil, J. (2019). Practical application of SPARK to
OpenUxAS. In Formal Methods – The Next 30 Years,
751–761. Springer International Publishing.

Al Haddad, C. (2018). Identifying the factors affecting the
use and adoption of urban air mobility. URL https://
mediatum.ub.tum.de/1482026.

Ancel, E., Capristan, F.M., Foster, J.V., and Condotta,
R.C. (2017). Real-time risk assessment framework for

unmanned aircraft system (UAS) traffic management
(UTM). In 17th AIAA Aviation Technology, Integration,
and Operations Conference, 3273.

Balakrishnan, K., Polastre, J., Mooberry, J., Golding, R.,
and Sachs, P. (2018). Blueprint for the sky. The roadmap
for the safe integration of autonomous aircraft. Airbus
A, 3.

Bosson, C. and Lauderdale, T.A. (2018). Simulation eval-
uations of an autonomous urban air mobility network
management and separation service. In 2018 Avia-
tion Technology, Integration, and Operations Confer-
ence, 3365.

Chen, L., Jiao, J., Wei, Q., and Zhao, T. (2017). An
improved formal failure analysis approach for safety-
critical system based on mbsa. Engineering Failure
Analysis, 82, 713–725.

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M.
(2000). Nusmv: a new symbolic model checker. In-
ternational Journal on Software Tools for Technology
Transfer, 2(4), 410–425.

Holden, J. and Goel, N. (2016). Fast-forwarding to a
future of on-demand urban air transportation. URL
https://www.uber.com/elevate.pdf.

INRIX (2019). Electric passenger drones could re-
lieve housing costs and spread growth in nation’s
booming cities. URL https://inrix.com/campaigns/
vtol-study/.

Lascara, B., Spencer, T., DeGarmo, M., Lacher, A.,
Maroney, D., and Guterres, M. (2018). Urban air mo-
bility landscape report: Initial examination of a new
air transportation system. McLean, VA: The MITRE
Corporation.

Liu, Z. and Joseph, M. (1999). Specification and verifi-
cation of fault-tolerance, timing, and scheduling. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 21(1), 46–89.

The MITRE Corporation (2014). Nextgen independent
assessment recommendations. URL https://www.
mitre.org/sites/default/files/publications/
pr-14-3495-next-gen-independent-assessment.
pdf.

Thipphavong, D.P., Apaza, R., Barmore, B., Battiste,
V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich,
K.H., Homola, J., et al. (2018). Urban air mobility
airspace integration concepts and considerations. In
2018 Aviation Technology, Integration, and Operations
Conference, 3676.

Wang, M., Tian, C., Zhang, N., Duan, Z., and Du, H.
(2019). Verifying a scheduling protocol of safety-critical
systems. Journal of Combinatorial Optimization, 37(4),
1191–1215.

Wei, Q., Nilsson, G., and Coogan, S. (2021). Scheduling of
urban air mobility services with limited landing capacity
and uncertain travel times. In 2021 American Control
Conference (ACC), 1681–1686. IEEE.

Xue, M., Rios, J., Silva, J., Zhu, Z., and Ishihara, A.K.
(2018). Fe3: An evaluation tool for low-altitude air traf-
fic operations. In 2018 Aviation Technology, Integration,
and Operations Conference, 3848.

Yasmeen, A., Feigh, K.M., Gelman, G., and Gunter, E.L.
(2012). Formal analysis of safety-critical system simu-
lations. In ATACCS, 71–81.


